Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-28T05:32:17.502Z Has data issue: false hasContentIssue false

2 - The quantitative genetics of social behaviour

Published online by Cambridge University Press:  05 June 2012

Bronwyn H. Bleakley
Affiliation:
University of Exeter, UK
Jason B. Wolf
Affiliation:
University of Manchester, UK
Allen J. Moore
Affiliation:
University of Exeter, UK
Tamás Székely
Affiliation:
University of Bath
Allen J. Moore
Affiliation:
University of Exeter
Jan Komdeur
Affiliation:
Rijksuniversiteit Groningen, The Netherlands
Get access

Summary

Overview

How and when social behaviour evolves has long been a focus of study within evolutionary biology, yielding the entire subfield of sociobiology and behavioural ecology. Although social behaviours may be explored in the same way as any other type of phenotype, the genetics underlying social behaviours differ from traits that do not vary depending on the social environment in which they are expressed. Social behaviour is best described as an interacting phenotype: a phenotype that depends at least in part on interactions with social partners for its expression. Models of indirect genetic effects provide a quantitative genetic framework for understanding the sources of variation underlying interacting phenotypes. They also suggest a genetic mechanism for inheriting traits that are expressed among rather than within individual animals, and identify selection arising from the interactions (termed social selection).

This chapter will first introduce the concepts of interacting phenotypes, indirect genetic effects, and social selection. We build a quantitative genetic model for interacting phenotypes and discuss how the evolution of such traits differs from non-interacting traits. We then explore the parameters of the model in more depth. We subsequently summarise existing empirical studies of indirect genetic effects, discuss the implications for the evolution of behavioural traits through social selection, and discuss transitions between quantitative genetic and molecular genetic approaches to studying behavioural evolution. Finally, we highlight potential future avenues of research.

Type
Chapter
Information
Social Behaviour
Genes, Ecology and Evolution
, pp. 29 - 54
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hunt, J. & Simmons, L. (2001) Status-dependent selection in the dimorphic beetle Onthophagus taurus. Proceedings of the Royal Society B, 268, 2409–2414.CrossRefGoogle ScholarPubMed
Kent, C., Azanchi, R., Smith, B., Formosa, A. & Levine, J. D. (2008) Social context influences chemical communication in D. melanogaster males. Current Biology, 18, 1384–1389.CrossRefGoogle ScholarPubMed
Linksvayer, T. A. (2006) Direct, maternal, and sibsocial genetic effects on individual and colony traits in an ant. Evolution, 60, 2552–2561.CrossRefGoogle Scholar
Hunt, J. & Simmons, L. (2001) Status-dependent selection in the dimorphic beetle Onthophagus taurus. Proceedings of the Royal Society B, 268, 2409–2414.CrossRefGoogle ScholarPubMed
Kent, C., Azanchi, R., Smith, B., Formosa, A. & Levine, J. D. (2008) Social context influences chemical communication in D. melanogaster males. Current Biology, 18, 1384–1389.CrossRefGoogle ScholarPubMed
Linksvayer, T. A. (2006) Direct, maternal, and sibsocial genetic effects on individual and colony traits in an ant. Evolution, 60, 2552–2561.CrossRefGoogle Scholar
Agrawal, A. F., Brodie, E. D. & Wade, M. J. (2001a) On indirect genetic effects in structured populations. American Naturalist, 158, 308–323.CrossRefGoogle ScholarPubMed
Agrawal, A. F., Brodie, E. D. & Brown, J. (2001b) Parent–offspring coadaptation and the dual genetic control of maternal care. Science, 292, 1710–1712.CrossRefGoogle ScholarPubMed
Allee, W. C. (1927) Animal aggregations. Quarterly Review of Biology, II, 367–398.CrossRefGoogle Scholar
Aragaki, D. L. R. & Meffert, L. M. (1998) A test of how well the repeatability of courtship predicts its heritability. Animal Behaviour, 55, 1141–1150.CrossRefGoogle ScholarPubMed
Bacigalupe, L. D., Crudginton, H. S., Slate, J., Moore, A. J. & Snook, R. R. (2008) Sexual selection and interacting phenotypes in experimental evolution: a study of Drosophila pseudoobscura mating behavior. Evolution, 62, 1804–1812.CrossRefGoogle ScholarPubMed
Bateson, P. (2004) The active role of behavior in evolution. Biology and Philosophy, 19, 283–298.CrossRefGoogle Scholar
Bernardo, J. (1996) Maternal effects in animal ecology. American Zoologist, 36, 83–105.CrossRefGoogle Scholar
Bijma, P. & Wade, M. J. (2008) The joint effects of kin, multilevel selection and indirect genetic effects on response to genetic selection. Journal of Evolutionary Biology, 21, 1175–1188.CrossRefGoogle ScholarPubMed
Bijma, P., Muir, W. M. & Arendonk, J. A. M. V. (2007a) Multilevel selection 1: Quantitative genetics of inheritance and response to selection. Genetics, 175, 277–288.CrossRefGoogle ScholarPubMed
Bijma, P., Muir, W. M., Ellen, E. D., Wolf, J. B. & Arendonk, J. A. M. V. (2007b) Multilevel selection 2: Estimating the genetic parameters determining inheritance and response to selection. Genetics, 175, 289–299.CrossRefGoogle ScholarPubMed
Bleakley, B. H. & Brodie, E. D. (2009) Indirect genetic effects influence antipredator behavior in guppies: estimates of the coefficient of interaction psi and the inheritance of reciprocity. Evolution, 63, 1796–1806.Google ScholarPubMed
Bleakley, B. H., Martell, C. M. & Brodie, E. D. (2006) Variation in anti-predator behavior among five strains of inbred guppies, Poecilia reticulata. Behavior Genetics, 36, 783–791.CrossRefGoogle ScholarPubMed
Bleakley, B. H., Parker, D. J. & Brodie, E. D. (2007) Nonadditive effects of group membership can lead to additive group phenotypes for anti-predator behaviour of guppies, Poecilia reticulata. Journal of Evolutionary Biology, 20, 1375–1384.CrossRefGoogle ScholarPubMed
Bleakley, B. H., Eklund, A. C. & Brodie, E. D. (2008) Are designer guppies inbred? Microsatellite variation in five strains of ornamental guppies. Poecilia reticulata, used for behavior research. Zebrafish, 5, 39–48.CrossRefGoogle Scholar
Boake, C. R. B., Arnold, S. J., Breden, F.et al. (2002) Genetic tools for studying adaptation and the evolution of behavior. American Naturalist, 160, S143–159.CrossRefGoogle ScholarPubMed
Brodie, E. D. (2000) Why evolutionary genetics does not always add up. In: Epistasis and the Evolutionary Process, ed. Wolf, J. B., Brodie, E. D. & Wade, M. J.New York: Oxford University Press, pp. 3–19.Google Scholar
Burmeister, S. S., Jarvis, E. D. & Fernald, R. D. (2005) Rapid behavioral and genomic responses to social opportunity. PLoS Biology, 3 (11), e363.Google ScholarPubMed
Caro, T., ed. (1998) Behavioral Ecology and Conservation Biology. New York, NY: Oxford University Press.
Chapman, T., Arnqvist, G., Bangham, J. & Rowe, L. (2003) Sexual conflict. Trends in Ecology and Evolution, 18, 41–47.Google Scholar
Chenoweth, S. F. & Blows, M. W. (2006) Dissecting the complex genetic basis of mate choice. Nature Reviews Genetics, 7, 681–692.CrossRefGoogle ScholarPubMed
Cheverud, J. M. & Moore, A. J. (1994) Quantitative genetics and the role of the environment provided by relatives in behavioral evolution. In: Quantitative Genetic Studies of Behavioral Evolution, ed. Boake, C. R. B.Chicago, IL: University of Chicago Press, pp. 67–100.Google Scholar
Clark, A. G. & Begun, D. J. (1998) Female genotypes affect sperm displacement in Drosophila. Genetics, 149, 1487–1493.Google ScholarPubMed
Clark, A. G., Begun, D. J. & Prout, T. (1999) Female × male interactions inDrosophila sperm competition. Science, 283, 217–220.Google Scholar
Cowley, D. E., Pomp, D., Atchley, W. R., Eisen, E. J. & Hawkins-Brown, D. (1989) The impact of maternal uterine genotype on postnatal growth and adult body size in mice. Genetics, 122, 193–203.Google ScholarPubMed
Cummings, M. E., Larkins-Ford, J., Reilly, C. R. L.et al. (2008) Sexual and social stimuli elicit rapid and contrasting genomic responses. Proceedings of the Royal Society B, 275, 393–402.CrossRefGoogle ScholarPubMed
Danielson-François, A., Zhou, Y. & Greenfield, M. D. (2009) Indirect genetic effects and the lek paradox: inter-genotypic competition may strengthen genotype × environment interactions and conserve genetic variance. Genetica, 136, 27–36.CrossRefGoogle ScholarPubMed
Darwin, C. (1859) On the Origin of Species by Means of Natural Selection. London: John Murray.Google Scholar
Darwin, C. (1871) The Descent of Man, and Selection in Relation to Sex. London: John Murray.Google Scholar
Dawkins, R. (1982) The Extended Phenotype: the Gene as the Unit of Selection. San Francisco: Freeman Press.Google Scholar
D'Ettorre, P. & Moore, A. J. (2008) Chemical communication and the coordination of social interactions in insects. In: Sociobiology of Communication: an Interdisciplinary Perspective, Hughes, ed. P. D'Ettorre & D. P.. Oxford & New York: Oxford University Press, pp. 81–96.CrossRefGoogle Scholar
Elgar, M. A. & Crespi, B., eds. (1992) Cannibalism, Ecology and Evolution Among Diverse Taxa. Oxford: Oxford University Press.
Evans, J. P., Kelley, J. L., Bisazza, A., Finazzo, E. & Pilastro, A. (2004) Sire attractiveness influences offspring performance in guppies. Proceedings of the Royal Society B, 271, 2035–2042.CrossRefGoogle ScholarPubMed
Falconer, D. S. & Mackay, T. F. C. (1996) Introduction to Quantitative Genetics, 4th edn. Harlow: Longman.Google Scholar
Fewell, J. H. (2003) Social insect networks. Science, 301, 1867–1870.CrossRefGoogle ScholarPubMed
Fisher, R. A. (1918) The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52, 399–433.CrossRefGoogle Scholar
Frank, S. A. (1997) Fisher's fundamental theorem, kin selection, and causal analysis. Evolution, 51, 1712–1729.CrossRefGoogle ScholarPubMed
Frankham, R., Ballou, J. D. & Briscoe, D. A. (2002) Introduction to Conservation Genetics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Fuller, J. L. & Hahn, M. E. (1976) Issues in the genetics of social behavior. Behavior Genetics, 6, 391–406.CrossRefGoogle ScholarPubMed
Garcia-Gonzalez, F. & Simmons, L. W. (2005) The evolution of polyandry: intrinsic sire effects contribute to embryo viability. Journal of Evolutionary Biology, 18, 1097–1103.CrossRefGoogle ScholarPubMed
Gosling, L. M. & Sutherland, W. J. (2000) Behaviour and Conservation. Cambridge: Cambridge University Press.Google Scholar
Grindstaff, J. L., Brodie, E. D. & Ketterson, E. D. (2003) Immune function across generations: integrating mechanism and evolutionary process in maternal antibody transmission. Proceedings of the Royal Society B, 270, 2309–2319.CrossRefGoogle ScholarPubMed
Hager, R. & Johnstone, R. A. (2003) The genetic basis of family conflict resolution in mice. Nature, 421, 533–535.CrossRefGoogle ScholarPubMed
Hahn, M. E. & Schanz, N. (1996) Issues in the genetics of social behavior: revisited. Behavior Genetics, 26, 463–470.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1964) The genetical theory of social behavior I. Journal of Theoretical Biology, 7, 1–16.Google Scholar
Higgins, L. A., Jones, J. M. & Wayne, M. L. (2005) Quantitative genetics of natural variation of behavior in Drosophila melanogaster: the possible role of social environment on creating persistent patterns of group activity. Evolution, 59, 1529–1539.Google ScholarPubMed
House, C. M., Evans, G. M. V., Smiseth, P. T.et al. (2008) The evolution of repeated mating in the burying beetle, Nicrophorus vespilloides. Evolution, 62, 2004–2014.CrossRefGoogle ScholarPubMed
Isles, A. R., Humby, T., Walters, E. & Wilkinson, L. S. (2004) Common genetic effects on variation in impulsivity and activity in mice. Journal of Neuroscience, 24, 6733–6740.Google ScholarPubMed
Jarvis, E. D., Scharff, C., Grossman, M. R., Ramos, J. A. & Nottebohm, F. (1998) For whom the bird sings: context-dependent gene expression. Neuron, 21, 775–88.CrossRefGoogle ScholarPubMed
Kempenaers, B. (2007) Mate choice and genetic quality: a review of the heterozygosity theory. Advances in the Study of Behavior, 37, 189–278.Google Scholar
Kent, C., Azanchi, R., Smith, B., Formosa, A. & Levine, J. D. (2008) Social context influences chemical communication in D. melanogaster males. Current Biology, 18, 1384–1389.CrossRefGoogle ScholarPubMed
Kirkpatrick, M. & Lande, R. (1989) The evolution of maternal characters. Evolution, 43, 485–503.CrossRefGoogle ScholarPubMed
Kölliker, M. (2005) Ontogeny in the family. Behavior Genetics, 35, 7–18.CrossRefGoogle Scholar
Kölliker, M. & Richner, H. (2001) Parent-offspring conflict and the genetics of offspring solicitation and parental response. Animal Behaviour, 62, 395–407.CrossRefGoogle Scholar
Kölliker, M., Brinkhof, M. W. G., Heeb, P., Fitze, P. S. & Richner, H. (2000) The quantitative genetic basis of offspring solicitation and parental response in a passerine bird with biparental care. Proceedings of the Royal Society B, 267, 2127–2132.Google Scholar
Kölliker, M., Brodie, E. D. & Moore, A. J. (2005) The coadaptation of parental supply and offspring demand. American Naturalist, 166, 506–516.CrossRefGoogle ScholarPubMed
Komers, P. E. (1997) Behavioural plasticity in variable environments. Canadian Journal of Zoology–Revue Canadienne De Zoologie, 75, 161–169.CrossRefGoogle Scholar
Kotiaho, J. S., Simmons, L. W., Hunt, J. & Tomkins, J. L. (2003) Males influence maternal effects that promote sexual selection: a quantitative genetic experiment with dung beetlesOnthophagus taurus. American Naturalist, 161, 852–859.Google ScholarPubMed
Krupp, J. J., Kent, C., Billeter, J.-C.et al. (2008) Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Current Biology, 18, 1373–1383.CrossRefGoogle ScholarPubMed
Kruuk, L. E. B. (2004) Estimating genetic parameters in natural populations using the ‘animal model’. Philosophical Transactions of the Royal Society B, 359, 873–890.CrossRefGoogle Scholar
Kuussaari, M., Saccheri, I., Camara, M. & Hanski, I. (1998) Allee effect and population dynamics in the Glanville fritillary butterfly. Oikos, 82, 384–392.CrossRefGoogle Scholar
Lande, R. (1981) Models of speciation by sexual selection on polygenic traits. Proceedings of the National Academy of Sciences of the USA, 78, 3721–3725.CrossRefGoogle ScholarPubMed
Lewontin, R. & Matsuo, Y. (1963) Interaction of genotypes determining the viability inDrosophila busckii. Proceedings of the National Academy of Sciences of the USA, 49, 270–278.Google Scholar
Linksvayer, T. A. (2006) Direct, maternal, and sibsocial genetic effects on individual and colony traits in an ant. Evolution, 60, 2552–2561.CrossRefGoogle Scholar
Linksvayer, T. A. (2007) Ant species differences determined by epistasis between brood and worker genomes. PLoS ONE, 2 (10), e994.CrossRefGoogle ScholarPubMed
Lock, J. E., Smiseth, P. T. & Moore, A. J. (2004) Selection, inheritance and the evolution of parent-offspring interactions. American Naturalist, 164, 13–24.CrossRefGoogle ScholarPubMed
Lynch, M. (1987) Evolution of intrafamilial interactions. Proceedings of the National Academy of Sciences of the USA, 84, 8501–8511.CrossRefGoogle ScholarPubMed
Lynch, M. & Walsh, B. (1998) Genetics and Analysis of Quantitative Traits. Sunderland, MA: Sinauer Associates.Google Scholar
Manning, A. (1961) The effects of artificial selection for mating speed in Drosophila melanogaster. Animal Behaviour, 9, 82–92.CrossRefGoogle Scholar
Meffert, L. M. (1995) Bottleneck effects on genetic variance for courtship repertoire. Genetics, 139, 365–374.Google ScholarPubMed
Meffert, L. M. & Regan, J. L. (2002) A test of speciation via sexual selection on female preferences. Animal Behaviour, 64, 955–965.CrossRefGoogle Scholar
Messina, F. J. (1998) Maternal influences on larval competition in insects. In: Maternal Effects as Adaptations, ed. Mousseau, T. A. & Fox, C. W.New York, NY: Oxford University Press, pp. 227–243.Google Scholar
Miller, C. W. & Moore, A. J. (2007) A potential resolution to the lek paradox through indirect genetic effects. Proceedings of the Royal Society B, 274, 1279–1286.CrossRefGoogle ScholarPubMed
Moore, A. J. & Pizzari, T. (2005) Quantitative genetic models of sexual conflict based on interacting phenotypes. American Naturalist, 165, S88–97.CrossRefGoogle ScholarPubMed
Moore, A. J., Brodie, E. D. & Wolf, J. B. (1997) Interacting phenotypes and the evolutionary process. I. Direct and indirect genetic effects of social interactions. Evolution, 51, 1352–1362.CrossRefGoogle ScholarPubMed
Moore, A. J., Wolf, J. B. & Brodie, E. D. (1998) The influence of direct and indirect genetic effects on the evolution of behavior: social and sexual selection meet maternal effects. In: Maternal Effects as Adaptations, ed. Mousseau, T. A. & Fox, C. W.New York, NY: Oxford University Press, pp. 23–41.Google Scholar
Moore, A. J., Haynes, K. F., Preziosi, R. F. & Moore, P. J. (2002) The evolution of interacting phenotypes: genetics and evolution of social dominance. American Naturalist, 160, S186–197.CrossRefGoogle ScholarPubMed
Mousseau, T. A. & Fox, C. W., eds. (1998) Maternal Effects as Adaptations. New York, NY: Oxford University Press.
Mutic, J. J. & Wolf, J. B. (2007) Indirect genetic effects from ecological interactions inArabidopsis thaliana. Molecular Ecology, 16, 2371–2381.Google Scholar
Nelson, R. J., ed. (2005) Biology of Aggression. New York, NY: Oxford University Press.CrossRef
Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. (2003) Niche Construction: the Neglected Process in Evolution. Princeton, NJ: Princeton University Press.Google Scholar
Petfield, D., Chenoweth, S. F., Rundle, H. D. & Blows, M. W. (2005) Genetic variance in female condition predicts indirect genetic variance in male sexual display traits. Proceedings of the National Academy of Sciences of the USA, 102, 6045–6050.CrossRefGoogle ScholarPubMed
Price, T. (1998) Maternal and paternal effects in birds: effects on offspring fitness. In: Maternal Effects as Adaptations, ed. Mousseau, T. A. & Fox, C. W.New York, NY: Oxford University Press, pp. 202–226.Google Scholar
Queller, D. C. (1992a) A general model for kin selection. Evolution, 46, 376–380.CrossRefGoogle ScholarPubMed
Queller, D. C. (1992b) Quantitative genetics, inclusive fitness, and group selection. American Naturalist, 139, 540–558.Google Scholar
Rauter, C. M. & Moore, A. J. (2002) Evolutionary importance of parental care performance, food resources, and direct and indirect genetic effects in a burying beetle. Journal of Evolutionary Biology, 15, 407–417.CrossRefGoogle Scholar
Reznick, D., Callahan, H. & Llauredo, R. (1996) Maternal effects on offspring quality in poeciliid fishes. American Zoologist, 36, 147–156.CrossRefGoogle Scholar
Riska, B., Rutledge, J. J. & Atchley, W. R. (1985) Covariance between direct and maternal genetic effects in mice, with a model of persistent environmental influences. Genetical Research, 45, 287–297.CrossRefGoogle ScholarPubMed
Roff, D. A. (1997) Evolutionary Quantitative Genetics. New York, NY; London: Chapman & Hall.CrossRefGoogle Scholar
Ruiz-Dubreuil, D. G. & del Solar, E. (1993) A diallele analysis of gregarious oviposition in Drosophila melanogaster. Heredity, 70, 281–284.CrossRefGoogle Scholar
Simmons, L. W. & Moore, A. J. (2008) Evolutionary quantitative genetics of sperm. In: Sperm Biology: an Evolutionary Perspective, ed. Birkhead, T. R., Hosken, D. J. & Pitnick, S.. London: Academic Press, pp. 405–434.Google Scholar
Stephens, P. A. & Sutherland, W. J. (1999) Consequences of the Allee effect for behaviour, ecology and conservation. Trends in Ecology and Evolution, 14, 401–405.CrossRefGoogle ScholarPubMed
Stone, G. N. & Cook, J. M. (1998) The structure of cynipid oak galls: patterns in the evolution of an extended phenotype. Proceedings of the Royal Society B, 265, 979–988.CrossRefGoogle Scholar
Tinbergen, N. (1953) Social Behaviour in Animals, with Special Reference to Vertebrates. London: Wiley.Google Scholar
Tregenza, T. & Wedell, N. (2000) Genetic compatability, mate choice and patterns of parantage: Invited review. Molecular Ecology, 9, 1013–1027.CrossRefGoogle Scholar
Wade, M. J. (1998) The evolutionary genetics of maternal effects. In: Maternal Effects as Adaptations, ed. Mousseau, T. A. & Fox, C. W.New York, NY: Oxford University Press, pp. 5–21.Google Scholar
Wang, J., Ross, K. G. & Keller, L. (2008) Genome-wide expression patterns and the genetic architecture of a fundamental social trait. PLoS Genetics, 4 (7), e1000127.CrossRefGoogle ScholarPubMed
Wang, L., Dankert, H., Perona, P. & Anderson, D. J. (2008) A common genetic target for environmental and heritable influences on aggressiveness in Drosophila. Proceedings of the National Academy of Sciences of the USA, 105, 5657–5663.CrossRefGoogle ScholarPubMed
Weis, A. E., Walton, R. & Crego, C. L. (1988) Reactive plant tissue sites and the population biology of gall makers. Annual Review of Entomology, 33, 467–486.CrossRefGoogle Scholar
Weis, A. E., Abrahamson, W. G. & Andersen, M. C. (1992) Variable selection on Eurosta's gall size, I. The extent and nature of variation in phenotypic selection. Evolution, 46, 1674–1697.Google ScholarPubMed
West-Eberhard, M. J. (1979) Sexual selection, social competition, and evolution. Proceedings of the American Philosophical Society, 123, 222–234.Google Scholar
West-Eberhard, M. J. (1983) Sexual selection, social competition, and speciation. Quarterly Review of Biology, 58, 155–183.CrossRefGoogle Scholar
West-Eberhard, M. J. (1984) Sexual selection, competitive communication, and species-specific signals in insects. In: Insect Communication, ed. Lewis, T.. London: Academic Press, pp. 283–324.Google Scholar
West-Eberhard, M. J. (2003) Gaps and inconsistencies in modern evolutionary thought. In: Developmental Plasticity and Evolution. Oxford: Oxford University Press, pp. 3–20.Google Scholar
Wilson, A. J., Gelin, U., Perron, M.-C. & Réale, D. (2009) Indirect genetic effects and the evolution of aggression in a vertebrate system. Proceedings of the Royal Society of London B, 276, 533–541.CrossRefGoogle Scholar
Winberg, S., Winberg, Y. & Fernald, R. D. (1997) Effect of social rank on brain monoaminergic activity in a cichlid fish. Brain, Behavior and Evolution, 49, 230–236.CrossRefGoogle Scholar
Wolf, J. B. (2000a) Indirect genetic effects and gene interactions. In: Epistasis and the Evolutionary Process, ed. Wolf, J. B., Brodie, E. D. & Wade, M. J.New York: Oxford University Press, pp. 158–176.Google Scholar
Wolf, J. B. (2000b) Gene interactions from maternal effects. Evolution, 54, 1882–1898.CrossRefGoogle ScholarPubMed
Wolf, J. B. (2003) Genetic architecture and evolutionary constraint when the environment contains genes. Proceedings of the National Academy of Sciences of the USA, 100, 4655–4660.CrossRefGoogle ScholarPubMed
Wolf, J. B. & Brodie, E. D. (1998) The coadaptation of parental and offspring characters. Evolution, 52, 299–308.CrossRefGoogle ScholarPubMed
Wolf, J. B. & Moore, A. J. (2010) Interacting phenotypes and indirect genetic effects: a genetic perspective on the evolution of social behavior. In: Evolutionary Behavioral Ecology, ed. Westneat, D. F. & Fox, C. W.Oxford & New York: Oxford University Press, pp. 225–245.Google Scholar
Wolf, J. B., Moore, A. J. & Brodie, E. D. (1997) The evolution of indicator traits for parental quality: the role of maternal and paternal effects. American Naturalist, 150, 639–649.CrossRefGoogle ScholarPubMed
Wolf, J. B., Brodie, E. D., Cheverud, J. M., Moore, A. J. & Wade, M. J. (1998) Evolutionary consequences of indirect genetic effects. Trends in Ecology and Evolution, 13, 64–69.CrossRefGoogle ScholarPubMed
Wolf, J. B., Brodie, E. D. & Moore, A. J. (1999a) Interacting phenotypes and the evolutionary process. II. Selection resulting from social interactions. American Naturalist, 153, 254–266.CrossRefGoogle ScholarPubMed
Wolf, J. B., Brodie, E. D. & Moore, A. J. (1999b) The role of maternal and paternal effects in the evolution of parental quality by sexual selection. Journal of Evolutionary Biology, 12, 1157–1167.Google Scholar
Woolley, S. C. & Doupe, A. J. (2008) Social context-induced song variation affects female behavior and gene expression. PLoS Biology, 6 (3), e62.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×