Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T12:40:02.089Z Has data issue: false hasContentIssue false

Chapter 4 - Collisions

Published online by Cambridge University Press:  22 January 2010

Robert Schunk
Affiliation:
Utah State University
Andrew Nagy
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Collisions play a fundamental role in the dynamics and energetics of ionospheres. They are responsible for the production of ionization, the diffusion of plasma from high to low density regions, the conduction of heat from hot to cold regions, the exchange of energy between different species, and other processes. The collisional processes can be either elastic or inelastic. The interactions leading to chemical reactions are discussed in Chapter 8. In an elastic collision, the momentum and kinetic energy of the colliding particles are conserved, while this is not the case in an inelastic collision. The exact nature of the collision process depends both on the relative kinetic energy of the colliding particles and on the type of particles. In general, for low energies, elastic collisions dominate, but as the relative kinetic energy increases, inelastic collisions become progressively more important. The order of importance is from elastic to rotational, vibrational, and electronic excitation, and then to ionization as the relative kinetic energy increases. However, the different collision processes may affect the continuity, momentum, and energy equations in different ways. For example, ionization of neutral gases by solar radiation and particle impact are the main sources of plasma in the ionospheres and these processes must be included in the continuity equation. On the other hand, ionization collisions are very infrequent compared with binary elastic collisions under most circumstances, and therefore, the momentum perturbation associated with the ionization process is generally not important and can be neglected in the momentum equation.

Type
Chapter
Information
Ionospheres
Physics, Plasma Physics, and Chemistry
, pp. 72 - 112
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Collisions
  • Robert Schunk, Utah State University, Andrew Nagy, University of Michigan, Ann Arbor
  • Book: Ionospheres
  • Online publication: 22 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511635342.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Collisions
  • Robert Schunk, Utah State University, Andrew Nagy, University of Michigan, Ann Arbor
  • Book: Ionospheres
  • Online publication: 22 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511635342.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Collisions
  • Robert Schunk, Utah State University, Andrew Nagy, University of Michigan, Ann Arbor
  • Book: Ionospheres
  • Online publication: 22 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511635342.004
Available formats
×