Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-16T16:46:11.007Z Has data issue: false hasContentIssue false

9 - Handoff in IP-based network architecture

Published online by Cambridge University Press:  05 July 2013

Junyi Li
Affiliation:
Qualcomm, Bridgewater, New Jersey
Xinzhou Wu
Affiliation:
Qualcomm, Bridgewater, New Jersey
Rajiv Laroia
Affiliation:
Sonus Networks
Get access

Summary

The central design idea of mobile broadband is to adapt wireless to the Internet, not vice-versa. Compared with its wireline counterpart, mobile broadband faces two major technical challenges: fading and interference, which make the wireless link less reliable, and mobility, which requires handoff from one cell to another as a user moves. The previous chapters describe the physical and MAC layer approaches of dealing with fading and interference and improving link reliability and system capacity. In this chapter, we will expand our scope to view the airlink as part of an end-to-end network system and address the handoff issue.

Network architecture describes the necessary functions of the network system, partitions them to a set of logical nodes, and defines the interfaces between the nodes. An end-to-end network system is usually quite complex. To handle the complexity in a scalable manner, a good design practice is to adopt a layered structure. For example, the famous open system interconnection (OSI) model defines a networking framework of implementing protocols in seven layers, namely the application, presentation, session, transport, networking, data link, and physical layers. When two nodes communicate with each other, control is passed down from a higher layer to a lower one in one node, all the way to the bottom physical layer, then over the physical channel to the other node, and finally moving up the hierarchy in that node. The TCP/IP model of the Internet simplifies the layering model to four layers, namely the application, transport, Internet, and network access layers.

Type
Chapter
Information
OFDMA Mobile Broadband Communications
A Systems Approach
, pp. 315 - 364
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×