Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-21T22:59:22.209Z Has data issue: false hasContentIssue false

2 - Theory for Slow Plane Flow

Published online by Cambridge University Press:  19 November 2009

Get access

Summary

At present there are no constitutive equations that are valid over the entire range of densities and velocities encountered in the storage and handling of granular materials. Most of the available equations fall into one of two regimes: (i) slow flow and (ii) rapid flow. In the slow flow regime, the solids fraction ν is high and forces are exerted across interparticle contacts which last for a long time compared to the contact time in the rapid flow regime. The contacts occur during the sliding and rolling of particles relative to each other. In the rapid flow regime, the solids fraction is low, and momentum is transferred mainly by collisions between particles and by free flight of particles between collisions. Consider the flow of a granular material between two parallel plates. If V is the relative velocity of the plates and H is the gap between them, the stresses are found to be approximately independent of the nominal shear rate γ ≡ V/H in the slow flow regime (small γ and high ν) and to increase strongly with γ in the rapid flow regime (large γ and low ν).

In devices such as hoppers and chutes, both the regimes can occur in different spatial regions, and there can also be transition regions where the nature of the flow changes from one regime to the other. Given a device and a set of operating conditions, it is difficult to determine a priori the type of flow regime that is likely to prevail. However, the following criterion can be used as a very rough guideline (Savage and Hutter, 1989).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×