Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-01T02:52:53.863Z Has data issue: false hasContentIssue false

4 - Probabilistic estimates of climate change: methods, assumptions and examples

from Part I - Climate system science

Published online by Cambridge University Press:  06 December 2010

Haroon S. Kheshgi
Affiliation:
ExxonMobil Research and Engineering, Annandale, NJ 08801
Michael E. Schlesinger
Affiliation:
University of Illinois, Urbana-Champaign
Haroon S. Kheshgi
Affiliation:
ExxonMobil Research and Engineering
Joel Smith
Affiliation:
Stratus Consulting Ltd, Boulder
Francisco C. de la Chesnaye
Affiliation:
US Environmental Protection Agency
John M. Reilly
Affiliation:
Massachusetts Institute of Technology
Tom Wilson
Affiliation:
Electric Power Research Institute, Palo Alto
Charles Kolstad
Affiliation:
University of California, Santa Barbara
Get access

Summary

Introduction to approaches to estimating future climate change

An important approach to assessment of the risks of climate change relies on estimates of future climate based on a variety of methods including: simulation of the climate system; analysis of the sensitivity of climate system simulations to model parameters, parameterizations and models of climate system; and model-based statistical estimation constrained by a variety of historical data. The results of each of these methods are contingent on assumptions. Increasingly sophisticated approaches are being applied, and the implications, or even enumeration, of assumptions is becoming increasingly complex. This chapter gives an overview of the progression of methods used to estimate change in the future climate system and the climate sensitivity parameter. Model-based statistical estimation has the potential of synthesizing information from emerging climate data with models of the climate system to arrive at probabilistic estimates, provided all important uncertain factors can be addressed. A catalog of uncertain factors is proposed including consideration of their importance in affecting climate change estimates. Addressing and accounting for factors in the catalog, beginning with the most important and tractable, is suggested as an orderly way of improving estimates of future climate change.

A variety of methods have been used to generate projections or estimates. The simulations of state-of-the-art models discussed in Section 4.2 are often used as scenarios (plausible representations) of how climate might change in the future (Mearns et al., 2001).

Type
Chapter
Information
Human-Induced Climate Change
An Interdisciplinary Assessment
, pp. 49 - 61
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. L. and Charlson, R. J. (1990). Ice-age dust and sea salt. Nature 345, 393.CrossRefGoogle Scholar
Andronova, N. G. and Schlesinger, M. E. (2001). Objective estimation of the probability density function for climate sensitivity. Journal of Geophysical Research 106, 22605–22611.CrossRefGoogle Scholar
Archer, D. E., Winguth, A., Lea, D. and Mahowald, N. (2000a). What caused the glacial/interglacial atmospheric pCO2 cycles?Reviews of Geophysics 38, 159–189.CrossRefGoogle Scholar
Archer, D. E., Eshel, G., Winguth, A.et al. (2000b). Atmospheric pCO2 sensitivity to the biological pump in the ocean. Global Biogeochemical Cycles 14, 1219.CrossRefGoogle Scholar
Barnett, T. P., Hegerl, G., Knutson, T. and Tett, S. (2000). Uncertainty levels in predicted patterns of anthropogenic climate change. Journal of Geophysical Research 105, 15525–15542.CrossRefGoogle Scholar
CCSP (2004). Strategic Plan for the US Climate Change Science Program. Washington, DC: Climate Change Science Program, US Government.
Cess, R. D., Potter, G. L., Blanchet, J. P.et al. (1990). Intercomparison and interpretation of cloud-climate feedback processes in nineteen atmosphere general circulation models. Journal of Geophysical Research 95, 16601–16615.CrossRefGoogle Scholar
Charlson, R. J., Valero, F. P. J. and Seinfeld, J. H. (2005). In search of balance. Science 308, 806–807.CrossRefGoogle Scholar
Covey, C., Sloan, L. C. and Hoffert, M. I. (1996). Paleoclimate data constraints on climate sensitivity: the paleocalibration method. Climatic Change 32, 165–184.CrossRefGoogle Scholar
Cubasch, U., Meehl, G. A., Boer, G. J. et al. (2001). Projections of future climate change. In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Houghton, J. T., Ding, Y., Griggs, D. J.et al. New York: Cambridge University Press, pp. 525–582.Google Scholar
Eddy, J. A. (1976). The Maunder Minimum. Science 192, 1189–202.CrossRefGoogle ScholarPubMed
Enting, I. G. and Pearman, G. I. (1987). Description of a one-dimensional carbon cycle model calibrated by the techniques of constrained inversion. Tellus 39B, 459–476.CrossRefGoogle Scholar
Enting, I. G., Wigley, T. M. L. and Heimann, M. (1994). Future Emissions and Concentrations of Carbon Dioxide: Key Ocean/Atmosphere/Land Analyses. Australia: CSIRO.Google Scholar
Esper, J., Frank, D. C. and Wilson, R. J. S. (2004). Climate reconstructions: low-frequency ambition and high-frequency ratification. Eos 85, 113, 120.CrossRefGoogle Scholar
Folland, C. K., Karl, T. R., Christy, J. R. et al. (2001). Observed climate variability and change. In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Houghton, J. T., Ding, Y., Griggs, D. J.et al. New York: Cambridge University Press, pp. 99–181.Google Scholar
Forest, C. E., Stone, P. H., Sokolov, A. P., Allen, M. R. and Webster, M. D. (2002). Quantifying uncertainties in climate system properties with the use of recent climate observations. Science 295, 113–117.CrossRefGoogle ScholarPubMed
Gregory, J. M., Ingram, W. J., Palmer, M. A.et al. (2002). An observationally based estimate of climate sensitivity. Journal of Climate 15, 3117–3121.2.0.CO;2>CrossRefGoogle Scholar
Gregory, J. M., Banks, H. T., Stott, P. A., Lowe, J. A. and Palmer, M. D. (2004). Simulated and observed decadal variability in ocean heat content. Geophysical Research Letters L15312; doi: 10.1029/2004GL020258.Google Scholar
Grove, J. M. (1988). The Little Ice Age. New York: Methuen.CrossRefGoogle Scholar
Hansen, J. E. (2004). Defusing the global warming time bomb. Scientific American 290, 69–77.CrossRefGoogle ScholarPubMed
Hansen, J. E. and Nazarenko, L. (2004). Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences USA 101, 423–428.CrossRefGoogle ScholarPubMed
Hansen, J., Bond, T., Cairns, B.et al. (2004). Carbonaceous aerosols in the industrial era. EOS 85, 241, 244.CrossRefGoogle Scholar
Harvey, L. D. D., Gregory, J., Hoffert, M.et al. (1997). An Introduction to Simple Climate Models Used in the IPCC Second Assessment Report. IPCC Technical Paper II. Bracknell, UK: Intergovernmental Panel on Climate Change.Google Scholar
Hoffert, M. I. and Covey, C. (1992). Deriving global climate sensitivity from paleoclimate reconstructions. Nature 360, 573–576.CrossRefGoogle Scholar
Hooss, G., Voss, R., Hasselmann, K., Maier-Reimer, E. and Joos, F. (2001). A nonlinear impulse response model of the coupled carbon-climate system (NICCS). Climate Dynamics 18, 189–202.CrossRefGoogle Scholar
Imbrie, J. and Imbrie, J. Z. (1980). Modeling the climatic response to orbital variations. Science 207, 943–953.CrossRefGoogle ScholarPubMed
IPCC (2000). Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, ed. Nakicenovic, N. and Swart, R.. Cambridge: Cambridge University Press.Google Scholar
IPCC (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Houghton, J. T., Ding, Y., Griggs, D. J.et al. New York: Cambridge University Press.
Jacobson, M. Z. (2002). Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. Journal of Geophysical Research 107(D19), 4410; doi: 10.1029/2001JD001376.CrossRefGoogle Scholar
Jones, P. D. and Wigley, T. M. L. (1990). Global warming trends. Scientific American 263, 84–91.CrossRefGoogle Scholar
Jones, P. D., Parker, D. E., Osborn, T. J. and Briffa, K. R. (2004). Global and hemispheric temperature anomalies – land and marine instrumental records. In Trends: A Compendium of Data on Global Change. Oak Ridge, Tennessee, USA: Oak Ridge National Laboratory.Google Scholar
Joos, F., Plattner, G.-K., Stocker, T. F., Körtzinger, A. and Wallace, D. W. R. (2003). Trends in marine dissolved oxygen: implications for ocean circulation changes and the carbon budget. EOS 84, 197, 201.CrossRefGoogle Scholar
Keeling, C. D. and Whorf, T. P. (2004). Atmospheric CO2 records from sites in the SIO air sampling network. In Trends: A Compendium of Data on Global Change. Oak Ridge, Tennessee, USA: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory.Google Scholar
Kheshgi, H. S. and Jain, A. K. (2003). Projecting future climate change: implications of carbon cycle model intercomparisons. Global Biogeochemical Cycles 17, 1047; doi: 10.29/2001GB001842.CrossRefGoogle Scholar
Kheshgi, H. S. and Lapenis, A. G. (1996). Estimating the uncertainty of zonal paleotemperature averages. Palaeogeography, Palaeoclimatology, Palaeoecology 121, 221–237.CrossRefGoogle Scholar
Kheshgi, H. S. and White, B. S. (1993). Does recent global warming suggest an enhanced greenhouse effect?Climatic Change 23, 121–139.CrossRefGoogle Scholar
Kheshgi, H. S. and White, B. S. (2001). Testing distributed parameter hypotheses for the detection of climate change. Journal of Climate 14, 3464–3481.2.0.CO;2>CrossRefGoogle Scholar
Kheshgi, H. S., Jain, A. K. and Wuebbles, D. J. (1999). Model-based estimation of the global carbon budget and its uncertainty from carbon dioxide and carbon isotope records. Journal of Geophysical Research 104, 31127–31144.CrossRefGoogle Scholar
Lapenis, A. G. (1998). Arrhenius and the Intergovernmental Panel on Climate Change. EOS 79, 271.CrossRefGoogle Scholar
Levitus, S., Antonov, J., Boyer, T. P. and Stephens, C. (2000). Warming of the world ocean. Science 287, 2225–2229.CrossRefGoogle Scholar
Levitus, S., Antonov, J. and Boyer, T. (2005). Warming of the world ocean, 1955–2003. Geophysical Research Letters 32; doi: 10.1029/2004GL021592.CrossRefGoogle Scholar
Liepert, B. G., Feichter, J., Lohmann, U. and Roeckner, E. (2004). Can aerosols spin down the water cycle in a warmer and moister world?Geophysical Research Letters 31; L06207; doi: 10.1029/2003GL019060.CrossRefGoogle Scholar
Mann, M. E. and Jones, P. D. (2003). Global surface temperatures over the past two millennia. Geophysical Research Letters 30, 1820; doi: 10.029/2003GL017814.CrossRefGoogle Scholar
Mann, M. E., Bradley, R. S. and Hughes, M. K. (1998). Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392, 779–787.CrossRefGoogle Scholar
Manning, M., Petit, M., Easterling, D.et al. (eds) (2004). IPCC Workshop on Describing Scientific Uncertainties in Climate Change to Support Analysis of Risk and Options. Boulder, Colorado: IPCC.Google Scholar
Mearns, L. O., Hulme, M., Carter, T. R. et al. (2001). Climate scenario development. In Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Houghton, J. T., Ding, Y., Griggs, D. J.et al. New York: Cambridge University Press, pp. 739–768.Google Scholar
Mitchell, J. F. B., Karoly, D. J., Hegerl, G. C. et al. (2001). Detection of climate change and attribution of causes. In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Houghton, J. T., Ding, Y., Griggs, D. J.et al. New York: Cambridge University Press, pp. 695–738.Google Scholar
Morgan, M. G. and Keith, D. W. (1995). Subjective judgements by climate experts. Environmental Science and Technology 29, 468–476A.Google Scholar
Murphy, J. M., Sexton, D. M. H., Barnett, D. N.et al. (2004). Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430, 768–772.CrossRefGoogle Scholar
Nordhaus, W. D. (1992). An optimal transition path for controlling greenhouse gases. Science 258, 1315.CrossRefGoogle ScholarPubMed
NRC (2000). Reconciling Observations of Global Temperature Change. Washington, DC: National Academy Press.Google Scholar
NRC (2002). Abrupt Climate Change: Inevitable Surprises. Washington, DC: National Academy Press.
Penner, J. E., Andreae, M., Annegarn, H. et al. (2001). Aerosols, their distribution and indirect effects. In Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the IPCC, ed. Houghton, J. T., Ding, Y., Griggs, D. J.et al. New York: Cambridge University Press, pp. 289–348.Google Scholar
Penner, J. E., Zhang, S. Y. and Chuang, C. C. (2003). Soot and smoke aerosol may not warm climate. Journal of Geophysical Research 108(D21); doi: 10.1029/2003JD003409.CrossRefGoogle Scholar
Prentice, C., Farquhar, G., Fasham, M. et al. (2001). The carbon cycle and atmospheric CO2. In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Houghton, J. T., Ding, Y., Griggs, D. J.et al. New York: Cambridge University Press, pp. 183–237.Google Scholar
Ramanathan, V., Crutzen, P. J., Kiehl, J. T. and Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. Science 294, 2119–2124.CrossRefGoogle ScholarPubMed
Ramaswamy, V., Boucher, O., Haigh, J. et al. (2001). Radiative forcing of climate change. In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Houghton, J. T., Ding, Y., Griggs, D. J.et al. New York: Cambridge University Press, pp. 349–416.Google Scholar
Richels, R., Manne, A. S. and Wigley, T. M. L. (2006). Moving beyond concentrations: the challenge of limiting temperature change, ed. Schlesinger, M. E., Chesnaye, F. C., Edmonds, J.et al. Cambridge:Cambridge University Press.Google Scholar
Risbey, J. S. and Kandlikar, M. (2002). Expert assessment of uncertainties in detection and attribution of climate change. Bulletin of the American Meteorological Society 83 1317–1326.CrossRefGoogle Scholar
Santer, B. D., Wigley, T. M. L., Gaffen, D. J., et al. (2000). Interpreting differential temperature trends at the surface and in the lower troposphere. Science 287, 1227–1231.CrossRefGoogle ScholarPubMed
Schneider, S. H. (1989). Global Warming. San Francisco: Sierra Club Books.Google Scholar
Schneider, S. H. (2001). What is “dangerous” climate change?Nature 411, 17–19.CrossRefGoogle ScholarPubMed
Schwartz, S. E. and Andreae, M. O. (1996). Uncertainty in climate change caused by aerosols. Science 272, 1121–1122.CrossRefGoogle Scholar
Sofia, S. (2004). Variations of total solar irradiance produced by structural changes of the solar interior. EOS 85, 217.CrossRefGoogle Scholar
Stainforth, D. A., Aina, T., Christensen, C., et al (2005). Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433, 403–406.CrossRefGoogle ScholarPubMed
Stocker, T. F., Clarke, G. K. C., Le Treut, H. et al. (2001). Physical climate processes and feedbacks. In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Houghton, J. T., Ding, Y., Griggs, D. J.et al. New York: Cambridge University Press, pp. 417–470.Google Scholar
Tans, P. P., Fung, I. Y. and Takahashi, T. (1990). Observational constraints on the global atmospheric CO2 budget. Science 247, 1431–1438.CrossRefGoogle Scholar
Tol, R. S. J. and Vos, A. F. (1998). A Bayesian statistical analysis of the enhanced greenhouse effect. Climatic Change 38, 87–112.CrossRefGoogle Scholar
Tsonis, A. A. and Elsner, J. B. (1989). Testing the global warming hypothesis. Geophysical Research Letters 16, 795–797.CrossRefGoogle Scholar
Storch, H., Zorita, E., Jones, J. M.et al. (2004). Reconstructing past climate from noisy data. Science 306, 679–682.CrossRefGoogle Scholar
Wang, C. (2004). A modeling study on the climate impacts of black carbon aerosols. Journal of Geophysical Research 109(D03106); doi: 10.1029/2003JD004084.Google Scholar
Webster, M. (2003). The curious role of “learning” in climate policy: should we wait for more data?The Energy Journal 23, 97–119.Google Scholar
Wigley, T. M. L. and Raper, S. C. B. (1990). Natural variability of the climate system and detection of the greenhouse effect. Nature 344, 324–327.CrossRefGoogle Scholar
Wigley, T. M. L. and Raper, S. C. B. (2001). Interpretation of high projections for global-mean warming. Science 293, 451–454.CrossRefGoogle ScholarPubMed
Zwiers, F. W. and Zhang, X. (2003). Towards regional climate change detection. Journal of Climate 16, 793–797.2.0.CO;2>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×