Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T11:32:48.059Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  04 May 2010

A. F. J. Levi
Affiliation:
University of Southern California
Stephan Haas
Affiliation:
University of Southern California
Get access

Summary

Dramatic advances in the control of physical systems at the atomic scale have provided many new ways to manufacture devices. An important question is how best to design these ultra-small complex systems. Access to vast amounts of inexpensive computing power makes it possible to accurately simulate their physical properties. Furthermore, high-performance computers allow us to explore the large number of degrees of freedom with which to construct new device configurations. This book aims to lay the groundwork for a methodology to exploit these emerging capabilities using optimal device design. By combining applied mathematics, smart computation, physical modeling, and twenty-first-century engineering and fabrication tools it is possible to find atomic and nanoscale configurations that result in components with performance characteristics that have not been achieved using other methods.

Imagine you want to design and build a novel nanoscale device. How would you go about it? A conventional starting point is to look at a macroscopic component with similar functionality, and consider ways to make it smaller. This approach has several potential pitfalls. For one, with continued reduction in size, device behavior will become quantum in character where classical concepts and models cease to be applicable. Moreover, it is limited by ad hoc designs, typically rooted in our unwillingness to consider aperiodic configurations, unless absolutely mandated by physical constraints. Most importantly this conventional approach misses the enormous opportunity of exploring the full landscape of possible system responses, offered by breaking all conceivable symmetries.

Computational resources, realistic physical models, and advanced optimization algorithms now make it possible to efficiently explore the properties of many more configurations than could be tested in a typical laboratory.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Edited by A. F. J. Levi, University of Southern California, Stephan Haas, University of Southern California
  • Book: Optimal Device Design
  • Online publication: 04 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691881.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Edited by A. F. J. Levi, University of Southern California, Stephan Haas, University of Southern California
  • Book: Optimal Device Design
  • Online publication: 04 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691881.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Edited by A. F. J. Levi, University of Southern California, Stephan Haas, University of Southern California
  • Book: Optimal Device Design
  • Online publication: 04 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691881.001
Available formats
×