Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-10T22:58:13.393Z Has data issue: false hasContentIssue false

3 - Inventing molecular beacons

Published online by Cambridge University Press:  25 January 2011

Stephen A. Bustin
Affiliation:
Queen Mary University of London
Get access

Summary

The invention of molecular beacons followed a rather circuitous route. Our laboratory had been studying the remarkable mechanism of replication of the single-stranded genomic ribonucleic acid (RNA) of bacteriophage Qβ, a virus that infects Escherichia coli. When a few molecules of Qβ RNA are incubated in a test tube with the viral RNA-directed RNA polymerase, Qβ replicase, millions of copies of each Qβ RNA molecule are generated in only a few minutes by exponential amplification, without primers and without thermal cycling. Unfortunately, Qβ replicase is so specific for the particular sequences and structures present in Qβ RNA that it ignores almost all other nucleic acid molecules, disappointing scientists who would use its extraordinary amplification characteristics to generate large amounts of any desired RNA in vitro. However, our laboratory discovered that if a heterologous RNA sequence is inserted into an appropriate site within Midivariant RNA (MDV-1), which is a naturally occurring small RNA isolated from Qβ-infected E. coli that possesses the sequences and structures required for replication, the resulting “recombinant RNA” can be amplified exponentially by incubation with Qβ replicase. This discovery enabled the design of recombinant RNAs that contained inserted hybridization probe sequences, which were employed in the earliest real-time exponential amplification assays, and the use of which, paradoxically, led to the invention of molecular beacons.

Spurred by the emergence of the pernicious infectious agent human immunodeficiency virus (HIV)-1, which is present in as few as 1 in 100,000 peripheral blood mononuclear cells in infected asymptomatic individuals, we developed an assay that was designed to use the exponential amplification of recombinant RNA hybridization probes to measure the number of HIV-1 target molecules present in clinical samples.

Type
Chapter
Information
The PCR Revolution
Basic Technologies and Applications
, pp. 19 - 47
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Haruna, I, Spiegelman, S (1965) The autocatalytic synthesis of a viral RNA in vitro. Science 150: 884–886.CrossRefGoogle ScholarPubMed
Kacian, DL, Mills, DR, Kramer, FR, Spiegelman, S (1972) A replicating RNA molecule suitable for a detailed analysis of extracellular evolution and replication. Proceedings of the National Academy of Sciences of the United States of America 69: 3038–3042.CrossRefGoogle Scholar
Nishihara, T, Kramer, FR (1983) Localization of the Qβ replicase recognition site in MDV-1 RNA. Journal of Biochemistry 93: 669–674.CrossRefGoogle ScholarPubMed
Miele, EA, Mills, DR, Kramer, FR (1983) Autocatalytic replication of a recombinant RNA. Journal of Molecular Biology 171: 281–295.CrossRefGoogle ScholarPubMed
Lizardi, PM, Guerra, CE, Lomeli, H, Tussie-Luna, I, Kramer, FR (1988) Exponential amplification of recombinant RNA hybridization probes. Nature Biotechnology 6: 1197–1202.CrossRefGoogle Scholar
Lomeli, H, Tyagi, S, Pritchard, CG, Lizardi, PM, Kramer, FR (1989) Quantitative assays based on the use of replicatable hybridization probes. Clinical Chemistry 35: 1826–1831.Google ScholarPubMed
Chu, BC, Kramer, FR, Orgel, (1986) Synthesis of an amplifiable reporter RNA for bioassays. Nucleic Acids Research 14: 5591–5603.CrossRefGoogle ScholarPubMed
Kramer, FR, Lizardi, PM (1989) Replicatable RNA reporters. Nature 339: 401–402.CrossRefGoogle ScholarPubMed
Kramer, FR, Mills, DR, Cole, PE, Nishihara, T, Spiegelman, S (1974) Evolution in vitro: sequence and phenotype of a mutant RNA resistant to ethidium bromide. Journal of Molecular Biology 89: 719–736.CrossRefGoogle ScholarPubMed
Pritchard, CG, Stefano, JE (1991) Detection of viral nucleic acids by Qβ replicase amplification. In: Maza, LM and Peterson, EM (eds), Medical Virology 10, pages 67–82. New York: Plenum Press.CrossRefGoogle Scholar
Shah, JS, Liu, J, Smith, J, Popoff, S, Radcliffe, G, O'Brien, WJ, et al. (1994) Novel, ultrasensitive, Q-beta replicase-amplified hybridization assay for detection of Chlamydia trachomatis. Journal of Clinical Microbiology 32: 2718–2724.Google ScholarPubMed
Burg, JL, Cahill, PB, Kutter, M, Stefano, JE, Mahan, (1995) Real-time fluorescence detection of RNA amplified by Qβ replicase. Analytical Biochemistry 230: 263–272.CrossRefGoogle Scholar
Morrissey, DV, Lombardo, M, Eldredge, JK, Kearney, KR, Groody, EP, Collins, ML (1989) Nucleic acid hybridization assays employing dA-tailed capture probes. I. Multiple capture methods. Analytical Biochemistry 181: 345–359.CrossRefGoogle ScholarPubMed
Tyagi, S, Landegren, U, Tazi, M, Lizardi, PM, Kramer, FR (1996) Extremely sensitive, background-free gene detection using binary probes and Q-beta replicase. Proceedings of the National Academy of Sciences of the United States of America 93: 5395–5400.CrossRefGoogle Scholar
Shore, D, Langowski, J, Baldwin, RL (1981) DNA flexibility studied by covalent closure of short fragments into circles. Proceedings of the National Academy of Sciences of the United States of America 78: 4833–4837.CrossRefGoogle ScholarPubMed
Blok, HJ, Kramer, FR (1997) Amplifiable hybridization probes containing a molecular switch. Molecular and Cellular Probes 11: 187–194.CrossRefGoogle ScholarPubMed
Saiki, RK, Gelfand, DH, Stoffel, S, Scharf, SJ, Higuchi, R, Horn, GT, et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.CrossRefGoogle ScholarPubMed
Abbott, MA, Poiesz, BJ, Byrne, BC, Kwok, S, Sninsky, JJ, Ehrlich, GD (1988) Enzymatic gene amplification: qualitative and quantitative methods for detecting proviral DNA amplified in vitro. Journal of Infectious Diseases 158: 1158–1169.CrossRefGoogle ScholarPubMed
Kwok, S, Higuchi, R (1989) Avoiding false positives with PCR. Nature 339: 237–238.CrossRefGoogle ScholarPubMed
Holland, PM, Abramson, RD, Watson, R, Gelfand, DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proceedings of the National Academy of Sciences of the United States of America 88: 7276–7280.CrossRefGoogle ScholarPubMed
Higuchi, R, Dollinger, G, Walsh, PS, Griffith, R (1992) Simultaneous amplification and detection of specific DNA sequences. Nature Biotechnology 10: 413–417.CrossRefGoogle ScholarPubMed
Higuchi, R, Fockler, C, Dollinger, G, Watson, R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Nature Biotechnology 11: 1026–1030.CrossRefGoogle ScholarPubMed
Erlich, HA, Gelfand, D, Sninsky, JJ (1991) Recent advances in the polymerase chain reaction. Science 252: 1643–1651.CrossRefGoogle ScholarPubMed
Stryer, L, Haugland, RP (1967) Energy transfer: a spectroscopic ruler. Proceedings of the National Academy of Sciences of the United States of America 58: 719–726.CrossRefGoogle ScholarPubMed
Heller, MJ, Morrison, (1985) Chemiluminescent and fluorescent probes for DNA hybridization systems. In: Kingsbury, DT and Falkow, S (eds), Rapid Detection and Identification of Infectious Agents, pages 245–256. New York: Academic Press.Google Scholar
Cardullo, RA, Agrawal, S, Flores, C, Zamecnik, PC, Wolf, (1988) Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. Proceedings of the National Academy of Sciences of the United States of America 85: 8790–8794.CrossRefGoogle ScholarPubMed
Wittwer, CT, Herrmann, MG, Moss, AA, Rasmussen, RP (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques 22: 130–138.Google ScholarPubMed
Morrison, , Halder, TC, Stols, LM (1989) Solution-phase detection of polynucleotides using interacting fluorescent labels and competitive hybridization. Analytical Biochemistry 183: 231–244.CrossRefGoogle ScholarPubMed
Tyagi, S, Kramer, FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnology 14: 303–308.CrossRefGoogle ScholarPubMed
Matayoshi, ED, Wang, GT, Krafft, GA, Erickson, J (1990) Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer. Science 247: 954–958.CrossRefGoogle ScholarPubMed
Parkhurst, KM, Parkhurst, LJ (1993) Kinetic studies of oligonucleotide-DNA hybridization in solution by fluorescence resonance energy transfer. Abstract W-Pos 97 presented at the 37th Annual Meeting of the Biophysical Society, Washington, DC. Biophysical Journal 64: A266.Google Scholar
Parkhurst, KM, Parkhurst, LJ (1995) Kinetic studies by fluorescence resonance energy transfer employing a double-labeled oligonucleotide: hybridization to the oligonucleotide complement and to single-stranded DNA. Biochemistry 34: 285–292.CrossRefGoogle ScholarPubMed
Lee, LG, Connell, CR, Bloch, W (1993) Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Research 21: 3761–3766.CrossRefGoogle ScholarPubMed
Livak, KJ, Flood, SJA, Marmaro, J, Giust, W, Deetz, K (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods and Applications 4: 357–362.CrossRefGoogle ScholarPubMed
Heid, CA, Stevens, J, Livak, KJ, Williams, PM (1996) Real time quantitative PCR. Genome Research 6: 986–994.CrossRefGoogle ScholarPubMed
Haugland, RP, Yguerabide, J, Stryer, L (1969) Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap. Proceedings of the National Academy of Sciences of the United States of America 63: 23–30.CrossRefGoogle ScholarPubMed
Tyagi, S, Bratu, DP, Kramer, FR (1998) Multicolor molecular beacons for allele discrimination. Nature Biotechnology 16: 49–53.CrossRefGoogle ScholarPubMed
Vet, JA, Majithia, AR, Marras, SAE, Tyagi, S, Dube, S, Poiesz, BJ, et al. (1999) Multiplex detection of four pathogenic retroviruses using molecular beacons. Proceedings of the National Academy of Sciences of the United States of America 96: 6394–6399.CrossRefGoogle ScholarPubMed
Marras, SAE, Kramer, FR, Tyagi, S (1999) Multiplex detection of single-nucleotide variations using molecular beacons. Genetic Analysis 14: 151–156.CrossRefGoogle ScholarPubMed
Bernacchi, S, Mély, Y (2001) Exciton interaction in molecular beacons: a sensitive sensor for short range modifications of the nucleic acid structure. Nucleic Acids Research 29: e62.CrossRefGoogle ScholarPubMed
Knemeyer, J-P, Marmé, N, Sauer, M (2000) Probes for detection of specific DNA sequences at the single-molecule level. Analytical Chemistry 72: 3717–3724.CrossRefGoogle ScholarPubMed
Crockett, AO, Wittwer, CT (2001) Fluorescein-labeled oligonucleotides for real-time PCR: using the inherent quenching of deoxyguanosine nucleotides. Analytical Biochemistry 290: 89–97.CrossRefGoogle ScholarPubMed
Nasarabadi, S, Milanovich, F, Richards, J, Belgrader, P (1999) Simultaneous detection of TaqMan probes containing FAM and TAMRA reporter fluorophores. BioTechniques 27: 1116–1118.Google ScholarPubMed
Marras, SAE, Kramer, FR, Tyagi, S (2002) Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Research 30: e122.CrossRefGoogle Scholar
Li, Q, Luan, G, Guo, Q, Liang, J (2002) A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Research 30: e5.CrossRefGoogle ScholarPubMed
Yi, J, Zhang, W, Zhang, DY (2006) Molecular zipper: a fluorescent probe for real-time isothermal DNA amplification. Nucleic Acids Research 34: e81.CrossRefGoogle ScholarPubMed
Johansson, MK, Fidder, H, Dick, D, Cook, RM (2002) Intramolecular dimers: a new strategy to fluorescence quenching in dual-labeled oligonucleotide probes. Journal of the American Chemical Society 124: 6950–6956.CrossRefGoogle ScholarPubMed
Moreira, RG, You, Y, Behlke, MA, Owczarzy, R (2005) Effects of fluorescent dyes, quenchers, and dangling ends on DNA duplex stability. Biochemical and Biophysical Research Communications 327: 473–484.CrossRefGoogle ScholarPubMed
Mullah, B, Livak, K (1999) Efficient automated synthesis of molecular beacons. Nucleosides, Nucleotides & Nucleic Acids 18: 1311–1312.CrossRefGoogle Scholar
Giesendorf, BAJ, Vet, JAM, Tyagi, S, Mensink, EJMG, Trijbels, FJM, Blom, HJ (1998) Molecular beacons: a new approach for semiautomated mutation analysis. Clinical Chemistry 44: 482–486.Google ScholarPubMed
Kostrikis, LG, Tyagi, S, Mhlanga, MM, Ho, DD, Kramer, FR (1998) Spectral genotyping of human alleles. Science 279: 1228–1229.CrossRefGoogle ScholarPubMed
Täpp, I, Malmberg, L, Rennel, E, Wik, M, Syvänen, A-C (2000) Homogeneous scoring of single-nucleotide polymorphisms: comparison of the 5′-nuclease TaqMan assay and molecular beacon probes. BioTechniques 28: 732–738.Google ScholarPubMed
Piatek, AS, Tyagi, S, Pol, AC, Telenti, A, Miller, LP, Kramer, FR, et al. (1998) Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nature Biotechnology 16: 359–363.CrossRefGoogle ScholarPubMed
Mhlanga, MM, Malmberg, L (2001) Using molecular beacons to detect single-nucleotide polymorphisms with real-time PCR. Methods 25: 463–471.CrossRefGoogle ScholarPubMed
Bonnet, G, Tyagi, S, Libchaber, A, Kramer, FR (1999) Thermodynamic basis of the enhanced specificity of structured DNA probes. Proceedings of the National Academy of Sciences of the United States of America 96: 6171–6176.CrossRefGoogle ScholarPubMed
Roberts, RW, Crothers, DM (1991) Specificity and stringency in DNA triplex formation. Proceedings of the National Academy of Sciences of the United States of America 88: 9397–9401.CrossRefGoogle ScholarPubMed
Broude, NE (2002) Stem-loop oligonucleotides: a robust tool for molecular biology and biotechnology. Trends in Biotechnology 20: 249–256.CrossRefGoogle ScholarPubMed
Marras, SAE, Antson, D-O, Tyagi, S, Kramer, FR (2010) Highly multiplex PCR screening assays that utilize color-coded molecular beacons for the identification of bacterial species. In preparation.
Leone, G, Schijndel, H, Gemen, B, Kramer, FR, Schoen, CD (1998) Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Research 26: 2150–2155.CrossRefGoogle ScholarPubMed
Baar, MP, Dooren, MW, Rooij, E, Bakker, M, Gemen, B, Goudsmit, J, et al. (2001) Single rapid real-time monitored isothermal RNA amplification assay for quantification of human immunodeficiency virus type 1 isolates from groups M, N, and O. Journal of Clinical Microbiology 39: 1378–1384.CrossRefGoogle ScholarPubMed
Baar, MP, Timmermans, EC, Bakker, M, Rooij, E, Gemen, B, Goudsmit, J (2001) One-tube real-time isothermal amplification assay to identify and distinguish human immunodeficiency virus type 1 subtypes A, B, C and circulating recombinant forms AE and AG. Journal of Clinical Microbiology 39: 1895–1902.CrossRefGoogle Scholar
Nilsson, M, Gullberg, M, Dahl, F, Szuhai, K, Raap, AK (2002) Real-time monitoring of rolling-circle amplification using a modified molecular beacon design. Nucleic Acids Research 30: e66.CrossRefGoogle ScholarPubMed
Alsmadi, OA, Bornarth, CJ, Song, W, Wisniewski, M, Du, J, Brockman, JP, et al. (2003) High accuracy genotyping directly from genomic DNA using a rolling circle amplification based assay. BMC Genomics 4: 21.CrossRefGoogle ScholarPubMed
Vogelstein, B, Kinzler, KW (1999) Digital PCR. Proceedings of the National Academy of Sciences of the United States of America 96: 9236–9241.CrossRefGoogle ScholarPubMed
Sanchez, JA, Pierce, KE, Rice, JE, Wangh, LJ (2004) Linear-After-The-Exponential (LATE)-PCR: an advanced method of asymmetric PCR and its uses in quantitative real-time analysis. Proceedings of the National Academy of Sciences of the United States of America 101: 1933–1938.CrossRefGoogle ScholarPubMed
Pierce, KE, Sanchez, JA, Rice, JE, Wangh, LJ (2005) Linear-After-The-Exponential (LATE)-PCR: primer design criteria for high yields of specific single-stranded DNA and improved real-time detection. Proceedings of the National Academy of Sciences of the United States of America 102: 8609–8614.CrossRefGoogle ScholarPubMed
Marras, SAE, Gold, B, Kramer, FR, Smith, I, Tyagi, S (2004) Real-time measurement of in vitro transcription. Nucleic Acids Research 32: e72.CrossRefGoogle ScholarPubMed
Ririe, KM, Rasmussen, RP, Wittwer, CT (1997) Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analytical Biochemistry 245: 154–160.CrossRefGoogle ScholarPubMed
El-Hajj, HH, Marras, SAE, Tyagi, S, Shashkina, E, Kamboj, M, Kiehn, TE, et al. (2009) Use of sloppy molecular beacon probes for identification of mycobacterial species. Journal of Clinical Microbiology 47: 1190–1198.CrossRefGoogle ScholarPubMed
Nazarenko, IA, Bhatnager, SK, Hohman, RJ (1997) A closed tube format for amplification and detection of DNA based on energy transfer. Nucleic Acids Research 25: 2516–2521.CrossRefGoogle ScholarPubMed
Nazarenko, I, Lowe, B, Darfler, M, Ikonomi, P, Schuster, D, Rashtchian, A (2002) Multiplex quantitative PCR using self-quenched primers labeled with a single fluorophore. Nucleic Acids Research 30: e37.CrossRefGoogle ScholarPubMed
Whitcombe, D, Theaker, J, Guy, SP, Brown, T, Little, S (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nature Biotechnology 17: 804–807.CrossRefGoogle ScholarPubMed
Nitin, N, Santangelo, PJ, Kim, G, Nie, S, Bao, G (2004) Peptide-linked molecular beacons for efficient delivery and rapid mRNA detection in living cells. Nucleic Acids Research 32: e58.CrossRefGoogle ScholarPubMed
Mhlanga, MM, Vargas, DY, Fung, CW, Kramer, FR, Tyagi, S (2005) tRNA-linked molecular beacons for imaging mRNAs in the cytoplasm of living cells. Nucleic Acids Research 33: 1902–1912.CrossRefGoogle ScholarPubMed
Satterfield, BC, West, JAA, Caplan, MR (2007) Tentacle probes: eliminating false positives without sacrificing sensitivity. Nucleic Acids Research 35: e76.CrossRefGoogle Scholar
Tyagi, S, Marras, SAE, Kramer, FR (2000) Wavelength-shifting molecular beacons. Nature Biotechnology 18: 1191–1196.CrossRefGoogle ScholarPubMed
El-Hajj, HH, Marras, SAE, Tyagi, S, Kramer, FR, Alland, D (2001) Detection of rifampin resistance in Mycobacterium tuberculosis in a single tube with molecular beacons. Journal of Clinical Microbiology 39: 4131–4237.CrossRefGoogle Scholar
Bratu, DP, Cha, B-J, Mhlanga, MM, Kramer, FR, Tyagi, S (2003) Visualizing the distribution and transport of mRNAs in living cells. Proceeding of the National Academy of Sciences of the United States of America 100: 13308–13313.CrossRefGoogle ScholarPubMed
Santangelo, PJ, Nix, B, Tsourkas, A, Bao, G (2004) Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Research 32: e57.CrossRefGoogle ScholarPubMed
Ortiz, E, Estrada, G, Lizardi, PM (1998) PNA molecular beacons for rapid detection of PCR amplicons. Molecular and Cellular Probes 12: 219–226.CrossRefGoogle ScholarPubMed
Kuhn, H, Demidov, VV, Coull, JM, Fiandaca, MJ, Gildea, BD, Frank-Kamenetskii, MD (2002) Hybridization of DNA and PNA molecular beacons to single-stranded and double-stranded DNA targets. Journal of the American Chemical Society 124: 1097–1103.CrossRefGoogle ScholarPubMed
Xi, C, Balberg, M, Boppart, SA, Raskin, L (2003) Use of DNA and peptide nucleic acid molecular beacons for detection and quantification of rRNA in solution and in whole cells. Applied and Environmental Microbiology 69: 5673–5678.CrossRefGoogle ScholarPubMed
Molenaar, C, Marras, SAE, Slats, JCM, Truffert, J-C, Lemaître, M, Raap, AK, et al. (2001) Linear 2′-O-methyl RNA probes for the visualization of RNA in living cells. Nucleic Acids Research 29: e89.CrossRefGoogle ScholarPubMed
Tsourkas, A, Behlke, MA, Bao, G (2002) Hybridization of 2′-O-methyl and 2′-deoxy molecular beacons to RNA and DNA targets. Nucleic Acids Research 30: 5168–5174.CrossRefGoogle ScholarPubMed
Wang, L, Yang, CJ, Medley, CD, Benner, SA, Tan, W (2005) Locked nucleic acid molecular beacons. Journal of the American Chemical Society 127: 15664–15665.CrossRefGoogle ScholarPubMed
Tyagi, S, Alsmadi, O (2004) Imaging native β-actin mRNA in motile fibroblasts. Biophysical Journal 87: 4253–4162.CrossRefGoogle ScholarPubMed
Ramachandran, A, Flinchbaugh, J, Ayoubi, P, Olah, GA, Malayer, JR (2004) Target discrimination by surface-immobilized molecular beacons designed to detect Francisella tularensis. Biosensors & Bioelectronics 19: 727–736.CrossRefGoogle ScholarPubMed
Yao, G, Tan, W (2004) Molecular-beacon-based array for sensitive DNA analysis. Analytical Biochemistry 331: 216–223.CrossRefGoogle ScholarPubMed
Steemers, FJ, Ferguson, JA, Walt, DR (2000) Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nature Biotechnology 18: 91–94.CrossRefGoogle ScholarPubMed
Liu, X, Tan, W (1999) A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons. Analytical Chemistry 71: 5054–5059.CrossRefGoogle ScholarPubMed
Brown, LJ, Cummins, J, Hamilton, A, Brown, T (2000) Molecular beacons attached to glass beads fluoresce upon hybridization to target DNA. Chemical Communications (Cambridge, England) 2000: 621–622.CrossRefGoogle Scholar
Wang, H, Li, J, Liu, H, Liu, Q, Mei, Q, Wang, Y, et al. (2002) Label-free hybridization detection of a single nucleotide mismatch by immobilization of molecular beacons on an agarose film. Nucleic Acids Research 30: e61.CrossRefGoogle ScholarPubMed
Stoermer, RL, Cederquist, KB, McFarland, SK, Sha, MY, Penn, SG, Keating, CD (2006) Coupling molecular beacons to barcoded metal nanowires for multiplexed, sealed chamber DNA bioassays. Journal of the American Chemical Society 128: 16892–16903.CrossRefGoogle ScholarPubMed
Fang, X, Liu, X, Schuster, S, Tan, W (1999) Designing a novel molecular beacon for surface-immobilized DNA hybridization studies. Journal of the American Chemical Society 121: 2921–2922.CrossRefGoogle Scholar
Dubertret, B, Calame, M, Libchaber, AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nature Biotechnology 19: 365–370.CrossRefGoogle Scholar
Du, H, Disney, MD, Miller, BL, Krauss, TD (2003) Hybridization-based unquenching of DNA hairpins on Au surfaces: prototypical “molecular beacon” biosensors. Journal of the American Chemical Society 125: 4012–4013.CrossRefGoogle ScholarPubMed
Fan, C, Plaxco, KW, Heeger, AJ (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proceedings of the National Academy of Sciences of the United States of America 100: 9134–9137.CrossRefGoogle ScholarPubMed
Nutiu, R, Li, Y (2002) Tripartite molecular beacons. Nucleic Acids Research 30: e94.CrossRefGoogle ScholarPubMed
Landré, JBP, Ruryk, A, Schlicksbier, T, Russwurm, S, Deigner, H-P (2005) Design and applications of a novel type of hairpin probe: addressable bipartite molecular hook (ABMH). In: Nanotech 2005, Vol. 1, pages 385–388. Cambridge, MA: Nano Science and Technology Institute.Google Scholar
Yamamoto, R, Kumar, PKR (2000) Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes to Cells 5: 389–396.CrossRefGoogle ScholarPubMed
Hamaguchi, N, Stanton, Ellington A (2001) Aptamer beacons for the direct detection of proteins. Analytical Biochemistry 294: 126–131.CrossRefGoogle ScholarPubMed
Li, JJ, Fang, X, Tan, W (2002) Molecular aptamer beacons for real-time protein recognition. Biochemical and Biophysical Research Communications 292: 31–40.CrossRefGoogle ScholarPubMed
Stojanovic, MN, Prada, P, Landry, DW (2001) Aptamer-based folding fluorescent sensor for cocaine. Journal of the American Chemical Society 123: 4928–4931.CrossRefGoogle ScholarPubMed
Nutiu, R, Li, Y (2003) Structure-switching signaling aptamers. Journal of the American Chemical Society 125: 4771–4778.CrossRefGoogle ScholarPubMed
Nutiu, R, Li, Y (2004) Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling. Chemistry 10: 1868–1876.CrossRefGoogle ScholarPubMed
Heyduk, T, Heyduk, E (2002) Molecular beacons for detecting DNA binding proteins. Nature Biotechnology 20: 171–176.CrossRefGoogle ScholarPubMed
Heyduk, E, Heyduk, T (2005) Nucleic acid-based fluorescence sensors for detecting proteins. Analytical Chemistry 77: 1147–1156.CrossRefGoogle ScholarPubMed
Rajendran, M, Ellington, AD (2003) In vitro selection of molecular beacons. Nucleic Acids Research 31: 5700–5713.CrossRefGoogle ScholarPubMed
Nutiu, R, Li, Y (2005) In vitro selection of structure-switching signaling aptamers. Angewandte Chemie (International ed. in English) 44: 1061–1065.CrossRefGoogle ScholarPubMed
Oh, KJ, Cash, KJ, Hugenberg, V, Plaxco, KW (2007) Peptide beacons: a new design for polypeptide-based optical biosensors. Bioconjugate Chemistry 18: 607–609.CrossRefGoogle ScholarPubMed
Matsuo, T (1998) In situ visualization of messenger RNA for basic fibroblast growth factor in living cells. Biochimica et Biophysica Acta 1379: 178–184.CrossRefGoogle ScholarPubMed
Sokol, DL, Zhang, X, Lu, P, Gerwirtz, AM (1998) Real time detection of DNA·RNA hybridization in living cells. Proceedings of the National Academy of Sciences of the United States of America 95: 11538–11543.CrossRefGoogle ScholarPubMed
Perlette, J, Tan, W (2001) Real-time monitoring of intracellular mRNA hybridization inside single living cells. Analytical Chemistry 73: 5544–5550.CrossRefGoogle ScholarPubMed
Tsuji, A, Koshimoto, H, Sato, Y, Hirano, M, Sei-Iida, Y, Kondo, S, et al. (2000) Direct observation of specific messenger RNA in a single living cell under a fluorescence microscope. Biophysical Journal 78: 3260–3274.CrossRefGoogle Scholar
Vargas, DY, Raj, A, Marras SAE, Kramer, FR, Tyagi, S (2005) Mechanism of mRNA transport in the nucleus. Proceedings of the National Academy of Sciences of the United States of America 102: 17008–17013.CrossRefGoogle Scholar
Wolfrum, C, Josten, A (2005) Oligonucleotides as coding molecules in an anti-counterfeiting system. Nucleosides, Nucleotides & Nucleic Acids 24: 1069–1074.CrossRefGoogle Scholar
Pierce, KE, Rice, JE, Sanchez, JA, Brenner, C, Wangh, LJ (2000) Real-time PCR using molecular beacons for accurate detection of the Y chromosome in single human blastomeres. Molecular Human Reproduction 6: 1155–1164.CrossRefGoogle Scholar
Dracheva, S, Marras, SAE, Elhakem, SL, Kramer, FR, Davies, KL, Haroutunian, V (2001) N-methyl-D-aspartic acid receptor expression in the dorsolateral prefrontal cortex of elderly patients with schizophrenia. American Journal of Psychiatry 158: 1400–1410.CrossRefGoogle ScholarPubMed
Lai, J-P, Douglas, SD, Shaheen, F, Pleasure, , Ho, W-Z (2002) Quantification of substance P mRNA in human immune cells by real-time reverse transcriptase PCR assay. Clinical and Diagnostic Laboratory Immunology 9: 138–143.Google ScholarPubMed
Szuhai, K, Ouweland, JM, Dirks, RW, Lemaître, M, Truffert, J-C, Janssen, GM, et al. (2001) Simultaneous A8344G heteroplasmy and mitochondrial DNA copy number quantification in myoclonus epilepsy and ragged-red fibers (MERRF) syndrome by a multiplex molecular beacon based real-time fluorescence PCR. Nucleic Acids Research 29: e13.CrossRefGoogle ScholarPubMed
Smit, ML, Giesendorf, BAJ, Vet, JAM, Trijbels, FJM, Blom, HJ (2001) Semiautomated DNA mutation analysis using a robotic workstation and molecular beacons. Clinical Chemistry 47: 739–744.Google ScholarPubMed
Frei, K, Szuhai, K, Lucas, T, Weipoltshammer, K, Schöfer, C, Ramsebner, R, et al. (2002) Connexin 26 mutations in cases of sensorineural deafness in eastern Austria. European Journal of Human Genetics 10: 427–432.CrossRefGoogle ScholarPubMed
Rice, JE, Sanchez, JA, Pierce, KE, Wangh, LJ (2002) Real-time PCR with molecular beacons provides a highly accurate assay for detection of Tay-Sachs alleles in single cells. Prenatal Diagnosis 22: 1130–1134.CrossRefGoogle ScholarPubMed
Pierce, KE, Rice, JE, Sanchez, JA, Wangh, LJ (2003) Detection of cystic fibrosis alleles from single cells using molecular beacons and a novel method of asymmetric real-time PCR. Molecular Human Reproduction 9: 815–820.CrossRefGoogle Scholar
Orrù, G, Faa, G, Pillai, S, Pilloni, L, Montaldo, C, Pusceddu, G, et al. (2005) Rapid PCR real-time genotyping of M-Malton α1-antitrypsin deficiency alleles by molecular beacons. Diagnostic Molecular Pathology 14: 237–242.Google ScholarPubMed
Shih, I-M, Zhou, W, Goodman, SN, Lengauer, C, Kinzler, KW, Vogelstein, B (2001) Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Research 61: 818–822.Google ScholarPubMed
Martínez-López, J, Lahuerta, JJ, Salama, P, Ayala, R, Bautista, JM (2004) The use of fluorescent molecular beacons in real time PCR of IgH gene rearrangements for quantitative evaluation of multiple myeloma. Clinical and Laboratory Haematology 26: 31–35.CrossRefGoogle ScholarPubMed
Yang, L, Cao, Z, Lin, Y, Wood, WC, Staley, CA (2005) Molecular beacon imaging of tumor marker gene expression in pancreatic cancer cells. Cancer Biology & Therapy 4: 561–570.CrossRefGoogle ScholarPubMed
Span, PN, Manders, P, Heuvel, JJTM, Thomas, CMG, Bosch, RR, Beex, LVAM, et al. (2003) Molecular beacon reverse transcription-PCR of human chorionic gonadotropin-β-3, -5, and -8 mRNAs has prognostic value in breast cancer. Clinical Chemistry 49: 1074–1080.CrossRefGoogle ScholarPubMed
Zhao, J, He, D, He, H, Li, L, Zhang, L-L, Wang, X-Y (2007) Primary application study in early diagnosis of bladder cancer by survivin molecular beacons. Urology 70: 60–64.CrossRefGoogle ScholarPubMed
Abravaya, K, Huff, J, Marshall, R, Merchant, B, Mullen, C, Schneider, G, et al. (2003) Molecular beacons as diagnostic tools: technology and applications. Clinical Chemistry and Laboratory Medicine 41: 468–474.CrossRefGoogle ScholarPubMed
Lewin, SR, Vesanen, M, Kostrikis, L, Hurley, A, Duran, M, Zhang, L, et al. (1999) Use of real-time PCR and molecular beacons to detect virus replication in human immunodeficiency virus type 1-infected individuals on prolonged effective antiretroviral therapy. Journal of Virology 73: 6099–6103.Google ScholarPubMed
Poddar, SK (1999) Detection of adenovirus using PCR and molecular beacon. Journal of Virological Methods 82: 19–26.CrossRefGoogle ScholarPubMed
Poddar, SK (2000) Symmetric vs asymmetric PCR and molecular beacon probe in the detection of a target gene of adenovirus. Molecular and Cellular Probes 14: 25–32.CrossRefGoogle ScholarPubMed
Claas, ECJ, Schilham, MW, Brouwer, CS, Hubacek, P, Echavarria, M, Lankester, AC, et al. (2005) Internally controlled real-time PCR monitoring of adenovirus DNA load in serum or plasma of transplant recipients. Journal of Clinical Microbiology 43: 1738–1744.CrossRefGoogle ScholarPubMed
Szuhai, K, Sandhaus, E, Kolkman-Uljee, SM, Lemaître, M, Truffert, J-C, Dirks, RW, et al. (2001) A novel strategy for human papillomavirus detection and genotyping with SybrGreen and molecular beacon polymerase chain reaction. American Journal of Pathology 159: 1651–1660.CrossRefGoogle ScholarPubMed
Takács, T, Jeney, C, Kovács, L, Mózes, J, Benczik, M, Sebe, A (2008) Molecular beacon based real-time PCR method for detection of 15 high-risk and 5 low-risk HPV types. Journal of Virological Methods 149: 153–162.CrossRefGoogle ScholarPubMed
Yeo, AC, Chan, KP, Kumarasinghe, G, Yap, HK (2005) Rapid detection of codon 460 mutations in the UL97 gene of ganciclovir-resistant cytomegalovirus clinical isolates by real-time PCR using molecular beacons. Molecular and Cellular Probes 19: 389–393.CrossRefGoogle ScholarPubMed
Templeton, KE, Scheltinga, SA, Beersma, MFC, Kroes, ACM, Claas, ECJ (2004) Rapid and sensitive method using multiplex real-time PCR for diagnosis of infections by influenza A and influenza B viruses, respiratory syncytial virus, and parainfluenza viruses 1, 2, 3, and 4. Journal of Clinical Microbiology 42: 1654–1569.CrossRefGoogle Scholar
O'Shea, MK, Cane, PA (2004) Development of a highly sensitive semi-quantitative real-time PCR and molecular beacon probe assay for the detection of respiratory syncytial virus. Journal of Virological Methods 118: 101–110.CrossRefGoogle ScholarPubMed
Yang, J-H, Lai, J-P, Douglas, SD, Metzger, D, Zhu, X-H, Ho, W-Z (2002) Real-time RT-PCR for quantitation of hepatitis C virus RNA. Journal of Virological Methods 102: 119–128.CrossRefGoogle ScholarPubMed
Sum, SS-M, Wong, DK-H, Yuen, M-F, Yuan, H-J, Yu, J, Lai, C-L, et al. (2004) Real-time PCR assay using molecular beacon for quantitation of hepatitis B virus DNA. Journal of Clinical Microbiology 42: 3438–3440.CrossRefGoogle ScholarPubMed
Waltz, TL, Marras, SAE, Rochford, G, Nolan, J, Lee, E, Melegari, M, et al. (2005) Development of a molecular-beacon assay to detect the G1896A precore mutation in hepatitis B virus-infected individuals. Journal of Clinical Microbiology 43: 254–258.CrossRefGoogle ScholarPubMed
Li, Q, Liang, J-X, Luan, G-Y, Zhang, Y, Wang, K (2000) Molecular beacon-based homogeneous fluorescence PCR assay for the diagnosis of infectious diseases. Analytical Sciences 16: 245–248.CrossRefGoogle Scholar
Chen, W, Martinez, G, Mulchandani, A (2000) Molecular beacons: a real-time polymerase chain reaction assay for detecting Salmonella. Analytical Biochemistry 280: 166–172.CrossRefGoogle ScholarPubMed
Poddar, SK, Le, CT (2001) Bordetella pertussis detection by spectrofluorometry using polymerase chain reaction (PCR) and a molecular beacon probe. Molecular and Cellular Probes 15: 161–167.CrossRefGoogle Scholar
Fortin, NY, Mulchandani, A, and Chen, W (2001) Use of real-time polymerase chain reaction and molecular beacons for the detection of Escherichia coli O157:H7. Analytical Biochemistry 289, 281–288.CrossRefGoogle ScholarPubMed
Bélanger, AD, Boissinot, M, Ménard, C, Picard, FP, Bergeron, MG (2002) Rapid detection of Shiga toxin-producing bacteria in feces by multiplex PCR with molecular beacons on the smart cycler. Journal of Clinical Microbiology 40: 1436–1440.CrossRefGoogle ScholarPubMed
Bélanger, AD, Boissinot, M, Clairoux, N, Picard, FJ, Bergeron, MG (2003) Rapid detection of Clostridium difficile in feces by real-time PCR. Journal of Clinical Microbiology 41: 730–734.CrossRefGoogle ScholarPubMed
Gubala, AJ, Proll, DF (2006) Molecular-beacon multiplex real-time PCR assay for detection of Vibrio cholerae. Applied and Environmental Microbiology 72: 6424–6428.CrossRefGoogle ScholarPubMed
Elsayad, S, Chow, BL, Hamilton, NL, Gregson, DB, Pitout, JDD, Church, DL (2003) Development and validation of a molecular beacon probe-based real-time polymerase chain reaction assay for rapid detection of methicillin resistance in Staphylococcus aureus. Archives of Pathology & Laboratory Medicine 127: 845–849.Google Scholar
Sinsimer, D, Leekha, S, Park, S, Marras, SAE, Koreen, L, Willey, B, et al. (2005) Use of a multiplex molecular beacon platform for rapid detection of methicillin and vancomycin resistance in Staphylococcus aureus. Journal of Clinical Microbiology 43: 4585–4591.CrossRefGoogle ScholarPubMed
Varma-Basil, M, El-Hajj, HH, Marras, SAE, Hazbón, MH, Mann, JM, Connell, ND, et al. (2004) Molecular beacons for multiplex detection of four bacterial bioterrorism agents. Clinical Chemistry 50: 1060–1063.CrossRefGoogle ScholarPubMed
Templeton, KE, Scheltinga, SA, Sillekens, P, Crielaard, JW, Dam, AP, Goossens, H, et al. (2003) Development and clinical evaluation of an internally controlled, single-tube multiplex real-time PCR assay for detection of Legionella pneumophila and other Legionella species. Journal of Clinical Microbiology 41: 4016–4021.CrossRefGoogle ScholarPubMed
Morozumi, M, Nakayama, E, Iwata, S, Aoki, Y, Hasegawa, K, Kobayashi, R, et al. (2006) Simultaneous detection of pathogens in clinical samples from patients with community-acquired pneumonia by real-time PCR with pathogen-specific molecular beacon probes. Journal of Clinical Microbiology 44: 1440–1446.CrossRefGoogle ScholarPubMed
Gullsby, K, Storm, M, Bondeson, K (2008) Simultaneous detection of Chlamydophila pneumoniae and Mycoplasma pneumoniae by use of molecular beacons in a duplex real-time PCR. Journal of Clinical Microbiology 46: 727–731.CrossRefGoogle Scholar
Park, S, Wong, M, Marras, SAE, Cross, EW, Kiehn, TE, Chaturvedi, V, et al. (2000) Rapid identification of Candida dubliniensis using a species-specific molecular beacon. Journal of Clinical Microbiology 38: 2829–2836.Google ScholarPubMed
Balashov, SV, Gardiner, R, Park, S, Perlin, DS (2005) Rapid, high-throughput, multiplex, real-time PCR for identification of mutations in the cyp51A gene of Aspergillus fumigatus that confer resistance to itraconazole. Journal of Clinical Microbiology 43: 214–222.CrossRefGoogle ScholarPubMed
Durand, R, Eslahpazire, J, Jafari, S, Delabre, J-F, Marmorat-Khuong, A, Di Piazza, J-P, et al. (2000) Use of molecular beacons to detect an antifolate resistance-associated mutation in Plasmodium falciparum. Antimicrobial Agents and Chemotherapy 44: 3461–3464.CrossRefGoogle Scholar
Durand, R, Huart, V, Jafari, S, Bras, J (2002) Rapid detection of a molecular marker for chloroquine-resistant falciparum malaria. Antimicrobial Agents and Chemotherapy 46: 2684–2686.CrossRefGoogle ScholarPubMed
Roy, S, Kabir, M, Mondal, D, Ali, IKM, Petri, WA, Haque, R (2005) Real-time-PCR assay for diagnosis of Entamoeba histolytica infection. Journal of Clinical Microbiology 43: 2168–2172.CrossRefGoogle ScholarPubMed
Berard, C, Cazalis, M-A, Leissner, P, Mougin, B (2004) DNA nucleic acid sequence-based amplification-based genotyping for polymorphism analysis. BioTechniques 37: 680–686.Google ScholarPubMed
Fradet, Y, Saad, F, Aprikian, A, Dessureault, J, Elhilali, M, Trudel, C, et al. (2004) uPM3, a new molecular urine test for the detection of prostate cancer. Urology 64: 311–316.CrossRefGoogle ScholarPubMed
Beuningen, R, Marras, SAE, Kramer, FR, Oosterlaken, T, Weusten, JJAM, Borst, G, et al. (2001) Development of a high throughput detection system for HIV-1 using real-time NASBA based on molecular beacons. In: Raghavachari, R and Tan, W (eds), Genomics and Proteomics Technologies, pages 66–72. Bellingham, WA: SPIE.CrossRefGoogle Scholar
Weusten, JJAM, Carpay, WM, Oosterlaken, TAM, Zuijlen, MCA, Wiel, PA (2002) Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogeneous detection using molecular beacons. Nucleic Acids Research 30: e26.CrossRefGoogle ScholarPubMed
Lanciotti, RS, Kerst, AJ (2001) Nucleic acid sequence-based amplification assays for rapid detection of West Nile and St. Louis encephalitis viruses. Journal of Clinical Microbiology 39: 4506–4513.CrossRefGoogle ScholarPubMed
Polstra, AM, Goudsmit, J, Cornelissen, M (2002) Development of real-time NASBA assays with molecular beacon detection to quantify mRNA coding for HHV-8 lytic and latent genes. BMC Infectious Diseases 2: 18.CrossRefGoogle ScholarPubMed
Greijer, AE, Adriaanse, HMA, Dekkers, CAJ, Middeldorp, JM (2002) Multiplex real-time NASBA for monitoring expression dynamics of human cytomegalovirus encoded IE1 and pp67 RNA. Journal of Clinical Virology 24: 57–66.CrossRefGoogle ScholarPubMed
Yates, S, Penning, M, Goudsmit, J, Frantzen, I, Weijer, B, Strijp, D, et al. (2001) Quantitative detection of hepatitis B virus DNA by real-time nucleic acid sequence-based amplification with molecular beacon detection. Journal of Clinical Microbiology 39: 3656–3665.CrossRefGoogle ScholarPubMed
Abd el-Galil, KH, el-Sokkary, MA, Kheira, SM, Salazar, AM, Yates, MV, Chen, W, et al. (2005) Real-time nucleic acid sequence-based amplification assay for detection of hepatitis A virus. Applied and Environmental Microbiology 71: 7113–7116.CrossRefGoogle ScholarPubMed
Hibbitts, S, Rahman, A, John, R, Westmoreland, D, Fox, JD (2003) Development and evaluation of NucliSens basic kit NASBA for diagnosis of parainfluenza virus infection with ‘end-point’ and ‘real-time’ detection. Journal of Virological Methods 108: 145–155.CrossRefGoogle ScholarPubMed
Moore, C, Hibbitts, S, Owen, N, Corden, SA, Harrison, G, Fox, JD, et al. (2004) Development and evaluation of a real-time nucleic acid sequence based amplification assay for rapid detection of influenza A. Journal of Medical Virology 74: 619–628.CrossRefGoogle ScholarPubMed
Deiman, B, Schrover, C, Moore, C, Westmoreland, D, Wiel, P (2007) Rapid and highly sensitive qualitative real-time assay for detection of respiratory syncytial virus A and B using NASBA and molecular beacon technology. Journal of Virological Methods 146: 29–35.CrossRefGoogle Scholar
Capaul, SE, Gorgievski-Hrisoho, M (2005) Detection of enterovirus RNA in cerebrospinal fluid (CSF) using NucliSens EasyQ enterovirus assay. Journal of Clinical Virology 32: 236–240.CrossRefGoogle ScholarPubMed
Landry, ML, Garner, R, Ferguson, D (2005) Real-time nucleic acid sequence-based amplification using molecular beacons for detection of enterovirus RNA in clinical specimens. Journal of Clinical Microbiology 43: 3136–3139.CrossRefGoogle ScholarPubMed
Keightley, MC, Sillekens, P, Schippers, W, Rinaldo, C, George, KS (2005) Real-time NASBA detection of SARS-associated coronavirus and comparison with real-time reverse transcription-PCR. Journal of Medical Virology 77: 602–608.CrossRefGoogle ScholarPubMed
Molden, T, Kraus, I, Skomedal, H, Nordstrøm, T, Karlsen, F (2007) PreTect HPV-Proofer: real-time detection and typing of E6/E7 mRNA from carcinogenic human papillomaviruses. Journal of Virological Methods 142: 204–212.CrossRefGoogle ScholarPubMed
Loens, K, Ieven, M, Ursi, D, Beck, T, Overdijk, M, Sillekens, P, et al. (2003) Detection of Mycoplasma pneumoniae by real-time nucleic acid sequence-based amplification. Journal of Clinical Microbiology 41: 4448–4450.CrossRefGoogle ScholarPubMed
Loens, K, Beck, T, Goossens, H, Ursi, D, Overdijk, M, Sillekens, P, et al. (2006) Development of conventional and real-time nucleic acid sequence-based amplification assays for detection of Chlamydophila pneumoniae in respiratory specimens. Journal of Clinical Microbiology 44: 1241–1244.CrossRefGoogle ScholarPubMed
Loens, K, Beck, T, Ursi, D, Overdijk, M, Sillekens, P, Goossens, H, et al. (2008) Development of real-time multiplex nucleic acid sequence-based amplification for detection of Mycoplasma pneumoniae, Chlamydophila pneumoniae, and Legionella spp. in respiratory specimens. Journal of Clinical Microbiology 46: 185–191.CrossRefGoogle ScholarPubMed
Fykse, EM, Skogan, G, Davies, W, Olsen, JS, Blatny, JM (2007) Detection of Vibrio cholerae by real-time nucleic acid sequence-based amplification. Applied and Environmental Microbiology 73: 1457–1466.CrossRefGoogle ScholarPubMed
Gore, HM, Wakeman, CA, Hull, RM, McKillip, JL (2003) Real-time molecular beacon NASBA reveals hblC expression from Bacillus spp. in milk. Biochemical and Biophysical Research Communications 311: 386–390.CrossRefGoogle ScholarPubMed
Rodríguez-Lázaro, D, Lloyd, J, Herrewegh, A, Ikonomopoulos, J, D'Agostino, M, Pla, M, et al. (2004) A molecular beacon-based real-time NASBA assay for detection of Mycobacterium avium subsp. paratuberculosis in water and milk. FEMS Microbiology Letters 237: 119–126.CrossRefGoogle ScholarPubMed
Churruca, E, Girbau, C, Martínez, I, Mateo, E, Alonso, R, Fernández-Astorga, A (2007) Detection of Campylobacter jejuni and Campylobacter coli in chicken meat samples by real-time nucleic acid sequence-based amplification with molecular beacons. International Journal of Food Microbiology 117: 85–90.CrossRefGoogle ScholarPubMed
Nadal, A, Coll, A, Cook, N, Pla, M (2007) A molecular beacon-based real time NASBA assay for detection of Listeria monocytogenes in food products: role of target mRNA secondary structure on NASBA design. Journal of Microbiological Methods 68: 623–632.CrossRefGoogle ScholarPubMed
Schneider, P, Wolters, L, Schoone, G, Schallig, H, Sillekens, P, Hermsen, R, et al. (2005) Real-time nucleic acid sequence-based amplification is more convenient than real-time PCR for quantification of Plasmodium falciparum. Journal of Clinical Microbiology 43: 402–405.CrossRefGoogle ScholarPubMed
Mendoza, C, Koppelman, M, Montès, B, Ferre, V, Soriano, V, Cuypers, H, et al. (2005) Multicenter evaluation of the NucliSens EasyQ HIV-1 v1.1 assay for the quantitative detection of HIV-1 RNA in plasma. Journal of Virological Methods 127: 54–59.CrossRefGoogle ScholarPubMed
Huletsky, A, Giroux, R, Rossbach, V, Gagnon, M, Vaillancourt, M, Bernier, M, et al. (2004) New real-time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of Staphylococci. Journal of Clinical Microbiology 42: 1875–1884.CrossRefGoogle ScholarPubMed
Warren, DK, Liao, RS, Merz, LR, Eveland, M, Dunne, WM (2004) Detection of methicillin-resistant Staphylococcus aureus directly from nasal swab specimens by a real-time PCR assay. Journal of Clinical Microbiology 42: 5578–5581.CrossRefGoogle ScholarPubMed
Paule, SM, Hacek, DM, Kufner, B, Truchon, K, Thompson, RB, Kaul, KL, et al. (2007) Performance of the BD GeneOhm methicillin-resistant Staphylococcus aureus test before and during high-volume clinical use. Journal of Clinical Microbiology 45: 2993–2998.CrossRefGoogle ScholarPubMed
Robicsek, A, Beaumont, JL, Paule, SM, Hacek, DM, Thompson, RB, Kaul, KL, et al. (2008) Universal surveillance for methicillin-resistant Staphylococcus aureus in three affiliated hospitals. Annals of Internal Medicine 148: 409–418.CrossRefGoogle Scholar
Davies, HD, Miller, MA, Faro, S, Gregson, D, Kehl, SC, Jordan, JA (2004) Multicenter study of a rapid molecular-based assay for the diagnosis of group B Streptococcus colonization in pregnant women. Clinical Infectious Diseases 39: 1129–1135.CrossRefGoogle Scholar
Goodrich, JS, Miller, MB (2007) Comparison of culture and two real-time polymerase chain reaction assays to detect group B Streptococcus during antepartum screening. Diagnostic Microbiology and Infectious Disease 59: 17–22.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×