Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T07:14:09.403Z Has data issue: false hasContentIssue false

4 - Mitigation and exploitation of multipath fading

Published online by Cambridge University Press:  05 July 2013

Junyi Li
Affiliation:
Qualcomm, Bridgewater, New Jersey
Xinzhou Wu
Affiliation:
Qualcomm, Bridgewater, New Jersey
Rajiv Laroia
Affiliation:
Sonus Networks
Get access

Summary

The medium of wireless communications is the wireless radio frequency channel. We are interested in the characteristics of the wireless channel, in particular, how the channel response varies over time and frequency, as well as over the distance between a transmitter and a receiver. The variation in the channel response is usually referred to as channel fading. For a given signal, channel fading depends on the particular propagation environment, such as buildings, walls, ground, vehicles, between the transmitter and the receiver, as well as the carrier frequency of the signal. To characterize channel fading, we often use a statistical approach based on measurements made in a large variety of environments. Statistically, channel fading can be characterized by the following two different types of behaviors:

  1. Large-scale fading, which varies in a slow time scale (on the order of seconds) or in a large distance of many wavelengths. Large-scale fading is mainly caused by path loss and shadowing. Path loss is caused by signal strength degradation as the electromagnetic (EM) wave of the signal propagates through space. Shadowing results from penetration or reflection of objects much larger than the wavelength of the EM wave.

  2. Small-scale fading, which varies in a fast time scale (on the order of tens of milliseconds depending on mobility) or in a distance on the same order of the wavelength. Small-scale fading is mainly caused by multipath, as multiple copies of the transmitted signal add constructively or destructively at the receiver. Thus, small-scale fading is also referred to as multipath fading.

Type
Chapter
Information
OFDMA Mobile Broadband Communications
A Systems Approach
, pp. 94 - 149
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×