Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-05T04:54:24.084Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  19 November 2009

Get access

Summary

The flow of granular materials such as sand, snow, coal, and catalyst particles is a common occurrence in natural and industrial settings. Unfortunately, the mechanics of these materials is not well understood. Experiments reveal complex and, at times, unexpected behavior, whereas existing theories are often tentative and do not represent the entire range of observed behavior. Nevertheless, significant advances have been made in the understanding of the mechanics of granular flows, and the time is ripe for an account of experimental observations and theoretical models pertaining to flow in relatively simple geometries.

The importance of understanding granular flows need not be overstated – a large fraction of the materials handled and processed in the chemical, metallurgical, pharmaceutical, and food-processing industries are granular in nature. The flow and transportation of these materials are often critical operations in these processes. In most cases, the design of processes and equipment is based largely on experience and empirical rules. An appreciation of the underlying principles may be helpful in developing better design and operating procedures.

Some of the early investigations of granular flow were motivated by the need to understand the deformation of soils subjected to external loads, such as large structures. The deformation rates in these processes are usually very small. Theoretical models for these slow flows have increased in sophistication and complexity over the years, borrowing concepts from metal plasticity and soil mechanics. A contrasting picture of granular flow has emerged over the last three decades. This is believed to be applicable to rapid flows, where the deformation rates are large.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • K. Kesava Rao, Prabhu R. Nott
  • Book: An Introduction to Granular Flow
  • Online publication: 19 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511611513.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • K. Kesava Rao, Prabhu R. Nott
  • Book: An Introduction to Granular Flow
  • Online publication: 19 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511611513.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • K. Kesava Rao, Prabhu R. Nott
  • Book: An Introduction to Granular Flow
  • Online publication: 19 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511611513.001
Available formats
×