Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T07:32:20.924Z Has data issue: false hasContentIssue false

Chapter 6 - Wave phenomena

Published online by Cambridge University Press:  22 January 2010

Robert Schunk
Affiliation:
Utah State University
Andrew Nagy
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Plasma waves are prevalent throughout the ionospheres. The waves can just have fluctuating electric fields or they can have both fluctuating electric and magnetic fields. Also, the wave amplitudes can be either small or large, depending on the circumstances. Small amplitude waves do not appreciably affect the plasma, and in many situations they can be used as a diagnostic of physical processes that are operating in the plasma. Large amplitude waves, on the other hand, can have a significant effect on the plasma dynamics and energetics. In general, there is a myriad of waves that can propagate in a plasma, and it is not possible, or warranted, to give a detailed discussion here. Instead, the focus in this chapter is on just the fundamental wave modes that can propagate in both magnetized and unmagnetized plasmas. First, the general characteristics of waves are presented. This is followed by a discussion of small amplitude waves in both unmagnetized and magnetized plasmas, including high frequency (electron) waves and low frequency (ion) waves. Next, the effect that collisions have on the waves is illustrated, and this is followed by a presentation of wave excitation mechanisms (plasma instabilities). Finally, large amplitude shock waves and double layers are discussed.

General wave properties

Many types of waves can exist in the plasma environments that characterize the ionospheres. Hence, it is useful to first introduce some common wave nomenclature before discussing the various wave types. It is also useful to distinguish between background plasma properties and wave induced properties. In what follows, subscript 0 designates background plasma properties, and subscript 1 designates both the wave and the perturbed plasma properties associated with the wave.

Type
Chapter
Information
Ionospheres
Physics, Plasma Physics, and Chemistry
, pp. 159 - 205
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Wave phenomena
  • Robert Schunk, Utah State University, Andrew Nagy, University of Michigan, Ann Arbor
  • Book: Ionospheres
  • Online publication: 22 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511635342.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Wave phenomena
  • Robert Schunk, Utah State University, Andrew Nagy, University of Michigan, Ann Arbor
  • Book: Ionospheres
  • Online publication: 22 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511635342.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Wave phenomena
  • Robert Schunk, Utah State University, Andrew Nagy, University of Michigan, Ann Arbor
  • Book: Ionospheres
  • Online publication: 22 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511635342.006
Available formats
×