Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-28T14:10:36.113Z Has data issue: false hasContentIssue false

3 - Social behaviour and bird song from a neural and endocrine perspective

Published online by Cambridge University Press:  05 June 2012

Elizabeth Adkins-Regan
Affiliation:
Cornell University, Ithaca, New York, USA
Timothy J. DeVoogd
Affiliation:
Cornell University, Ithaca, New York, USA
Jordan M. Moore
Affiliation:
Cornell University, Ithaca, New York, USA
Tamás Székely
Affiliation:
University of Bath
Allen J. Moore
Affiliation:
University of Exeter
Jan Komdeur
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

Overview

Tinbergen (1963) proposed that in order to understand behaviour it is necessary to discover not only its adaptive function and phylogenetic history (now often referred to as ultimate causation) but also its development and physiology (proximate causation). In recent years there has been increasing appreciation of the importance of pursuing these four aims not only separately but also in an integrated manner that allows them to inform each other. Hormonal and neural mechanisms are best understood in an ecological and evolutionary context. An appreciation of how they work is essential both for understanding the ecology and evolution of behaviour, and for linking genes to behaviour. This chapter will discuss hormonal and neural bases of social behaviour, emphasising basic principles, recent trends and questions for the future, with a more extended discussion of bird song as a prime example of a social behaviour that has inspired a substantial body of integrative research. Special attention will be given to learned song and the songbird neural song system that underlies the learning, production and perception of song. As a neural system that is anatomically well defined, dedicated to an important category of social behaviour, and hormonally influenced, the song system is uniquely valuable for elucidating general principles of the mechanisms of social behaviour.

Type
Chapter
Information
Social Behaviour
Genes, Ecology and Evolution
, pp. 59 - 84
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adkins-Regan, E. (2005) Hormones and Animal Social Behavior. Princeton, NJ: Princeton University Press.Google Scholar
Marler, P. R. & Slabbekoorn, H., eds. (2004) Nature's Music: the Science of Birdsong. London: Academic Press.Google Scholar
Pfaff, D. W., Arnold, A. P., Etgen, A. M., Fahrbach, S. E. & Rubin, R.T., eds. (2002) Hormones, Brain and Behavior. Amsterdam: Academic Press.Google Scholar
Remage-Healey, L., Maidment, N. T. & Schlinger, B. A. (2008) Forebrain steroid levels fluctuate rapidly during social interactions. Nature Neuroscience, 11, 1327–1334.CrossRefGoogle ScholarPubMed
Sasaki, A., Sotnikova, T. D., Gainetdinov, R. R. & Jarvis, E. D. (2006) Social context-dependent singing-regulated dopamine. Journal of Neuroscience 26, 9010–9014.CrossRefGoogle ScholarPubMed
Adkins-Regan, E. (2005) Hormones and Animal Social Behavior. Princeton, NJ: Princeton University Press.Google Scholar
Adkins-Regan, E. & Wade, J. (2001) Masculinized sexual partner preference in female zebra finches with sex-reversed gonads. Hormones and Behavior, 39, 22–28.CrossRefGoogle ScholarPubMed
Adkins-Regan, E., Abdelnabi, M., Mobarak, M. & Ottinger, M. A. (1990) Sex steroid levels in developing and adult male and female zebra finches (Poephila guttata). General and Comparative Endocrinology, 78, 93–109.CrossRef
Airey, D. C. & DeVoogd, T. J. (2000) Greater song complexity is associated with augmented song system anatomy in zebra finches. Neuroreport, 11, 2339–2344.CrossRefGoogle ScholarPubMed
Airey, D. C., Buchanan, K. L., Székely, T., Catchpole, C. K. & DeVoogd, T. J. (2000a) Song, sexual selection, and a song control nucleus (HVc) in the brains of European sedge warblers. Journal of Neurobiology, 44, 1–6.3.0.CO;2-V>CrossRef
Airey, D. C., Castillo-Juarez, H., Casella, G., Pollak, E. J. & DeVoogd, T. J. (2000b) Variation in the volume of zebra finch song control nuclei is heritable: developmental and evolutionary implications. Proceedings of the Royal Society B, 26, 2099–2104.Google Scholar
Alonso-Alvarez, C., Bertrand, S., Faivre, B., Chastel, O. & Sorci, G. (2007) Testosterone and oxidative stress: the oxidation handicap hypothesis. Proceedings of the Royal Society B, 274, 819–825.CrossRefGoogle ScholarPubMed
Aragona, B. J., Liu, Y., Yu, Y. J. et al. (2006) Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nature Neuroscience, 9, 133–139.CrossRefGoogle ScholarPubMed
Arnold, A. P. (1975) Effects of castration and androgen replacement on song, courtship, and aggression in zebra finches (Poephila guttata). Journal of Experimental Zoology, 191, 309–326.CrossRefGoogle Scholar
Arnold, A. P. (1997) Sexual differentiation of the zebra finch song system: positive evidence, negative evidence, null hypotheses, and a paradigm shift. Journal of Neurobiology, 33, 572–584.3.0.CO;2-1>CrossRefGoogle Scholar
Arnold, A. P. & Saltiel, A. (1979) Sexual difference in pattern of hormone accumulation in the brain of a songbird. Science, 205, 702–705.CrossRefGoogle ScholarPubMed
Arnold, A. P., Nottebohm, F. & Pfaff, D. W. (1976) Hormone concentrating cells in vocal control and other areas of the brain of the zebra finch (Poephila guttata). Journal of Comparative Neurology, 165, 487–511.CrossRefGoogle Scholar
Arnold, A. P., Bottjer, S. W., Brenowitz, E. A., Nordeen, E. J. & Nordeen, K. W. (1986) Sexual dimorphisms in the neural vocal control system in song birds: ontogeny and phylogeny. Brain, Behavior and Evolution, 28, 22–31.CrossRefGoogle Scholar
Ball, G. F. & Balthazart, J. (2008) Individual variation in the endocrine regulation of behaviour and physiology in birds: a cellular/molecular perspective. Philosophical Transactions of the Royal Society B, 363, 1699–1710.CrossRefGoogle ScholarPubMed
Balthazart, J. & Adkins-Regan, E. (2002) Sexual differentiation of brain and behavior in birds. In: Hormones, Brain and Behavior, ed. Pfaff, D. W., Arnold, A. P., Etgen, A.M., Fahrbach, S. E. & Rubin, R. T. vol. 4. Amsterdam: Academic Press, pp. 223–302.Google Scholar
Balthazart, J., Castagna, C. & Ball, G. F. (1997) Aromatase inhibition blocks the activation and sexual differentiation of appetitive male sexual behavior in Japanese quail. Behavioral Neuroscience, 111, 381–397.CrossRefGoogle ScholarPubMed
Bass, A. H. & Grober, M. S. (2001) Social and neural modulation of sexual plasticity in teleost fish. Brain, Behavior and Evolution, 57, 293–300.CrossRefGoogle ScholarPubMed
Bensch, S. & Hasselquist, D. (1992) Evidence for active female choice in a polygynous warbler. Animal Behaviour, 44, 301–311.CrossRefGoogle Scholar
Bentley, G. E., Van, 't Hof, T. J. & Ball, G. F. (1999) Seasonal neuroplasticity in the songbird telencephalon: a role for melatonin. Proceedings of the National Academy of Sciences of the USA, 96, 4674–4679.CrossRefGoogle ScholarPubMed
Bernard, D. J., Eens, M. & Ball, G. F. (1996) Age- and behavior-related variation in volumes of song control nuclei in male European starlings. Journal of Neurobiology, 30, 329–339.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Birkhead, T. R. & Møller, A. P., eds. (1998) Sperm Competition and Sexual Selection. London: Academic Press.
Bolhuis, J. J., Zijlstra, G. G. O., Boer-Visser, A. M. & Zee, E. A. (2000) Localized neuronal activation in the zebra finch brain is related to the strength of song learning. Proceedings of the National Academy of Sciences of the USA, 97, 2282–2285.CrossRefGoogle ScholarPubMed
Bolhuis, J. J., Hetebrij, E., Boer-Visser, A. M., Groot, J. H. & Zijlstra, G. G. O. (2001) Localized immediate early gene expression related to the strength of song learning in socially reared zebra finches. European Journal of Neuroscience, 13, 2165–2170.CrossRefGoogle ScholarPubMed
Borror, D. J. (1959) Songs of the chipping sparrow. Ohio Journal of Science, 59, 347–356.Google Scholar
Borror, D. J. (1965) Song variation in Maine song sparrows. Wilson Bulletin, 77, 5–37.Google Scholar
Bottjer, S. W. & Maier, E. (1991) Testosterone and the incidence of hormone target cells in song-control nuclei of adult canaries. Journal of Neurobiology, 22, 512–521.CrossRefGoogle ScholarPubMed
Brantley, R. K., Wingfield, J. C. & Bass, A. H. (1993) Sex steroid levels in Porichthys notatus, a fish with alternative reproductive tactics, and a review of the hormonal bases for male dimorphism among teleost fishes. Hormones and Behavior, 27, 332–347.CrossRefGoogle Scholar
Brenowitz, E. A. (1997) Comparative approaches to the avian song system. Journal of Neurobiology, 33, 517–531.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Brenowitz, E. A. & Arnold, A. P. (1985) Lack of sexual dimorphism in steroid accumulation in vocal control brain regions of duetting song birds. Brain Research, 344, 172–175.CrossRefGoogle ScholarPubMed
Brenowitz, E. A. & Arnold, A. P. (1992) Hormone accumulation in song regions of the canary brain. Journal of Neurobiology, 23, 871–880.CrossRefGoogle Scholar
Brenowitz, E. A., Nalls, B., Wingfield, J. C. & Kroodsma, D. E. (1991) Seasonal changes in avian song nuclei without seasonal changes in song repertoire. Journal of Neurobiology, 11, 1367–1374.Google ScholarPubMed
Buchanan, K. L., Spencer, K. A., Goldsmith, A. R. & Catchpole, C. K. (2003) Song as an honest signal of past developmental stress in the European starling (Sturnus vulgaris). Proceedings of the Royal Society B, 270, 1149–1156.CrossRefGoogle Scholar
Buntin, J. D. (1996) Neural and hormonal control of parental behavior in birds. In: Parental Care: Evolution, Mechanisms, and Adaptive Significance, ed. Rosenblatt, J. S. & Snowden, C. T.. Advances in the Study of Behavior, vol. 25. San Diego, CA: Academic Press, pp. 161–214.Google Scholar
Canady, R. A., Kroodsma, D. E. & Nottebohm, F. (1984) Population differences in complexity of a learned skill are correlated with the brain space involved. Proceedings of the National Academy of Sciences of the USA, 81, 6232–6234.CrossRefGoogle ScholarPubMed
Carere, C. & Balthazart, J. (2007) Sexual versus individual differentiation: the controversial role of avian maternal hormones. Trends in Endocrinology and Metabolism, 18, 73–80.CrossRefGoogle ScholarPubMed
Carter, C. S., DeVries, A. C. & Getz, L. L. (1995) Physiological substrates of mammalian monogamy: the prairie vole model. Neuroscience and Biobehavioral Reviews, 19, 303–314.CrossRefGoogle ScholarPubMed
Catchpole, C. K. (1987) Bird song, sexual selection and female choice. Trends in Ecology and Evolution, 2, 94–97.CrossRefGoogle ScholarPubMed
Catchpole, C. K. (2000) Sexual selection and the evolution of song and brain structure in Acrocephalus warblers. Advances in the Study of Behavior, 29, 45–97.CrossRefGoogle Scholar
Catchpole, C. K. & Slater, P. J. B. (1995) Bird Song: Biological Themes and Variations. Cambridge: Cambridge University Press.Google Scholar
Chew, S. J., Vicario, D. S. & Nottebohm, F. (1996) A large-capacity memory system that recognizes the calls and songs of individual birds. Proceedings of the National Academy of Sciences of the USA, 93, 1950–1955.CrossRefGoogle ScholarPubMed
Cockburn, A. (2006) Prevalence of different modes of parental care in birds. Proceedings of the Royal Society B, 273, 1375–1383.CrossRefGoogle ScholarPubMed
Cockrem, J. F. (2007) Stress, corticosterone responses and avian personalities. Journal of Ornithology, 148 (Suppl. 2), 169–178.CrossRefGoogle Scholar
Creel, S. (2001) Social dominance and stress hormones. Trends in Ecology and Evolution, 16, 491–497.CrossRefGoogle Scholar
Crews, D. (1998) On the organization of individual differences in sexual behavior. American Zoologist, 38, 118–132.CrossRefGoogle Scholar
Cynx, J. & Nottebohm, F. (1992) Role of gender, season, and familiarity in discrimination of conspecific song by zebra finches (Taeniopygia guttata). Proceedings of the National Academy of Sciences of the USA, 89, 1368–1371.CrossRefGoogle Scholar
DeVoogd, T. J. & Lauay, C. (2001) Emerging psychobiology of the avian song system. In: Developmental Psychobiology, ed. Blass, E.. New York, NY: Kluwer/Plenum, pp. 357–392.Google Scholar
DeVoogd, T. J., Nixdorf, B. & Nottebohm, F. (1985) Synaptogenesis and changes in synaptic morphology related to acquisition of a new behavior. Brain Research, 329, 304–308.CrossRefGoogle ScholarPubMed
DeVoogd, T. J., Krebs, J. R., Healy, S. D. & Purvis, A. (1993) Relations between song repertoire size and the volume of brain nuclei related to song: comparative evolutionary analyses amongst oscine birds. Proceedings of the Royal Society B, 254, 75–82.CrossRefGoogle Scholar
DeVoogd, T. J., Houtman, A. M. & Falls, J. B. (1995) White-throated sparrow morphs that differ in song production rate also differ in the anatomy of some song related brain areas. Journal of Neurobiology, 28, 202–213.CrossRefGoogle Scholar
Eales, L. A. (1985) Song learning in zebra finches: some effects of song model availability on what is learnt and when. Animal Behaviour, 33, 1293–1300.CrossRefGoogle Scholar
Eales, L. A. (1987) Song learning in female-raised zebra finches: another look at the sensitive phase. Animal Behaviour, 35, 1356–1365.CrossRefGoogle Scholar
Eens, M. & Pinxten, R. (2000) Sex-role reversal in vertebrates: behavioural and endocrinological accounts. Behavioural Processes, 51, 135–147.CrossRefGoogle ScholarPubMed
Eens, M., Pinxten, R. & VerHeyen, R. F. (1991) Male song as a cue for mate choice in the European starling. Behaviour, 116, 210–238.CrossRefGoogle Scholar
Eens, M., Pinxten, R. & Verheyen, R. F. (1993) Function of the song and song repertoire in the European starling (Sturnus vulgaris): an aviary experiment. Behaviour, 125, 51–66.CrossRefGoogle Scholar
Eriksson, D. & Wallin, L. (1986) Male bird song attracts females: a field experiment. Behavioral Ecology and Sociobiology, 19, 297–299.CrossRefGoogle Scholar
Fivizzani, A. J., Oring, L. W., El Halawani, M. E. & Schlinger, B. A. (1990) Hormonal basis of male parental care and female intersexual competition in sex-role reversed birds. In:. Endocrinology of Birds: Molecular to Behavioral, ed. Wada, M., Ishii, S. & Scanes, C. G.. Tokyo: Japan Scientific Societies Press; Berlin: Springer-Verlag, pp. 273–286Google Scholar
Folstad, I. & Karter, A. J. (1992) Parasites, bright males, and the immunocompetence handicap. American Naturalist, 139, 603–622.CrossRefGoogle Scholar
Forger, N. G. (2001) Development of sex differences in the nervous system. In: Developmental Psychobiology, ed. Blass, E.. New York, NY: Kluwer/Plenum, pp. 143–198.Google Scholar
Frank, L. G., Glickman, S. E. & Licht, P. (1991) Fatal sibling aggression, precocial development, and androgens in neonatal spotted hyenas. Science, 252, 702–704.CrossRefGoogle ScholarPubMed
Fusani, L., Day, L. B., Canoine, V.et al. (2007) Androgen and the elaborate courtship behavior of a tropical lekking bird. Hormones and Behavior, 51, 62–68.CrossRefGoogle ScholarPubMed
Gahr, M. & Kosar, E. (1996) Identification, distribution, and developmental changes of a melatonin binding site in the song control system of the zebra finch. Journal of Comparative Neurology, 367, 308–318.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Garamszegi, L. Z. & Eens, M. (2004) Brain space for a learned task: strong intraspecific evidence for neural correlates of singing behavior in songbirds. Brain Research Reviews, 44, 187–193.CrossRefGoogle ScholarPubMed
Garland, T., Bennett, A. F. & Rezende, E. L. (2005) Phylogenetic approaches in comparative physiology. Journal of Experimental Biology, 208, 3015–3035.CrossRefGoogle ScholarPubMed
Gentner, T. Q. & Margoliash, D. (2003) Neuronal populations and single cells representing learned auditory objects. Nature, 424, 669–674.CrossRefGoogle ScholarPubMed
Gentner, T. Q., Hulse, S. H., Duffy, D. & Ball, G. F. (2001) Response biases in auditory forebrain regions of female songbirds following exposure to sexually relevant variation in male song. Journal of Neurobiology, 46, 48–58.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Gentner, T. Q., Hulse, S. H. & Ball, G. F. (2004) Functional differences in forebrain auditory regions during learned vocal recognition in songbirds. Journal of Comparative Physiology A, 190, 1001–1010.CrossRefGoogle ScholarPubMed
Goodson, J. L. (2005) The vertebrate social behavior network: evolutionary themes and variations. Hormones and Behavior, 48, 11–22.CrossRefGoogle ScholarPubMed
Goodson, J. L. & Bass, A. H. (2001) Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Research Reviews, 35, 246–265.CrossRefGoogle ScholarPubMed
Goodson, J. L. & Wang, Y. (2006) Valence-sensitive neurons exhibit divergent functional profiles in gregarious and asocial species. Proceedings of the National Academy of Sciences of the USA, 103, 17013–17017.CrossRefGoogle ScholarPubMed
Goodson, J. L., Lindberg, L. & Johnson, P. (2004) Effects of central vasotocin and mesotocin manipulations on social behavior in male and female zebra finches. Hormones and Behavior, 45, 136–143.CrossRefGoogle ScholarPubMed
Goodson, J. L., Evans, A. K. & Wang, Y. (2006) Neuropeptide binding reflects convergent and divergent evolution in species-typical group sizes. Hormones and Behavior, 50, 223–236.CrossRefGoogle ScholarPubMed
Goymann, W. & Jenni-Eiermann, S. (2005) Introduction to the European Science Foundation technical meeting: analysis of hormones in droppings and egg yolk of birds. Annals of the New York Academy of Sciences, 1046, 1–4.CrossRefGoogle Scholar
Goymann, W. & Wingfield, J. C. (2004) Allostatic load, social status and stress hormones: the costs of social status matter. Animal Behaviour, 67, 591–602.CrossRefGoogle Scholar
Goymann, W., East, M. L. & Hofer, H. (2001) Androgens and the role of female ‘hyperaggressiveness’ in spotted hyenas (Crocuta crocuta). Hormones and Behavior, 39, 83–92.CrossRefGoogle Scholar
Griffith, S. C., Owens, I. P. & Thuman, K. A. (2002) Extra pair paternity in birds: a review of interspecific variation and adaptive function. Molecular Ecology, 11, 2195–2212.CrossRefGoogle ScholarPubMed
Gurney, M. E. (1981) Hormonal control of cell form and number in the zebra finch song system. Journal of Neuroscience, 1, 658–673.CrossRefGoogle ScholarPubMed
Gurney, M. E. & Konishi, M. (1980) Hormone-induced sexual differentiation of brain and behavior in zebra finches. Science, 208, 1380–1383.CrossRefGoogle ScholarPubMed
Hamilton, K. S., King, A. P., Sengelaub, D. R. & West, M. J. (1998) Visual and song nuclei correlate with courtship skills in brown-headed cowbirds. Animal Behaviour, 56, 973–982.CrossRefGoogle ScholarPubMed
Harding, C. F., Sheridan, K. & Walters, M. J. (1983) Hormonal specificity and activation of sexual behavior in male zebra finches. Hormones and Behavior, 17, 111–133.CrossRefGoogle ScholarPubMed
Hasselquist, D., Bensch, S. & Schantz, T. (1996) Correlation between male song repertoire, extra-pair paternity and offspring survival in the great reed warbler. Nature, 381, 229–232.CrossRefGoogle Scholar
Hau, M. (2007) Regulation of male traits by testosterone: implications for the evolution of vertebrate life histories. BioEssays, 29, 133–144.CrossRefGoogle ScholarPubMed
Hernandez, A. M, & MacDougall-Shackleton, S. A. (2004) Effects of early song experience on song preferences and song control and auditory brain regions in female house finches (Carpodacus mexicanus). Journal of Neurobiology, 59, 247–258.CrossRefGoogle Scholar
Hill, K. M. & DeVoogd, T. J. (1991) Altered daylength affects dendritic structure in a song-related brain region in red-winged blackbirds. Behavioral and Neural Biology, 56, 240–250.CrossRefGoogle Scholar
Holmes, M. M., Rosen, G. J., Jordan, C. L.et al. (2007) Social control of brain morphology in a eusocial mammal. Proceedings of the National Academy of Sciences of the USA, 104, 10548–10552.CrossRefGoogle Scholar
Hultsch, H., Todt, D. (1981) Repertoire sharing an song-post distance in nightingales (Luscinia megarhynchos B.). Behavioral Ecology and Sociobiology, 8, 183–188.CrossRefGoogle Scholar
Jones, A. E., ten Cate, C. & Slater, P. J. B. (1996) Early experience and plasticity of song in adult male zebra finches (Taeniopygia guttata). Journal of Comparative Psychology, 110, 354–369.CrossRefGoogle Scholar
Kempenaers, B., Peters, A. & Foerster, K. (2008) Sources of individual variation in plasma testosterone levels. Philosophical Transactions of the Royal Society B, 363, 1711–1723.CrossRefGoogle ScholarPubMed
Kern, M. D. & King, J. R. (1972) Testosterone-induced singing in female white-crowned sparrows. Condor, 74, 204–209.CrossRefGoogle Scholar
Ketterson, E. D., Nolan, V. & Sandell, M. (2005) Testosterone in females: mediator of adaptive traits, constraint on sexual dimorphism, or both?American Naturalist, 166 (Suppl. 4), S85–98.CrossRefGoogle ScholarPubMed
King, A. P. & West, M. J. (1983) Epigenesis of cowbird song: a joint endeavour of males and females. Nature, 305, 704–706.CrossRefGoogle Scholar
King, A. P., West, M. J. & White, D. J. (2003) Female cowbird song perception: evidence for plasticity of preference. Ethology, 109, 865–877.CrossRefGoogle Scholar
Kirn, J. R., Clower, R. P., Kroodsma, D. E. & DeVoogd, T. J. (1989) Song-related brain regions in the red-winged blackbird are affected by sex and season but not repertoire size. Journal of Neurobiology, 20, 139–163.CrossRefGoogle Scholar
Kirn, J. R., Alvarez-Buylla, A. & Nottebohm, F. (1991) Production and survival of projection neurons in a forebrain vocal center of adult male canaries. Journal of Neuroscience, 11, 1756–1762.CrossRefGoogle Scholar
Knapp, R. (2004) Endocrine mediation of vertebrate male alternative reproductive tactics: the next generation of studies. Integrative and Comparative Biology, 43, 658–668.CrossRef
Koolhaas, J. M., Korte, S. M., Boer, S. F.et al. (1999) Coping styles in animals: current status in behavior and stress-physiology. Neuroscience and Biobehavioral Reviews, 23, 925–935.CrossRefGoogle ScholarPubMed
Kroodsma, D. E. (1996) Ecology of passerine song development. In: Ecology and Evolution of Acoustic Communication in Birds, ed. Kroodsma, D. E. & Miller, E. H.Ithaca, NY: Cornell University Press, pp. 3–19.Google Scholar
Kroodsma, D. E. & Parker, L. D. (1977) Vocal virtuosity in the brown thrasher. Auk, 94, 783–785.CrossRefGoogle Scholar
Kroodsma, D. E. & Pickert, R. (1980) Environmentally dependent sensitive periods for avian vocal learning. Nature, 288, 477–479.CrossRefGoogle Scholar
Kruse, A. A., Stripling, R. & Clayton, D. F. (2004) Context-specific habituation of the zenk gene response to song in adult zebra finches. Neurobiology of Learning and Memory, 82, 99–108.CrossRefGoogle Scholar
Lauay, C., Gerlach, N. M., Adkins-Regan, E. & DeVoogd, T. J. (2004) Female zebra finches require early song exposure to prefer high-quality song as adults. Animal Behaviour, 68, 1249–1255.CrossRefGoogle Scholar
Lauay, C., Komorowski, R. W., Beaudin, A. E. & DeVoogd, T. J. (2005) Adult female and male zebra finches show distinct patterns of spine deficits in an auditory area and in the song system when reared without exposure to normal adult song. Journal of Comparative Neurology, 487, 119–126.CrossRefGoogle Scholar
Lefebvre, L., Whittle, P., Lascaris, E. & Finkelstein, A. (1997) Feeding innovations and forebrain size in birds. Animal Behaviour, 53, 549–560.CrossRefGoogle Scholar
Lefebvre, L., Gaxiola, A., Dawson, S.et al. (1998) Feeding innovations and forebrain size in Australasian birds. Behaviour, 135, 1077–1097.CrossRefGoogle Scholar
Leitner, S. & Catchpole, C. K. (2004) Syllable repertoire and the size of the song control system in captive canaries (Serinus canaria). Journal of Neurobiology, 60, 21–27.CrossRefGoogle Scholar
Leitner, S., Voigt, C., Garcia-Segura, L. M., Van't Hof, T. & Gahr, M. (2001) Seasonal activation and inactivation of song motor memories in wild canaries is not reflected in neuroanatomical changes of forebrain song areas. Hormones and Behavior, 40, 160–168.CrossRefGoogle Scholar
Leitner, S., Nicholson, J., Leisler, B., DeVoogd, T. J. & Catchpole, C. K. (2002) Song and the song control pathway in the brain can develop independently of exposure to song in the sedge warbler. Proceedings of the Royal Society B, 269, 2519–2524.CrossRefGoogle Scholar
Leonard, S. L. (1939) Induction of singing in female canaries by injection of male hormone. Proceedings of the Society for Experimental Biology and Medicine, 41, 229–230.CrossRefGoogle Scholar
Li, X.-C., Wang, X.-J., Tannenhauser, J.et al. (2007) Genomic resources for songbird research and their use in characterizing gene expression during brain development. Proceedings of the National Academy of Sciences of the USA, 104, 6834–6839.CrossRefGoogle ScholarPubMed
Lim, M. M. & Young, L. J. (2006) Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Hormones and Behavior, 50, 506–517.CrossRefGoogle ScholarPubMed
Lim, M. M., Wang, Z., Olazábal, D. E.et al. (2004) Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature, 429, 754–757.CrossRefGoogle Scholar
Liu, W.-C. & Kroodsma, D. E. (2006) Song learning by chipping sparrows: when, where, and from whom. Condor, 108, 509–517.CrossRefGoogle Scholar
Lynch, J. W., Khan, M. Z., Altmann, J., Njahira, M. N. & Rubenstein, N. (2003) Concentrations of four fecal steroids in wild baboons: short-term storage conditions and consequences for data interpretation. General and Comparative Endocrinology, 132, 264–271.CrossRefGoogle ScholarPubMed
Maney, D. L., Goode, C. T. & Wingfield, J. C. (1997) Intraventricular infusion of arginine vasotocin induces singing in a female songbird. Journal of Neuroendocrinology, 9, 487–491.CrossRefGoogle Scholar
Maney, D. L., MacDougall-Shackleton, E. A., MacDougall-Shackleton, S. A., Ball, G. F. & Hahn, T. P. (2003) Immediate early gene response to hearing song correlates with receptive behavior and depends on dialect in a female songbird. Journal of Comparative Physiology A, 189, 667–674.CrossRefGoogle Scholar
Maney, D. L., Erwin, K. L. & Goode, C. T. (2005) Neuroendocrine correlates of behavioral polymorphism in white-throated sparrows. Hormones and Behavior, 48, 196–206.CrossRefGoogle ScholarPubMed
Maney, D. L., Lange, H. S., Raees, M. Q., Reid, A. E. & Sanford, S. E. (2009) Behavioral phenotypes persist after gonadal steroid manipulation in white-throated sparrows. Hormones and Behavior, 55, 113–120.CrossRefGoogle ScholarPubMed
Mann, P. E. & Bridges, R. S. (2001) Lactogenic hormone regulation of maternal behavior. Progress in Brain Research, 133, 251–262.CrossRefGoogle ScholarPubMed
Marler, P. (1956) The voice of the chaffinch and its function as a language. Ibis, 98, 231–261.CrossRefGoogle Scholar
Marler, P. (1997) Three models of song learning: evidence from behavior. Journal of Neurobiology, 33, 501–516.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Marler, P. & Nelson, D. A. (1993) Action-based learning: a new form of developmental plasticity in bird song. Netherlands Journal of Zoology, 43, 91–103.CrossRefGoogle Scholar
Marler, P., Peters, S., Ball, G. F., Dufty, A. M. & Wingfield, J. C. (1988) The role of sex steroids in the acquisition and production of birdsong. Nature, 336, 770–772.CrossRefGoogle ScholarPubMed
Mello, C., Nottebohm, F. & Clayton, D. (1995) Repeated exposure to one song leads to a rapid and persistent decline in an immediate early gene's response to that song in zebra finch telencephalon. Journal of Neuroscience, 15, 6919–6925.CrossRefGoogle Scholar
Mello, C. V., Vates, G. E., Okuhata, S. & Nottebohm, F. (1998) Descending auditory pathways in the adult male zebra finch (Taeniopygia guttata). Journal of Neurobiology, 395, 137–160.Google Scholar
Mennill, D. J., Ratcliffe, L. M. & Boag, P. T. (2002) Female eavesdropping on male song contests in songbirds. Science, 296, 873.CrossRefGoogle ScholarPubMed
Miller, D. B. (1979a) Long-term recognition of father's song by female zebra finches. Nature, 280, 389–391.CrossRefGoogle Scholar
Miller, D. B. (1979b) The acoustic basis of mate recognition by female zebra finches (Taeniopygia guttata). Animal Behaviour, 27, 376–380.CrossRefGoogle Scholar
Miller, J. L., King, A. P., West, M. J. (2008) Female social networks influence male vocal development in brown-headed cowbirds, Molothrus ater. Animal Behaviour, 76, 931–941.CrossRefGoogle Scholar
Miranda, J. A., Oliveira, R. F., Carneiro, L. A., Santos, R. S. & Grober, M. S. (2003) Neurochemical correlates of male polymorphism and alternative reproductive tactics in the Azorean rock-pool blenny, Parablennius parvicornis. General and Comparative Endocrinology, 132, 183–189.CrossRefGoogle ScholarPubMed
Moore, J. M., Buchan, Z. R., Székely, T. & DeVoogd, T. J. (2004) High vocal center (HVC) volumes are related to syllable repertoire sizes across a wide phylogeny of previously unstudied songbird species. Society for Neuroscience Abstracts, 34, 1010.5.Google Scholar
Mountjoy, D. J. & Lemon, R. E. (1991) Song as an attractant for male and female European starlings, and the influence of song complexity on their response. Behavioral Ecology and Sociobiology, 28, 97–100.CrossRefGoogle Scholar
Nelson, D. A. (1998) External validity and experimental design: the sensitive phase for song learning. Animal Behaviour, 56, 487–491.CrossRefGoogle ScholarPubMed
Nelson, R. J. (2005) An Introduction to Behavioral Endocrinology, 3rd edn. Sunderland, MA: Sinauer Associates.Google Scholar
Newman, S. W. (2002) Pheromonal signals access the medial extended amygdala: one node in a proposed social behavior network. In: Hormones, Brain and Behavior, ed. Pfaff, D. W., Arnold, A. P., Etgen, A.M., Fahrbach, S. E. & Rubin, R. T. vol. 4. Amsterdam: Academic Press, pp. 17–32.Google Scholar
Nordeen, K. W., Nordeen, E. J. & Arnold, A. P. (1987) Estrogen accumulation in zebra finch song control nuclei: implications for sexual differentiation and adult activation of song behavior. Journal of Neurobiology, 18, 569–582.CrossRefGoogle ScholarPubMed
Norris, D. O. (2007) Vertebrate Endocrinology, 4th edn. Amsterdam: Elsevier.Google Scholar
Nottebohm, F. (1980) Testosterone triggers growth of brain vocal control nuclei in adult female canaries. Brain Research, 189, 429–436.CrossRefGoogle ScholarPubMed
Nottebohm, F. (1981) A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain. Science, 214, 1368–1370.CrossRefGoogle Scholar
Nottebohm, F., Kasparian, S., Pandazis, C. (1981) Brain space for a learned task. Brain Research, 213, 99–109.CrossRefGoogle ScholarPubMed
Nowicki, S., Peters, S. & Podos, J. (1998) Song learning, early nutrition and sexual selection in songbirds. American Zoologist, 38, 179–190.CrossRefGoogle Scholar
Nowicki, S., Searcy, W. A. & Peters, S. (2002) Quality of song learning affects female response to male bird song. Proceedings of the Royal Society B, 269, 1949–1954.CrossRefGoogle ScholarPubMed
Ophir, A. G., Wolff, J. O. & Phelps, S. M. (2008) Variation in neural V1aR predicts sexual fidelity and space use among male prairie voles in semi-natural settings. Proceedings of the National Academy of Sciences of the USA, 105, 1249–1254.CrossRefGoogle ScholarPubMed
Pfaff, J. A., Zanette, L., MacDougall-Shackleton, S. A. & MacDougall-Shackleton, E. A. (2007) Song repertoire size varies with HVC volume and is indicative of male quality in song sparrows (Melospiza melodia). Proceedings of the Royal Society B, 274, 2035–2040.CrossRefGoogle Scholar
Phan, M. L., Pytte, C. L. & Vicario, D. S. (2006) Early auditory experience generates long-lasting memories that may subserve vocal learning in songbirds. Proceedings of the National Academy of Sciences of the USA, 103, 1088–1093.CrossRefGoogle ScholarPubMed
Phelps, S. M. & Young, L. J. (2003) Extraordinary diversity in vasopressin (V1a) receptor distributions among wild prairie voles (Microtus ochrogaster): patterns of variation and covariation. Journal of Comparative Neurology, 466, 564–576.CrossRefGoogle ScholarPubMed
Poulsen, H. (1951) Inheritance and learning in the song of the chaffinch (Fringilla coelebs L). Behaviour, 3, 216–228.CrossRefGoogle Scholar
Pröve, E. (1974) Der einfluß von kastration und testosteronsubstitutuon auf das sexualverhalten männlicher zebrafinken (Taeniopygia guttata castanotis Gould). Journal of Ornithology, 115, 338–347.CrossRefGoogle Scholar
Raouf, S. A., Parker, P. G., Ketterson, E. D., Nolan, V. & Ziegenfus, C. (1997) Testosterone affects reproductive success by influencing extra-pair fertilizations in male dark-eyed juncos (Aves: Junco hyemalis). Proceedings of the Royal Society B, 264, 1599–1603.CrossRefGoogle Scholar
Ratcliffe, L. & Otter, K. (1996) Sex differences in song recognition. In: Ecology and Evolution of Acoustic Communication in Birds, ed. Kroodsma, D. E. & Miller, E. H.. Ithaca, NY: Cornell University Press, pp. 339–355.Google Scholar
Rehsteiner, U., Geisser, H. & Reyer, H.-U. (1998) Singing and mating success in water pipits: one specific song element makes all the difference. Animal Behaviour, 55, 1471–1481.CrossRefGoogle ScholarPubMed
Reiner, A., Perkel, D. J., Bruce, L. L.et al. (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. Journal of Comparative Neurology, 473, 377–414.CrossRefGoogle ScholarPubMed
Ribeiro, S., Cecchi, G. A., Magnasco, M. O. & Mello, C. V. (1998) Toward a song code: evidence for a syllabic representation in the canary brain. Neuron, 21, 359–371.CrossRefGoogle Scholar
Riebel, K. (2000) Early exposure leads to repeatable preferences for male song in female zebra finches. Proceedings of the Royal Society B, 267, 2553–2558.CrossRefGoogle Scholar
Riebel, K. (2003) The ‘mute’ sex revisited: vocal production and perception learning in female songbirds. Advances in the Study of Behavior, 33, 49–86.CrossRefGoogle Scholar
Riebel, K., Smallegange, I. M., Terpstra, N. J. & Bolhuis, J. J. (2002) Sexual equality in zebra finch song preference: evidence for a dissociation between song recognition and production learning. Proceedings of the Royal Society B, 269, 729–733.CrossRefGoogle ScholarPubMed
Roberts, M. L., Buchanan, K. L. & Evans, M. R. (2004) Testing the immunocompetence handicap hypothesis: a review of the evidence. Animal Behaviour, 68, 227–239.CrossRefGoogle Scholar
Roselli, C. E., Resko, J. A. & Stormshak, F. (2002) Hormonal influences on sexual partner preference in rams. Archives of Sexual Behavior, 31, 43–49.CrossRefGoogle ScholarPubMed
Rosenblatt, J. S. & Snowdon, C. T., eds. (1996) Parental Care: Evolution, Mechanisms, and Adaptive Significance, Advances in the Study of Behavior, vol. 25. San Diego, CA: Academic Press.
Rubenstein, D. R. (2007) Stress hormones and sociality: integrating social and environmental stressors. Proceedings of the Royal Society B, 274, 967–975.CrossRefGoogle ScholarPubMed
Schlinger, B. A. & Arnold, A. P. (1992) Circulating estrogens in a male songbird originate in the brain. Proceedings of the National Academy of Sciences of the USA, 89, 7650–7653.CrossRefGoogle Scholar
Schradin, C. & Anzenberger, G. (1999) Prolactin, the hormone of paternity. News in Physiological Sciences, 14, 223–231.Google ScholarPubMed
Schwabl, H. (1993) Yolk is a source of maternal testosterone for developing birds. Proceedings of the National Academy of Sciences of the USA, 90, 11446–11450.CrossRefGoogle ScholarPubMed
Searcy, W. A. & Yasukawa, K. (1996) Song and female choice. In: Ecology and Evolution of Acoustic Communication in Birds, ed. Kroodsma, D. E. & Miller, E. H.. Ithaca, NY: Cornell University Press, pp. 454–473.Google Scholar
Sih, A., Bell, A. M., Johnson, J. C. & Ziemba, R. E. (2004) Behavioral syndromes: an integrative overview. Quarterly Review of Biology, 79, 241–277.CrossRefGoogle Scholar
Slater, P. J. B. & Ince, S. A. (1982) Song development in chaffinches: what is learnt and when?Ibis, 124, 21–26.CrossRefGoogle Scholar
Smulders, T. V., Lisi, M. D., Tricomi, E.et al. (2006) Failure to detect seasonal changes in the song system nuclei of the black-capped chickadee (Poecile atricapillus). Journal of Neurobiology, 66, 991–1001.CrossRefGoogle ScholarPubMed
Sockman, K. W., Gentner, T. Q. & Ball, G. F. (2002) Recent experience modulates forebrain gene-expression in response to mate-choice cues in European starlings. Proceedings of the Royal Society B, 269, 2479–2485.CrossRefGoogle ScholarPubMed
Spinney, L. H., Bentley, G. E. & Hau, M. (2006) Endocrine correlates of alternative phenotypes in the white-throated sparrow (Zonotrichia albicollis). Hormones and Behavior, 50, 762–771.CrossRefGoogle Scholar
Stripling, R., Volman, S. F. & Clayton, D. F. (1997) Response modulation in the zebra finch neostriatum: relationship to nuclear gene regulation. Journal of Neuroscience, 17, 3883–3893.CrossRefGoogle ScholarPubMed
Székely, T., Catchpole, C. K., DeVoogd, A., Marchl, Z. & DeVoogd, T. J. (1996) Evolutionary changes in a song control area of the brain (HVC) are associated with evolutionary changes in song repertoire among European warblers (Sylviidae). Proceedings of the Royal Society B, 263, 607–610.CrossRefGoogle Scholar
Terleph, T. A., Mello, C. V. & Vicario, D. S. (2007) Species differences in auditory processing dynamics in songbird auditory telencephalon. Developmental Neurobiology, 67, 1498–1510.CrossRefGoogle ScholarPubMed
Terpstra, N. J., Bolhuis, J. J. & Boer-Visser, A. M. (2004) An analysis of the neural representation of birdsong memory. Journal of Neuroscience, 24, 4971–4977.CrossRefGoogle ScholarPubMed
Terpstra, N. J., Bolhuis, J. J., Riebel, K., Burg, J. M. M. & Boer-Visser, A. M. (2006) Localized brain activation specific to auditory memory in a female songbird. Journal of Comparative Neurology, 494, 784–791.CrossRefGoogle Scholar
Theunissen, F. E. & Shaevitz, S. S. (2006) Auditory processing of vocal sounds in birds. Current Opinon in Neurobiology, 16, 400–407.CrossRefGoogle ScholarPubMed
Thorpe, W. H. (1957) The identification of Savi's, grasshopper and river warblers by means of song. British Birds, 50, 169–171.Google Scholar
Thorpe, W. H. (1958) The learning of song patterns by birds, with especial reference to the song of the chaffinch Fringilla coelebs. Ibis, 100, 535–570.CrossRefGoogle Scholar
Timmermans, S., Lefebvre, L., Boire, D. & Basu, P. (2000) Relative size of the hyperstriatum ventrale is the best predictor of feeding innovation rate in birds. Brain, Behavior and Evolution, 56, 196–203.CrossRef
Tinbergen, N. (1963) On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410–433.CrossRefGoogle Scholar
Trainor, B. C., Bird, I. M. & Marler, C. A. (2004) Opposing hormonal mechanisms of aggression revealed through short-lived testosterone manipulations and multiple winning experiences. Hormones and Behavior, 45, 115–121.CrossRefGoogle ScholarPubMed
Tramontin, A. D. & Brenowitz, E. A. (1999) A field study of seasonal neuronal incorporation into the song control system of a songbird that lacks adult song learning. Journal of Neurobiology, 40, 316–326.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Trumbo, S. T. (1996) Parental care in invertebrates. In: Parental Care: Evolution, Mechanisms, and Adaptive Significance, ed. Rosenblatt, J. S. & Snowden, C. T.. Advances in the Study of Behavior, vol. 25. San Diego, CA: Academic Press, pp. 3–52.Google Scholar
Vallet, E. & Kreutzer, M. (1995) Female canaries are sexually responsive to special song phrases. Animal Behaviour, 49, 1603–1610.CrossRefGoogle Scholar
Vallet, E., Beme, I. & Kreutzer, M. (1998) Two-note syllables in canary songs elicit high levels of sexual display. Animal Behaviour, 55, 291–297.CrossRefGoogle ScholarPubMed
Voigt, C. & Goymann, W. (2007) Sex-role reversal is reflected in the brain of African black coucals (Centropus grillii). Developmental Neurobiology, 67, 1560–1573.CrossRefGoogle Scholar
Voigt, C., Leitner, S. & Gahr, M. (2007) Socially induced brain differentiation in a cooperatively breeding songbird. Proceedings of the Royal Society B, 274, 2645–2651.CrossRefGoogle Scholar
Voss, H. U., Tabelow, K., Polzehl, J. et al. (2007) Functional MRI of the zebra finch brain during song stimulation suggests a lateralized response topography. Proceedings of the National Academy of Sciences of the USA, 104, 10667–10672.CrossRefGoogle ScholarPubMed
Wada, K., Howard, J. T., McConnell, P.et al. (2006) A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. Proceedings of the National Academy of Sciences of the USA, 103, 15212–15217.CrossRefGoogle ScholarPubMed
Wade, J. (1999) Sexual dimorphisms in avian and reptilian courtship: two systems that do not play by the mammalian rules. Brain, Behavior and Evolution, 54, 15–27.CrossRefGoogle Scholar
Wade, J. & Arnold, A. P. (2004) Sexual differentiation of the zebra finch song system. Annals of the New York Academy of Sciences, 1016, 540–559.CrossRefGoogle ScholarPubMed
Wallen, K. & Baum, M. M. (2002) Masculinization and defeminization in altricial and precocial mammals: comparative aspects of steroid hormone action. In: Hormones, Brain and Behavior, ed. Pfaff, D. W., Arnold, A. P., Etgen, A.M., Fahrbach, S. E. & Rubin, R. T. vol. 4. Amsterdam: Academic Press, pp. 385–424.Google Scholar
Ward, B. C., Nordeen, E. J. & Nordeen, K. W. (1998) Individual variation in neuron number predicts differences in the propensity for avian vocal imitation. Proceedings of the National Academy of Sciences of the USA, 95, 1277–1282.CrossRefGoogle ScholarPubMed
Wasser, S. K., Hunt, K. E., Brown, J. L.et al. (2000) A generalized fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. General and Comparative Endocrinology, 120, 260–275.CrossRefGoogle Scholar
West, M. J. & King, A. P. (1988) Female visual displays affect the development of male song in the cowbird. Nature, 334, 244–246.CrossRefGoogle Scholar
Whitfield-Rucker, M. G. & Cassone, V. M. (1996) Melatonin binding in the house sparrow song control system: sexual dimorphism and the effect of photoperiod. Hormones and Behavior, 30, 528–537.CrossRefGoogle ScholarPubMed
Wilbrecht, L. & Kirn, J. R. (2004) Neuron addition and loss in the song system: regulation and function. Annals of the New York Academy of Sciences, 1016, 659–683.CrossRefGoogle ScholarPubMed
Wiley, R. H., Hatchwell, B. J. & Davies, N. B. (1991) Recognition of individual males' songs by female dunnocks: a mechanism increasing the number of copulatory partners and reproductive success. Ethology, 88, 145–153.CrossRefGoogle Scholar
Williams, H., Kilander, K. & Sotanski, M. L. (1993) Untutored song, reproductive success and song learning. Animal Behaviour, 45, 695–705.CrossRefGoogle Scholar
Wingfield, J. C. (1984) Androgens and mating systems: testosterone-induced polygyny in normally monogamous birds. Auk, 101, 665–671.CrossRefGoogle Scholar
Wingfield, J. C., Hegner, R. E., Dufty, A. M. & Ball, G. F. (1990) The ‘challenge hypothesis’: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. American Naturalist, 136, 829–846.CrossRefGoogle Scholar
Wynne-Edwards, K. E. & Reburn, C. J. (2000) Behavioral endocrinology of mammalian fatherhood. Trends in Ecology and Evolution, 15, 464–468.CrossRefGoogle ScholarPubMed
Wynne-Edwards, K. E. & Timonin, M. E. (2007) Paternal care in rodents: weakening support for hormonal regulation of the transition to behavioral fatherhood in rodent animal models of biparental care. Hormones and Behavior, 52, 114–121.CrossRefGoogle ScholarPubMed
Young, L. J. & Wang, Z. X. (2004) The neurobiology of pair bonding. Nature Neuroscience, 7, 1048–1054.CrossRefGoogle ScholarPubMed
Young, L. J., Nilsen, R., Waymire, K. G., MacGregor, G. R. & Insel, T. R. (1999) Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature, 400, 766–768.CrossRefGoogle ScholarPubMed
Zera, A. J., Harshman, L. G. & Williams, T. D. (2007) Evolutionary endocrinology: the developing synthesis between endocrinology and evolutionary genetics. Annual Review of Ecology, Evolution and Systematics, 38, 793–817.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×