Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-01T15:45:39.999Z Has data issue: false hasContentIssue false

17 - Clinical Aspects of β Thalassemia and Related Disorders

from SECTION FOUR - THE β THALASSEMIAS

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

INTRODUCTION

Clinically, either alone or through their interactions with β-globin structural hemoglobin variants, the β thalassemias are by far the most important forms of thalassemia. Their control and management will pose a major drain on health care resources in the new millennium, particularly in emerging countries in which improvements in sanitation and public health measures have dramatically reduced the number of infant deaths from malnutrition and infection, and hence in which babies with these forms of thalassemia increasingly will survive long enough to present for diagnosis and treatment.

In this chapter we describe the clinical and laboratory features of the severe, transfusion-dependent forms of β thalassemia and their carrier states, and discuss what is known of the diverse family of disorders that fall between these extremes, the β thalassemia intermedias. Readers who wish to learn more about the historical development of this field are referred to the monograph of Weatherall and Clegg. The public health and economic aspects of the thalassemias in the developing countries are discussed in detail by Weatherall et al.

CLASSIFICATION, NOMENCLATURE, AND GENOTYPE/PHENOTYPE RELATIONSHIPS

Despite our increasing knowledge of the molecular pathology of the β thalassemias, it is still useful to retain a broad classification based on their clinical manifestations. The severe, transfusion-dependent forms are designated β thalassemia major, or Cooley anemia, and the symptomless carrier states, thalassemia minor.

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 357 - 416
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Weatherall, DJ, Clegg, JB. Inherited haemoglobin disorders: an increasing global health problem. Bull WHO. 2001;79:704–712.Google Scholar
Weatherall, DJ, Clegg, JB. The Thalassaemia Syndromes. 4th ed. Oxford: Blackwell Science; 2001.CrossRefGoogle Scholar
Weatherall, DJ, Akinyanju, O, Fucharoen, S, Olivieri, NF, Musgrove, P. Inherited disorders of hemoglobin. In: Jamison, DT, Breman, JG, Measham, AR, et al, eds. Disease Control Priorities in Developing Countries. New York, Washington: Oxford University Press and the World Bank; 2006:663– 680.Google ScholarPubMed
Kattamis, C, Ladis, V, Metaxatou-Mavromati A, . Hemoglobins F and A2 in Greek patients with homozygous β and β/δβ thalassemia. In: Schmidt, RM, ed. Abnormal Haemoglobins and Thalassaemia: Diagnostic Aspects. New York: Academic Press; 1975:209–228.Google Scholar
Modell, CB, Berdoukas, VA. The Clinical Approach to Thalassaemia. New York: Grune and Stratton; 1984.Google Scholar
Cao, A. Diagnosis of β-thalassemia intermedia at presentation. Birth Defects: Origin Artic Series. 1988;23:219–226.Google Scholar
Baker, DH. Roentgen manifestations of Cooley's anemia. Ann NY Acad Sci. 1964;119:641–661.CrossRefGoogle ScholarPubMed
Cammisa, M, Sabella, G. Clinico-radiological considerations on the pathogenesis of bone changes in thalassemia major. Nunt Radiol. 1967;33:77–101.Google ScholarPubMed
Middlemis, JH, Raper, AB. Skeletal changes in the haemogobinopathies. J Bone Joint Surg. 1966;48:693.CrossRefGoogle Scholar
Michelson, J, Cohen, A. Incidence and treatment of fractures in thalassemia. J Orthop Trauma. 1988;2:29–32.CrossRefGoogle ScholarPubMed
Modell, CB. Management of thalassaemia major. Br Med Bull. 1976;32:270–276.CrossRefGoogle ScholarPubMed
O'Brien, RT, Pearson, HA, Spencer, RP. Transfusion-induced decrease in spleen size in thalassemia major: documentation by radioisotope scan. J Pediatr. 1972;81:105–107.CrossRefGoogle Scholar
Modell, CB. Total management in thalassaemia major. Arch Dis Child. 1977;52:489–500.CrossRefGoogle ScholarPubMed
Cohen, A, Gayer, E, Mizanin, J. Long-term effect of splenectomy on transfusion requirements in thalassemia major. Am J Hematol. 1989;30:254–256.CrossRefGoogle ScholarPubMed
Olivieri, NF, Brittenham, GM. Iron-chelating therapy and the treatment of thalassemia. Blood. 1997;89:739–761.Google ScholarPubMed
Blendis, LM, Modell, CB, Bowdler, AJ, Williams, R. Some effects of splenectomy in thalassaemia major. Br J Haematol. 1974;28:77–87.CrossRefGoogle ScholarPubMed
Lichtman, HC, Watson, RJ, Feldman, F, Ginsberg, V, Robinson, J. Studies on thalassemia. I. An extracorpuscular defect in thalassemia major. II. The effects of splenectomy in thalassemia major with an associated acquired hemolytic anemia. J Clin Invest. 1953;32:1229–1235.CrossRefGoogle ScholarPubMed
Reemsta, K, Elliot, RH. Splenectomy in Mediterranean anemia: an evaluation of long-term results. Ann Surg. 1956;144:999–1007.Google Scholar
Smith, CH, Schulman, I, Ando, RE, Stern, G. Studies in Mediterranean (Cooley's) anemia. I. Clinical and hematologic aspects of splenectomy with special reference to fetal hemoglobin synthesis. Blood. 1955;10:582–599.Google ScholarPubMed
Whipple, GH, Bradford, WL. Mediterranean disease-thalassemia (erythroblastic anemia of Cooley); associated pigment abnormnalities simulating hemochromatosis. J Pediatr. 1936;9:279–311.CrossRefGoogle Scholar
Letsky, EA, Miller, F, Worwood, M, Flynn, DM. Serum ferritin in children with thalassaemia regularly transfused. J Clin Pathol. 1974;27:652–655.CrossRefGoogle ScholarPubMed
Pippard, MJ, Callender, ST, Weatherall, DJ. Intensive iron-chelation therapy with desferrioxamine in iron loading patients. Clin Sci Mol Med. 1978;54:99–106.Google Scholar
Worwood, M, Cragg, SJ, McLaren, C, Ricketts, C, Economidou, J. Binding of serum ferritin to concanavalia A: patients with homozygous β thalassaemia and transfusional iron overload. Br J Haematol. 1980;46:409–416.CrossRefGoogle Scholar
Baynes, R, Bezwoda, W, Bothwell, T, Khan, Q, Mansoor, N. The non-immune inflammatory response: serial changes in plasma iron, iron-binding capacity, lactoferrin, ferritin and C-reactive protein. Scand J Clin Lab Invest. 1986;46:695–704.CrossRefGoogle ScholarPubMed
Roeser, HP, Halliday, JW, Sizemore, DEA. Serum ferritin in ascorbic acid deficiency. Br J Haematol. 1980;45:457–466.CrossRefGoogle ScholarPubMed
Olivieri, NF, Brittenham, GM, Matsui, D, et al. Iron-chelation therapy with oral deferiprone in patients with thalassemia major. N Engl J Med. 1995;332:918–922.CrossRefGoogle ScholarPubMed
St Pierre, TG, Clark, PR, Chua-Anusorn, W. Measurement and mapping of liver iron concentrations using magnetic resonance imaging. Ann NY Acad Sci. 2005;1054:379–385.CrossRefGoogle ScholarPubMed
Engle, MA. Cardiac involvement in Cooley's anemia. Ann NY Acad Sci. 1964;119:694–702.CrossRefGoogle ScholarPubMed
Kremastinos, DT, Tiniakos, G, Theodorakis, GN, Katritsis, DG, Toutouzas, PK. Myocarditis in beta-thalassemia major. A cause of heart failure. Circulation. 1996;91:66–71.CrossRefGoogle Scholar
Grisaru, D, Rachmilewitz, EA, Mosseri, M, et al. Cardiopulmonary assessment in beta-thalassemia major. Chest. 1990;98:1138–1142.CrossRefGoogle ScholarPubMed
Wasi, P, Fucharoen, S, Younghchaiyud, P, Sonakul, D. Hypoxemia in thalassemia. Birth Defects: Origin Artic Series. 1982;18:213–217.Google ScholarPubMed
Hoeper, MM, Niedermeyer, J, Hoffmeyer, F, Flemming, P, Fabel, H. Pulmonary hypertension after splenectomy. Ann Intern Med. 1999;130:506–509.CrossRefGoogle ScholarPubMed
Smith, CH, Erlandson, ME, Stern, G, Scholman, I. The role of splenectomy in the management of thalassemia. Blood. 1960;15:197–211.Google ScholarPubMed
Orsini, A, Louchet, E, Raybaud, C, Brusquet, Y, Perrimond, H. Les pericardites de la maladie de Cooley. Pediatrie. 1970;15:831–842.Google Scholar
Wasi, P. Adverse effects of splenectomy. J Med Assoc Thailand. 1972;55:1.Google ScholarPubMed
Arnett, EN, Nienhuis, AW, Henry, WL, Ferrans, VJ, Redwood, DR, Roberts, WC. Massive myocardial hemosiderosis: a structure-function conference at the National Heart and Lung Institute. Am Heart J. 1975;90:777–787.CrossRefGoogle ScholarPubMed
Buja, LM, Roberts, WC. Iron in the heart: etiology and clinical significance. Am J Med. 1971;51:209–221.CrossRefGoogle ScholarPubMed
Schellhammer, PF, Engle, MA, Hagstrom, JWC. Histochemical studies of the myocardium and conduction system in acquired iron-storage disease. Circulation. 1967;35:631–637.CrossRefGoogle ScholarPubMed
Howell, J, Wyatt, JP. Development of pigmentary cirrhosis in Cooley's anaemia. Arch Pathol. 1953;55:423–431.Google Scholar
Witzleben, CL, Wyatt, JP. The effect of long-survival on the pathology of thalassaemia major. J Pathol Bacteriol. 1961;82:1–12.CrossRefGoogle ScholarPubMed
Lombardo, T, Tamburino, C, Bartoloni, G, et al. Cardiac iron overload in thalassemic patients: an endomyocardial biopsy study. Ann Hematol. 1995;71:135–141.CrossRefGoogle Scholar
Short, EM, Winkle, RA, Billingham, ME. Myocardial involvement in idiopathic hemochromatosis. Morphologic and clinical improvement following venisection. Am J Med. 1981;70:1275–1279.CrossRefGoogle Scholar
Spirito, P, Lupi, G, Melevendi, C, Vecchio, C. Restrictive diastolic abnormalities identified by Doppler echocardiography in patients with thalassemia major. Circulation. 1990;82:88–94.CrossRefGoogle ScholarPubMed
Liu, P, Olivieri, N. Iron overload cardiomyopathies: new insights into an old disease. Cardiovasc Drugs Ther. 1994;8: 101–110.CrossRefGoogle ScholarPubMed
Hershko, C, Konijn, AM, Link, G. Iron chelators for thalassaemia. Br J Haematol. 1998;101:399–406.CrossRefGoogle ScholarPubMed
Link, G, Pinson, A, Hershko, C. The ability of orally effective iron chelators dimethyl- and diethyl-hydroxypyrid-4-one and of deferoxamine to restore sarcolemmal thiolic enzyme activity in iron-loaded heart cells. Blood. 1994;83:2692–2697.Google ScholarPubMed
Link, G, Tirosh, R, Pinson, A, Hershko, C. Role of iron in the potentiation of anthracycline toxicity: identification of heart cell mitochondria as the site of iron-anthracycline interaction. J Lab Clin Med. 1996;127:272–278.CrossRefGoogle ScholarPubMed
Hershko, C, Link, G, Cabantchik, I. Pathophysiology of iron overload. Ann NY Acad Sci. 1998;850:191–201.CrossRefGoogle ScholarPubMed
Wood, JC, Enriquez, C, Ghugre, N, et al. Physiology and pathophysiology of iron cardiomyopathy in thalassemia. Ann NY Acad Sci. 2005;1054:386–395.CrossRefGoogle ScholarPubMed
Ehlers, KH, Levin, AR, Markenson, AL, et al. Longitudinal study of cardiac function in thalassemia major. Ann NY Acad Sci. 1980;344:397–404.CrossRefGoogle ScholarPubMed
Zurlo, MF, Stefano, P, Borgna-Pignatti, C, et al. Survival and causes of death in thalassaemia major. Lancet. 1989;ii:27–30.CrossRefGoogle Scholar
Jessup, M, Manno, CS. Diagnosis and management of iron-induced heart disease in Cooley's anemia. Ann NY Acad Sci. 1998;850:242–250.CrossRefGoogle ScholarPubMed
Fitchett, DH, Coltart, DJ, Littler, WA, et al. Cardiac involvement in secondary haemochromatosis: a catheter biopsy study and analysis of myocardium. Cardiovas Res. 1980;14:719–724.CrossRefGoogle ScholarPubMed
Qureshi, N, Avasarala, K, Foote, D, Vichinsky, EP. Utility of Holter electrocardiogram in iron-overloaded hemoglobinopathies. Ann NY Acad Sci. 2005;1054:476–480.CrossRefGoogle ScholarPubMed
Bahl, VK, Malhotra, OP, Kumar, D, et al. Noninvasive assessment of systolic and diastolic left ventricular function in patients with chronic severe anemia: a combined M-mode, two-dimensional, and Doppler echocardiographic study. Am Heart J. 1992;124:1516–1523.CrossRefGoogle ScholarPubMed
Henry, WL, Nienhuis, AW, Wiener, M, Miller, DR, Canale, VC, Piomelli, S. Echocardiographic abnormalities in patients with transfusion-dependent anemia and secondary myocardial iron deposition. Am J Med. 1978;64:547–555.CrossRefGoogle ScholarPubMed
Lattanzi, F, Bellotti, P, Picano, E, et al. Quantitative ultrasonic analysis of myocardium in patients with thalassemia major and iron overload. Circulation. 1993;87:748–754.CrossRefGoogle ScholarPubMed
Davis, BA, O'Sullivan, C, Jarritt, PH, Porter, JB. Value of sequential monitoring of left ventricular ejection fraction in the management of thalassemia major. Blood. 2004;104(1):263–269.CrossRefGoogle ScholarPubMed
Liu, P, Henkelman, M, Joshi, J, et al. Quantitation of cardiac and tissue iron by nuclear magnetic resonance in a novel murine thalassemia-cardiac iron overload model. Can J Cardiol. 1996;12:155–164.Google Scholar
Olivieri, NF, Berriman, AM, Davis, SA, Tyler, BJ, Ingram, J, Francombe, WH. Continuous intravenous administration of deferoxamine in adults with severe iron overload. Am J Hematol. 1992;41:61–63.CrossRefGoogle Scholar
Pennell, DJ. T2∗ magnetic resonance and myocardial iron in thalassemia. Ann NY Acad Sci. 2005;1054:373–378.CrossRefGoogle ScholarPubMed
Anderson, LJ, Holden, S, Davis, B, et al. Cardiovascular T2-star (T2∗) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J. 2001;22(23):2171–2179.CrossRefGoogle ScholarPubMed
Westwood, MA, Anderson, LJ, Tanner, MA, Pennell, DJ. The relationship between myocardial iron deposition and left ventricular dysfunction in thalassemia using cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2005;7:46–47.Google Scholar
Derchi, G, Bellone, P, Forni, GL, et al. Cardiac involvement in thalassaemia major: altered atrial natriuretic peptide levels in asymptomatic patients. Eur Heart J. 1992;13:1368–1372.CrossRefGoogle ScholarPubMed
Economou-Petersen, E, Aessopos, A, Kladi, A, et al. Apolipoprotein E epsilon4 allele as a genetic risk factor for left ventricular failure in homozygous beta-thalassemia. Blood. 1998;92:3455–3459.Google ScholarPubMed
Olivieri, NF, Nathan, DG, MacMillan, JH, et al. Survival of medically treated patients with homozygous β thalassemia. N Engl J Med. 1994;331:574–578.CrossRefGoogle ScholarPubMed
Brittenham, GM. Disorders of iron metabolism: deficiency and overload. In: Hoffman, R, Benz, EJ, Shattil, SJ, Furie, B, Cohen, HJ, Silberstein, , eds. Hematology: Basic Principles and Practice. New York: Churchill Livingstone; 1994:492–523.Google Scholar
Borgna-Pignatti, C, Rugolotto, S, Stefano, P, et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica. 2004;89(10):1187–1193.Google ScholarPubMed
Hoyt, RW, Scarpa, N, Wilmott, RW, Cohen, A, Schwartz, E. Pulmonary function abnormalities in homozygous β-thalassemia. J Pediatr. 1986;109:452–455.CrossRefGoogle ScholarPubMed
Keens, TG, O'Neal, MH, Ortega, JA, Hyman, CB, Platzker, ACG. Pulmonary function abnormalities in thalassemia patients on a hypertransfusion program. Pediatrics. 1980;65:1013–1017.Google ScholarPubMed
Santamaria, F, Villa, MP, Werner, B, Cutrera, R, Barreto, M, Ronchetti, R. The effect of transfusion on pulmonary function in patients with thalassemia major. Pediatr Pulmonol. 1994;18:139–143.CrossRefGoogle ScholarPubMed
Bacalo, A, Kivity, S, Heno, N, Greif, J, Topilsky, M. Blood transfusion and lung function in children with thalassemia major. Chest. 1992;101:362–370.CrossRefGoogle ScholarPubMed
Cooper, DM, Mansell, AL, Weiner, MA, et al. Low lung capacity and hypoxemia in children with thalassemia. Am Rev Respir Dis. 1980;121:639–646.Google ScholarPubMed
Factor, JM, Pottipati, SR, Rappaport, I, Rosner, IK, Lesser, ML, Giardini, PJ. Pulmonary function abnormalities in thalassemia major and the role of iron overload. Am J Respir Crit Care Med. 1994;149:1570–1574.CrossRefGoogle ScholarPubMed
Grant, GP, Graziano, Jh, Seaman, C, Mansell, AL. Cardiorespiratory response to exercise in patients with thalassemia major. Am Rev Respir Dis. 1987;136:92–97.CrossRefGoogle ScholarPubMed
Sonakul, D, Pacharee, P, Thakerngpol, K. Pathologic findings in 76 autopsy cases of thalassemia. Birth Defects: Origin Artic Series. 1988;23:157–176.Google ScholarPubMed
Sonakul, D, Suwananagool, P, Sirivaidyapong, P, Fucharoen, S. Distribution of pulmonary thromboembolic lesions in thalassemic patients. Birth Defects: Origin Artic Series. 1988; 23:375–384.Google Scholar
Koren, A, Garty, I, Antonelli, D, Katzuni, E. Right ventricular cardiac dysfunction in β-thalassemia major. Am J Dis Child. 1987;141:93–96.Google ScholarPubMed
Tai, DYH, Wang, YT, Lou, J, Wang, WY, Mak, Kh, Cheng, HK. Lungs in thalassaemia major parients receiving regular transfusion. Eur Respir. 1996;9:1389–1394.CrossRefGoogle Scholar
Aessopos, A, Farmakis, D. Pulmonary hypertension in beta-thalassemia. Ann NY Acad Sci. 2005;1054:342–349.CrossRefGoogle ScholarPubMed
Michaeli, J, Mittelman, M, Grisaru, D, Rachmilewitz, EA. Thromboembolic complications in beta thalassemiua major. Acta Haematol. 1992;87:71–74.CrossRefGoogle ScholarPubMed
Borgna-Pignatti, C, Carneli, V, Caruso, V, et al. Thromboembolic events in beta thalassemia major: an Italian multicenter study. Acta Haematol. 1998;99:76–79.CrossRefGoogle Scholar
Cappellini, MD, Grespi, E, Cassinerio, E, Bignamini, D, Fiorelli, G. Coagulation and splenectomy: an overview. Ann NY Acad Sci. 2005;1054:317–324.CrossRefGoogle ScholarPubMed
Barker, JE, Wandersee, NJ. Thrombosis in heritable hemolytic disorders. Curr Opin Hematol. 1999;6:71–75.CrossRefGoogle ScholarPubMed
Giordano, P, Galli, M, Del Vecchio, GC, et al. Lupus anticoagulant, anticardiolipin antibodies and hepatitis C virus infection in thalassaemia. Br J Haematol. 1998;102:903–906.CrossRefGoogle ScholarPubMed
Sanctis, V, Katz, M, Vullo, C, Bagni, B, Ughi, M, Wonke, B. Effect of different treatment regimes on linear growth and final height in β-thalassaemia major. Clin Endocrinol. 1994;40:791–798.CrossRefGoogle ScholarPubMed
Modell, CB, Beck, J. Long-term desferrioxamine therapy in thalassemia. Ann NY Acad Sci. 1974;232:201–210.CrossRefGoogle ScholarPubMed
Borgna-Pignatti, C, Stafano, P, Zonta, L, et al. Growth and sexual maturation in thalassemia major. J Pediatr. 1985;106:150–155.CrossRefGoogle ScholarPubMed
Kattamis, C, iakopoulou T, Kattamis, A. Growth and development in children with thalassaemia major. Acta Paediatr Scand. 1990;366:111.CrossRefGoogle ScholarPubMed
Costin, G, Kogut, MD, Hyman, CB, Ortega, JA. Endocrine abnormalities in thalassemia major. Am J Dis Child. 1979;133:497–502.CrossRefGoogle ScholarPubMed
Kletsky, OA, Costin, G, Marrs, RP, Bernstein, G, March, CM, Mishell, DR. Gonadotrophin insufficiency in patients with thalassemia major. J Clin Endocrinol Metab. 1979;48:901–905.CrossRefGoogle Scholar
Landau, H, Matoth, I, Landau-Cordova, Z, Goldfarb, A, Rachmilewitz, EA, Glaser, B. Cross-sectional and longitudinal study of the pituitary-thyroid axis in patients with thalassaemia major. Clin Endocrinol. 1993;38:55–61.CrossRefGoogle ScholarPubMed
Wang, C, Tso, SC, Todd, D. Hypogonadotropic hypogonadism in severe beta-thelassemia: effect of chelation and pulsatile gonadotrophin-releasing hormone therapy. J Clin Endocrinol Metab. 1989;68:511–516.CrossRefGoogle Scholar
Herington, AC, Werthe, GA, Matthews, RN, Burger, HG. Studies on the possible mechanism for deficiency of nonsuppressible insulin-like activity in thalassemia major. J Clin Endocrinol Metab. 1981;52:393–398.CrossRefGoogle ScholarPubMed
Saenger, P, Schwartz, E, Markenson, AL, et al. Depressed serum somatomedin activity in beta-thalassemia. J Pediatr. 1980;96:214–218.CrossRefGoogle ScholarPubMed
Werther, GA, Matthews, RN, Burger, HG, Herington, AC. Lack of response of nonsuppressible insulin-like activity to short term administration of human growth hormone in thalassemia major. J Clin Endocrinol Metab. 1981;53:806–809.CrossRefGoogle ScholarPubMed
Pintor, C, Cella, SG, Manso, P, et al. Impaired growth hormone (GH) response to GH-releasing hormone in thalassemia major. J Clin Endocrinol Metab. 1986;62:263–267.CrossRefGoogle ScholarPubMed
Shehadeh, N, Hazani, A, Rudolf, MCJ, Benderly, A, Hochberg, Z. Neurosecretory dysfunction of growth hormone secretion in thalassaemia major. Acta Paediatr Scand. 1990;79:790–795.CrossRefGoogle Scholar
Leger, J, Girot, R, Crosnier, H, Postel-Vinay, MC, Rappaport, R. Normal growth hormone (GH) response to GH-releasing hormone in children with thalassemia major before puberty: a possible age-related effect. J Clin Endocrinol Metab. 1989;69:453–456.CrossRefGoogle ScholarPubMed
Masala, A, Meloni, T, Gallisai, D, et al. Endocrine functioning in multitransfused prepubertal patients with homozygous beta-thalassemia. J Clin Endocrinol Metab. 1984;58:667–670.CrossRefGoogle ScholarPubMed
Tolis, G, Politis, C, Kontopoulou, I, et al. Pituitary somatotropic and corticotropic function in patients with β-thalassaemia on iron chelation therapy. Birth Defects. 1988;23:449–452.Google Scholar
Cavallo, L, Gurrado, R, Gallo, F, Zacchino, C, Mattia, D, Tato, L. Growth deficiency in polytransfused beta-thalassaemia patients is not growth hormone dependent. Clin Endocrinol. 1997;46:701–706.CrossRefGoogle Scholar
Roth, C, Pekrun, A, Bartz, M, et al. Short stature and failure of pubertal development in thalassaemia major: evidence for hypothalamic neurosecretory dysfunction of growth hormone secretion and defective pituitary gonadotropin secretion. Eur J Pediatr. 1997;156:777–783.CrossRefGoogle ScholarPubMed
Low, LC, Kwan, EYW, Lim, YJ, Lee, ACW, Tam, CF, Lam, KSL. Growth hormone treatment of short Chinese children with β-thalassaemia major without growth hormone deficiency. Clin Endocrinol. 1995;42:359–363.CrossRefGoogle Scholar
Scacchi, M, Damesi, L, Martin, M, et al. Treatment with biosynthetic growth hormone of short thalassaemic patients with impaired growth hormone secretion. Clin Endocrinol. 1991;35:335–339.CrossRefGoogle ScholarPubMed
McIntosh, N. Endocrinopathy in thalassaemia major. Arch Dis Child. 1976;51:195–201.CrossRefGoogle ScholarPubMed
Sklar, CA, Lew, LQ, Yoon, DJ, David, R. Adrenal function in thalassemia major following long-term treatment with multiple transfusions and chelation therapy. Evidence for dissociation of cortisol and adrenal androgen secretion. Am J Dis Child. 1987;141:327–330.CrossRefGoogle ScholarPubMed
Arcasoy, A, Cavdar, A, Cin, S, et al. Effects of zinc supplementation on linear growth in beta thalassemia (a new approach). Am J Hematol. 1987;24:127–136.CrossRefGoogle Scholar
Vassilopoulou-Sellin, R, Oyedeji, CO, Foster, PL, Thompson, MM, Saman, NA. Haemoglobin as a direct inhibitor of cartilage growthin vitro. Horm Metab Res. 1989;21:11.CrossRefGoogle ScholarPubMed
Rodda, CP, Reid, ED, Johnson, S, Doery, J, Matthews, R, Bowden, DK. Short stature in homozygous β-thalassaemia is due to disproportionate truncal shortening. Clin Endocrinol. 1995;42:587–592.CrossRefGoogle ScholarPubMed
Hatori, M, Sparkman, J, Teixeira, CC, et al. Effects of deferoxamine on chondrocyte alkaline phosphatase activity: pro-oxidant role of deferoxamine in thalassemia. Calif Tissue Intl. 1995;57:229–236.CrossRefGoogle Scholar
,Italian working Group on Endocrine Complications in Non-endocrine Diseases. Multicentre study on prevalence of endocrine complications in thalassaemia major. Clin Endocrinol. 1995;42:581–586.CrossRefGoogle Scholar
Jensen, CE, Tuck, SM, Old, J, et al. Incidence of endocrine complications and clinical disease severity related to genotype analysis and iron overload in patients with β-thalassaemia. Eur J Haematol. 1997;59:76–81.CrossRefGoogle ScholarPubMed
Chatterjee, R, Katz, M, Cox, TF, Porter, JB. A prospective study of the hypothalmic-pituitary axis in thalassaemic patients who developed secondary amenorrhoea. Clin Endocrinol. 1993;39:287–296.CrossRefGoogle Scholar
Sanctis, V, Vullo, C, Katz, M, Wonke, B, Tanas, R, Bagni, B. Gonadal function in patients with beta thalassaemia major. J Clin Pathol. 1988;41:133–137.CrossRefGoogle ScholarPubMed
Maurer, HS, Lloyd-Still, JD, Ingrisano, C, Gonzalez-Crussi, F, Honig, CR. A prospective evaluation of iron chelation therapy in children with severe β-thalassemia: a six-year study. Am J Dis Child. 1988;142:287–292.CrossRefGoogle ScholarPubMed
Bergeron, C, Kovacs, K. Pituitary siderosis. A histologic, immunocytologic, and ultrastructural study. Am J Pathol. 1978;93:295–309.Google ScholarPubMed
Chatterjee, R, Katz, M, Oatridge, A, Bydder, GM, Porter, JB. Selective loss of anterior pituitary volume with severe pituitary-gonadal insufficiency in poorly compliant male thalassemic patients with pubertal arrest. Ann NY Acad Sci. 1998;850:479–482.CrossRefGoogle ScholarPubMed
Chatterjee, R, Katz, M. Evaluation of gonadotrophin insufficiency in thalassemic boys with pubertal failure: spontaneous versus provocative test. J Pediatr Endocrinol Metab. 2001;14(3):301–312.CrossRefGoogle ScholarPubMed
Canale, VC, Steinherz, P, New, M, Erlandson, M. Endocrine function in thalassemia major. Ann NY Acad Sci. 1974; 232:333–345.CrossRefGoogle ScholarPubMed
Berkovitch, M, Bistritzer, T, Milone, SD, Perlman, K, Kucharczyk, W, Olivieri, NF. Iron deposition in the anterior pituitary in homozygous beta-thalassemia: MRI evaluation and correlation with gonadal function. J Pediatr Endocrinol Metab. 2000;13(2):179–184.CrossRefGoogle ScholarPubMed
Costin, G, Kogut, MD, Hyman, C, Ortega, JA. Carbohydrate metabolism and pancreatic islet-cell function in thalassemia major. Diabetes. 1977;26:230–240.CrossRefGoogle ScholarPubMed
Sanctis, V, Zurlo, MG, Senesi, E, Boffa, C, Cavallo, L, Di Gregorio, F. Insulin dependent diabetes in thalassaemia. Arch Dis Child. 1988;63:58–62.CrossRefGoogle ScholarPubMed
Ellis, JT, Schulman, I, Smith, CH. Generalized siderosis with fibrosis of liver and pancreas in Cooley's (Mediterranean) anemia; with observations on the pathogenesis of the siderosis and fibrosis. Am J Pathol. 1954;30:287–309.Google ScholarPubMed
Lassman, MN, Genel, M, Wise, JK, Hendler, R, Felig, P. Carbohydrate homeostasis and pancreatic islet cell function in thalassemia. Blood. 1974;80:65–69.Google Scholar
Saudek, CD, Hemm, RM, Peterson, CM. Abnormal glucose tolerance in beta-thalassemia major. Metabolism. 1977;26:43–52.CrossRefGoogle ScholarPubMed
Zuppinger, K, Molinari, B, Hirt, A, et al. Increased risk of diabetes mellitus in beta-thalassaemia major. Hel Paediat Acta. 1979;4:197–207.Google Scholar
Cavello-Perin, P, Pacini, B, Cerutti, F, et al. Insulin resistance and hyperinsulinemia in homozygous β-thalassemia. Metabolism. 1995;44:281–286.CrossRefGoogle Scholar
Dandona, P, Hussain, MAM, Varghese, Z, Politis, D, Flynn, DM, Hoffbrand, AV. Insulin resistance and iron overload. Ann Clin Biochem. 1983;20:77–79.CrossRefGoogle ScholarPubMed
Dmochowski, K, Finegood, DT, Francombe, WH, Tyler, B, Zinman, B. Factors determining glucose tolerance in patients with thalassemia major. J Clin Endocrinol Metab. 1993; 77:478–483.Google ScholarPubMed
Merkel, PA, Simonson, DC, Amiel, SA, et al. Insulin resistance and hyperinsulinemia in patients with thalassemia major treated by hypertransfusion. N Engl J Med. 1988;318:809–814.CrossRefGoogle ScholarPubMed
Sanctis, V, D'Ascola, G, Wonke, B. The development of diabetes mellitus and chronic liver disease in long term chelated β-thalassaemic patients. Postgrad Med J. 1986;62:831–836.CrossRefGoogle ScholarPubMed
Olivieri, NF, Ramachandran, S, Tyler, B, Bril, V, Moffatt, K, Daneman, D. Diabetes mellitus in older patients with thalassemia major: relationship to severity of iron overload and presence of microvascular complications. Blood. 1990;76:72a.Google Scholar
Karahanyan, E, Stoyaniva, A, Moumdzhiev, I, Ivanov, I. Secondary diabetes in children with thalassaemia major (homozygous thalassemia). Folia Med Plovdiv. 1994;35:29–34.Google Scholar
Soliman, AT, el-Banna, N, Al Salmi, I, Asfour, M. Insulin and glucagon responses to provocation with glucose and arginine in prepubertal children with thalassemia major before and after long-term blood transfusion. J Trop Pediatr. 1996;42:291–296.CrossRefGoogle ScholarPubMed
Lassman, MN, O'Brien, RT, Pearson, HA, et al. Endocrine evaluation in thalassemia major. Ann NY Acad Sci. 1974;232:226.CrossRefGoogle ScholarPubMed
Flynn, DM, Fairney, A, Jackson, D, Clayton, BE. Hormonal changes in thalassemia major. Arch Dis Child. 1976;51:828–836.CrossRefGoogle Scholar
Magro, S, Puzzonia, P, Consarino, C, et al. Hypothyroidism in patients with thalassemia syndromes. Acta Haematol. 1990;84:72–76.CrossRefGoogle ScholarPubMed
Sabato, A, Sanctis, V, Atti, G, Capra, L, Bagni, L, Vullo, C. Primary hypothyroidism and the low T3 syndrome in thalassemia major. Arch Dis Child. 1983;58:120–127.CrossRefGoogle Scholar
Grundy, RG, Woods, RA, Savage, MO, Evans, JPM. Relationship of endocrinopathy to iron chelation status in young patients with thalassaemia major. Arch Dis. Child. 1994;71:128–132.CrossRefGoogle ScholarPubMed
Vullo, C, Sanctis, V, Katz, M, et al. Endocrine abnormalities in thalassemia. Ann NY Acad Sci. 1990;612:293–310.CrossRefGoogle ScholarPubMed
Sanctis, V, Vullo, C, Bagni, B, Chiccoli, L. Hypoparathyroidism in β-thalassemia major. Clinical and laboratory observations in 24 patients. Acta Haematol. 1992;88:105–108.Google ScholarPubMed
Gertner, JM, Broadus, AE, Anast, CS, Grey, M, Pearson, H, Genel, M. Impaired patathyroid response to induced hypocalcemia in thalassemia major. J Pediatr. 1979;95:210–213.CrossRefGoogle Scholar
Gabrielle, O. Hypoparathyroidism associated with thalassemia. Southern Med J. 1971;64:115–116.CrossRefGoogle Scholar
Oberklaid, F, Seshadri, R. Hypoparathyroidism and other endocrine dysfunction complicating thalassaemia major. Med J Aust. 1975;1:304–306.Google ScholarPubMed
Pratico, G, Di Gregorio, F, Caltabiano, L, Palano, GM, Caruso-Nicoletti M, . Calcium phosphate metabolism in thalassemia. Pediatr Med Chir. 1998;20:265–268.Google ScholarPubMed
Kuo, B, Zaino, E, Roginsky, MS. Endocrine function in thalassemia. J Clin Endocrinol Metab. 1968;28:805–808.CrossRefGoogle ScholarPubMed
Johnston, FE, Roseman, JM. The effects of more frequent transfusions upon bone loss in thalassemia major. Pediatr Res. 1967;1:479–483.CrossRefGoogle ScholarPubMed
Piomelli, S, Danoff, SJ, Becker, MH, Lipera, MJ, Travis, SF. Prevention of bone malformations and cardiomegaly in Cooley's anemia by early hypertransfusion regimen. Ann NY Acad Sci. 1969;165:427.CrossRefGoogle ScholarPubMed
Herrick, RT, Davis, GL. Thalassemia major and non-union of pathologic fractures. J LA State Med Sci. 1975;127:341–347.Google ScholarPubMed
Wolman, IJ. Transfusion therapy in Cooley's anemia: growth and health as related to long-range hemoglobin levels, a progress report. Ann NY Acad Sci. 1964;119:736–747.CrossRefGoogle ScholarPubMed
Tas, I, Smith, P, Cohen, T. Metric and morphologic characteristics of the dentition in beta thalassaemia major in man. Arch Oral Biol. 1976;21:583–586.CrossRefGoogle ScholarPubMed
Hazell, JW, Modell, CB. E.N.T. complications in thalassaemia major. J Laryngol Otol. 1976;90:877–881.CrossRefGoogle ScholarPubMed
Anapliotou, ML, Kastanias, IT, Psara, P, Evangelou, EA, Liparaki, M, Dimitriou, P. The contribution of hypogonadism to the development of osteoporosis in thalassaemia major: new therapeutic approaches. Clin Endocrinol. 1995;42:279–287.CrossRefGoogle ScholarPubMed
Fabbri, G, Petraglia, F, Segre, A, et al. Reduced spinal bone density in young women with amenorrhoea. Eur J Obstet Gynecol Reprod Biol. 1991;41:117–122.CrossRefGoogle ScholarPubMed
Giardina, PJ, Schneider, R, Lesser, M, et al. Abnormal bone metabolism in thalassemia. In: Ando, S, Brancati, C, eds. Endocrine Disorders in Thalassemia. Berlin: Springer; 1995:38–46.Google Scholar
Vichinsky, EP. The morbidity of bone disease in thalassemia. Ann NY Acad Sci. 1998;850:344–348.CrossRefGoogle ScholarPubMed
Wonke, B. Annotation: Bone disease in β-thalassaemia major. Br J Haematol. 1998;103:897–901.CrossRefGoogle Scholar
Jensen, CE, Tuck, SM, Agnew, JE, et al. High prevalence of low bone mass in thalassaemia major. Br J Haematol. 1998;103:911–915.CrossRefGoogle ScholarPubMed
Giuzio, E, Bria, M, Bisconte, MG, et al. Osteoporosis in patients affected with thalassemia. Our experience. Chir Organ Mov. 1991;76:369–374.Google ScholarPubMed
Eisman, JA. Vitamin D receptor gene variants: implications for therapy. Curr Opin Genet Dev. 1996;6:361–365.CrossRefGoogle ScholarPubMed
Rees, DC, Basran, RK, Hum, B, Peto, TEA, Weatherall, DJ, Olivieri, NF. Genetic influences on bone disease in thalassemia. Blood. 1998;92, Suppl 1:532a.Google Scholar
Hanslip, JI, Prescott, E, Lalloz, M, Layton, M, Wonke, B. The role of the Sp1 polymorphism in the development of osteoporosis in patients with thalassaemia major. Br J Haematol. 1998;101:26.Google Scholar
Origa, R, Fiumana, E, Gamberini, MR, et al. Osteoporosis in beta-thalassemia: Clinical and genetic aspects. Ann NY Acad Sci. 2005;1054:451–456.CrossRefGoogle ScholarPubMed
Kalef-Exra, J, Challa, A, Chaliasos, N, et al. Bone minerals in beta-thalassemia minor. Bone. 1995;16:651–655.CrossRefGoogle Scholar
Valassi-Adam, H, Nassika, E, Kattamis, C, Matsaniotis, N. Immunoglobulin levels in children with homozygous beta-thalassemia. Acta Paediatr Scand. 1976;65:23–27.CrossRefGoogle ScholarPubMed
Vento, S, Cainelli, F, Cesario, F. Infections and thalassaemia. Lancet Infect Dis. 2006;6(4):226–233.CrossRefGoogle ScholarPubMed
Rahav, G, Volach, V, Shapiro, M, Rund, D, Rachmilewitz, EA, Goldfarb, A. Severe infections in thalassaemic patients: prevalence and predisposing factors. Br J Haematol. 2006;133(6):667–674.CrossRefGoogle ScholarPubMed
Smith, CH, Erlandson, ME, Stern, G, Hilgartner, MW. Postsplenectomy infection in Cooley's anemia. An appraisal of the problem in this and other blood disorders, with consideration of prophylaxis. N Engl J Med. 1962;266:737–743.CrossRefGoogle ScholarPubMed
Smith, CH, Erlandson, ME, Stern, G, Hilgartner, H. Postsplenectomy infection in Cooley's anemia. Ann NY Acad Sci. 1964;119:748–757.CrossRefGoogle ScholarPubMed
Eraklis, AJ, Kevy, SV, Diamond, LK, Gross, RE. Hazard of overwhelming infection after splenectomy in childhood. N Engl J Med. 1967;276:1225–1229.CrossRefGoogle ScholarPubMed
Erikson, WD, Burgert, EO, Lynn, HB. The hazard of infection following splenectomy in children. Am J Dis Child. 1968;116:1–12.Google Scholar
Green, NS. Yersinia infections in patients with homozygous beta-thalassemia associated with iron overload and its treatment. Pediatr Hematol Oncol. 1992;9:247–254.CrossRefGoogle ScholarPubMed
Gallant, T, Freedman, MH, Vellend, H, Francombe, WH. Yersinia sepsis in patients with iron overload treated with deferoxamine [letter]. N Engl J Med. 1986;314:1643.Google Scholar
Kelly, DA, Price, E, Jani, B, Wright, V, Rossiter, M, Walker-Smith, JA. Yersinia entercolitis in iron overload. J Pediatr Gastroenterol Nutr. 1987;6:643–645.CrossRefGoogle Scholar
Robins-Browne, RM, Prpic, JK. Effects of iron and desferrioxamine in infections with Yersinia enterocolitica. Infect Immunol. 1985;47:774–779.Google ScholarPubMed
Mazzoleni, G, Sa, D, Gately, J, Riddell, RH. Yersinia entercolotica infection with ileal perforation associated with iron overload and deferoxamine therapy. Dig Dis Sci. 1991;36:1154–1160.CrossRefGoogle ScholarPubMed
Schanfield, MS, Scalise, G, Economidou, I, Modell, CB, Bate, C, Zuckerman, AJ. Immunogenetic factors in thalassemia and hepatitis B infection. A multicentre study. Dev Biol Stand. 1975;30:257–269.Google ScholarPubMed
Politis, C. Complications of blood transfusion in thalassemia. In: Buckner, CD, Gale, RP, Lucarelli, G, eds. Advances and Controversies in Thalassemia Therapy: Bone Marrow Transplantation and Other Approaches. New York: Alan R. Liss; 1989:67–76.Google Scholar
Bozkurt, G, Dikengil, T, Alimoglu, O, et al. Hepatitis C among Turkish Cypriot thalassemic patients. In: Fifth International Conference on Thalassemias and Hemaglobinopathies; 1993; Nicosia, Cyprus; 1993:176.Google Scholar
Cancado, RD, Guerra, LGM, Rosenfeld, MOJA, et al. Prevalence of hepatitis C virus antibody in beta thalassemic patients. In: Fifth International Conference on Thalassemia and Hemoglobinopathies; 1993; Nicosia, Cyprus; 1993:176.Google Scholar
Cao, A, Galanello Renzo, M, Rosatelli, MC, Argiolu, F, Virgilis, S. Clinical experience of management of thalassemia: the Sardinian experience. Semin Hematol. 1996;33:66–75.Google ScholarPubMed
Kaur, P, Kaur, B. Thalassemia in Penang. In: First Asian Congress on Thalassemia; 1995; Penang, Malaysia; 1995:70–72.Google Scholar
Lau, YL, Chow, CB, Lee, AC, et al. Hepatitis C virus antibody in multiply transfused Chinese with thalassaemia. Bone Marrow Transplant. 1993;12:26–28.Google ScholarPubMed
Wonke, B, Hoffbrand, VA, Brown, D, Dusheiko, G. Antibody to hepatitis C virus in multiply transfused patients with thalassaemia major. J Clin Pathol. 1990;43:638–640.CrossRefGoogle ScholarPubMed
Wonke, B, Hoffbrand, AV, Bouloux, P, Jensen, C, Telfer, P. New approaches to the management of hepatitis and endocrine disorders in Cooley's anemia. Ann NY Acad Sci. 1998;850:232–241.CrossRefGoogle ScholarPubMed
Clemente, MG, Congia, M, Lai, ME, et al. Effect of iron overload on the response to recombinant interferon-alfa treatment in transfusion-dependent patients with thalassemia major and chronic hepatitis C. J Pediatr. 1994;125:123–128.CrossRefGoogle ScholarPubMed
Olynyk, JK, Bacon, BR. Hepatitis, C. Recent advances in understanding and management. Postgrad Med J. 1995;98:79–81.CrossRefGoogle ScholarPubMed
Rubin, RB, Barton, AL, Banner, BF, Bonkovsky, HL. Iron and chronic viral hepatitis: emerging evidence for an important interaction. Dig Dis. 1995;13:223–238.CrossRefGoogle ScholarPubMed
Psichogiou, M, Tzala, E, Boletis, J, et al. Hepatitis E virus infection in individuals at high risk of transmission of non-A, non-B hepatitis and sexually transmitted diseases. Scand J Infect Dis. 1996;28:443–445.CrossRefGoogle ScholarPubMed
al-Fawaz, I, al-Rasheed, S, al-Mugeiren, M, al-Salloum, A, al-Sohaibani, M, Ramia, S. Hepatitis E virus infection in patients from Saudi Arabia with sickle cell anaemia and β-thalassemia major: possible transmission by blood transfusion. J Virol Hepatol. 1996;3:203–205.CrossRefGoogle ScholarPubMed
Stransky, J. The discovery of hepatitis G virus. Cas Lek Cesk. 1996;135:99–101.Google ScholarPubMed
Sampietro, M, Lupica, L, Perrero, L, et al. The expression of uridine diphosphate glucuronosyltransferase gene is a major determinant of bilirubin level in heterozygous β-thalassaemia and in glucose-6-phosphate dehydrogenase deficiency. Br J Haematol. 1997;99:437–439.CrossRefGoogle ScholarPubMed
Chung, JL, Kao, JH, Kong, MS, Yang, CP, Hung, IJ, Lin, TY. Hepatitis C and G virus infections in polytransfused children. Eur J Pediatr. 1997;156:546–549.CrossRefGoogle Scholar
Prati, D, Zanella, A, Bosoni, P, et al. The incidence and natural course of transfusion-associated GB virus C/hepatitis G virus infection in a cohort of thalassemic patients. The Cooleycare Cooperative Group. Blood. 1998;91:774–777.Google Scholar
Zemel, R, Dickman, R, Tamary, H, Bukh, J, Zaizov, R, Tur-Kaspa, R. Viremia, genetic heterogeneity, and immunity to hepatitis G/GB-C virus in multiply transfused patients with thalassemia. Transfusion. 1998;38:301–306.CrossRefGoogle ScholarPubMed
Poovorawan, Y, Theamboonlers, A, Chongsrisawat, V, Jantaradsamee, P. Prevalence of infection with hepatitis G virus among various groups in Thailand. Ann Trop Med Parasitol. 1998;92:89–95.CrossRefGoogle ScholarPubMed
Luban, NL. Transfusion safety: Where are we today?Ann NY Acad Sci. 2005;1054:325–341.CrossRefGoogle ScholarPubMed
Bertozzi, S, Padian, NS, Wegbreit, J, et al. HIV/AIDS Prevention and Treatment. In: Jamison, DT, Breman, JG, Measham, AR, et al., eds. Disease Control Priorities in Developing Countries. New York, Washington: Oxford University Press and the World Bank; 2006:331–370.Google ScholarPubMed
Manconi, PE, Dessi, C, Sanna, G, et al. Human immunodeficiency virus infection in multi-transfused patients with thalassaemia major. Eur J Pediatr. 1998;147:304–307.CrossRefGoogle Scholar
Girot, R, Lefrère, JJ, Schettini, F, Kattamis, C, Ladis, V. HIV infection and AIDS in thalassemia. In: Rebulla, P, Fessas, P, eds. Thalassemia 1990 5th Annual Meeting of the COOLEYCARE Group, 1991. Athens: Centro trasfusionale Ospedale Naggiore Policlinico Dio Milano Editore; 1991:69–73.Google Scholar
Martino, M, Quarta, G, Melpignano, A, et al. Antibodies to HTLV III and the lymphadenopathy syndrome in multi-transfused beta-thalassemia patients. Vox Sang. 1985;41:230–233.CrossRefGoogle Scholar
Politis, C, Roumeliotou, A, Germenis, A, Papaevangelou, G. Risk of acquired immune deficiency syndrome in multi-transfused patients with thalassemia major. Plasma Ther Transfus Technol. 1986;7:41–43.Google Scholar
Zanella, A, Mozzi, F, Ferroni, P, Sirchia, G. Anti-HTLV III screening in multi-transfused thalassaemia patients. Vox Sang. 1986;50:192.Google Scholar
Robert-Guroff, M, Giardina, PJ, Robey, WG, et al. HTLV III neutralizing antibody development in transfusion-dependent seropositive patients with β-thalassemia. J Immunol. 1987;138:3731–3736.Google ScholarPubMed
Jullien, AM, Courouce, AM, Richard, D, Favre, M, Lefrere, JJ, Habibi, B. Transmission of HIV blood from seronegative donors. Lancet. 1988;2:1248–1249.CrossRefGoogle ScholarPubMed
Costagliola, DG, Girot, R, Rebulla, P, Lefrère, J-J. Incidence of AIDS in HIV-1 infected thalassaemia patients. Br J Haematol. 1992;81:109–112.CrossRefGoogle ScholarPubMed
Sen, S, Mishra, NM, Giri, T, et al. Acquired immunodeficiency syndrome (AIDS) in multitransfused children with thalassemia. Indian Pediatr. 1993;30:455–460.Google ScholarPubMed
Kumar, RM, Uduman, S, Hamo, IM, Morrison, J, Khaurana, AK. Incidence and clinical manifestations of HIV-1 infection in multitransfused thalassaemia Indian children. Trop Geogr Med. 1994;46:163–166.Google ScholarPubMed
Kumar, RM, Khuranna, A. Pregnancy outcome in women with beta-thalassemia major and HIV infection. Eur J Obstet Gynecol Reprod Biol. 1998;77:163–169.CrossRefGoogle ScholarPubMed
Choudhury, NV, Dubey, ML, Jolly, JG, Kalra, A, Mahajan, RC, Gangury, NK. Post-transfusion malaria in thalassaemia patients. Blut. 1990;61:314–316.CrossRefGoogle ScholarPubMed
Looareesuwan, S, Suntharasamai, P, Webster, HK, Ho, M. Malaria in splenectomized patients: report of four cases and review. Clin Infect Dis. 1993;16:361–366.CrossRefGoogle ScholarPubMed
Olivieri, NF, Muraca, GM, O'Donnell, A, Premawardhena, A, Fisher, C, Weatherall, DJ. Studies in haemoglobin E beta-thalassaemia. Br J Haematol. 2008;141:388–397.CrossRefGoogle ScholarPubMed
Grinberg, LN, Rachmilewitz, EA. Oxidative stress in β-thalassemic red blood cells and potential use of antioxidants. In: Beuzard, Y, Lubin, B, Rosa, J, eds. Sickle Cell Disease and Thalassaemia: New Trends in Therapy. Colloque INSERN/John Libby Eurotext Ltd.; 1995:519–524.Google Scholar
Gutteridge, JMC, Halliwell, B. Iron toxicity and oxygen radicals. Clin Haematol. 1989;2:195–256.Google ScholarPubMed
Tsukamoto, H, Horne, W, Kamimura, S, et al. Experimental liver cirrhosis induced by alcohol and iron. J Clin Invest. 1995;96:620–630.CrossRefGoogle ScholarPubMed
Iancu, TC, Neustein, HB, Landing, BH. The liver in thalassaemia major: ultrastructural observations. In: Iron Metabolism Ciba Symposium No 51. Amsterdam: Excerpta Medica; 1977:293–316.Google Scholar
Parkes, JG, Randell, EW, Olivieri, NF, Templeton, DM. Modulation by iron loading and chelation of the uptake of non-transferrin-bound iron by human liver cells. Biochim Biophys Acta. 1995;1243:373–380.CrossRefGoogle ScholarPubMed
Frumin, AM, Waldman, S, Morris, P. Exogenous hemochromatosis in Mediterranean anemia. Pediatrics. 1952;9:290–294.Google ScholarPubMed
Aldouri, MA, Wonke, B, Hoffbrand, AV, et al. Iron state and hepatic disease in patients with thalassaemia major treated with long term subcutaneous desferrioxamine. J Clin Pathol. 1987;40:1352–1359.CrossRefGoogle ScholarPubMed
Jean, G, Terzoli, S, Mauri, R, et al. Cirrhosis associated with multiple transfusions in thalassemia. Arch Dis Child. 1984;59:67–70.CrossRefGoogle Scholar
Risdon, AR, Barry, M, Fynn, DM. Transfusional iron overload: the relationship between tissue iron concentration and hepatic fibrosis in thalassaemia. J Pathol. 1975;116:83–95.CrossRefGoogle ScholarPubMed
Koch, , Shapiro, B. Erythroblastic anemia; review of cases reported showing roentgenographic changes in bones and 5 additional cases. Am J Dis Child. 1932;44:318–335.CrossRefGoogle Scholar
Panizon, F, Vullo, C. Sulla envoluzione della siderosi e fibrosi epatica nella malattia di Cooley. Studio bioptico su 20 casi. Acta Paediatr Lat. 1952;10:71.Google Scholar
Wollstein, M, Kreidel, KV. Familial hemolytic anemia of childhood – von Jaksch. Am J Dis Child. 1930;39:115–130.Google Scholar
Baty, JM, Blackfan, KD, Diamond, LK. Blood studies in infancts and in children. I. Erythroblastic anemia; a clinical and pathologic study. Am J Dis Child. 1932;43:667–704.CrossRefGoogle Scholar
Cooley, TB, Witwer, ER, Lee, P. Anemia in children with splenomegaly and peculiar changes in bones; report of cases. Am J Dis Child. 1927;34:347.CrossRefGoogle Scholar
Barry, M, Flynn, DN, Letsky, EA, Risdon, RA. Long-term chelation therapy in thalassaemia major: effect on liver iron concentration, liver histology and clinical progress. Br Med J. 1974;i:16–20.CrossRefGoogle Scholar
Angelucci, E, Baronciani, D, Lucarelli, G, et al. Liver iron loverload and liver fibrosis in thalassemia. Bone Marrow Transplant. 1993;1:29–31.Google Scholar
Thakerngpol, K, Fucharoen, S, Boonyaphipat, P, et al. Liver injury due to iron overload in thalassemia: histopathologic and ultrastructural studies. Biometals. 1996;9:177–183.CrossRefGoogle ScholarPubMed
Virgillis, S, Sanna, G, Carnacchia, G, et al. Serum ferritin, liver iron stores and liver histology in children with thalassaemia. Arch Dis Child. 1980;55:43–45.CrossRefGoogle Scholar
Brittenham, GM, Griffith, PM, Nienhuis, AW, et al. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N Engl J Med. 1994;331:567–573.CrossRefGoogle ScholarPubMed
Sievert, W, Pianko, S, Warner, S, et al. Hepatic iron overload does not prevent a sustained virological response to interferon-alpha therapy: a long term follow-up study in hepatitis C-infected patients with beta thalassemia major. Am J Gastroenterol. 2002;97(4):982–987.Google Scholar
Olivieri, NF, Brittenham, GM, McLaren, CE, et al. Long-term safety and effectiveness of iron chelation therapy with deferiprone for thalasemia major. N Engl J Med. 1998;339:417–423.CrossRefGoogle Scholar
Muretto, P, Angelucci, E, Lucarelli, G. Reversibility of cirrhosis in patients cured of thalassemia by bone marrow transplantation. Ann Intern Med. 2002;136(9):667–672.CrossRefGoogle ScholarPubMed
Gullo, L, Corcioni, E, Brancati, C, Bria, M, Pezzelli, R, Sprovieri, G. Morphologic and functional evaluation of the exocrine pancreas in beta-thalassemia. Pancreas. 1993;8:176–180.CrossRefGoogle ScholarPubMed
Jandl, JH, Greenberg, MS. Bone marrow failure due to relative nutritional deficiency in Cooley's hemolytic anemia. N Engl J Med. 1959;266:461–468.CrossRefGoogle Scholar
Luhby, AL, Cooperman, JM. Folic acid deficiency in thalassaemia major. Lancet. 1961;ii:490–491.Google Scholar
Luhby, AL, Cooperman, JM, Feldman, R, Ceraolo, J, Herrero, J, Marley, JF. Folic acid deficiency as a limiting factor in the anemias of thalassemia major. Blood. 1961;18:786.Google Scholar
Vatanavicharn, S, Anuvatanakulchai, M, Na-Nakorn, S, Wasi, P. Serum erythrocyte folate levels in thalassaemia patients in Thailand. Scand J Haematol. 1979;22:241–245.CrossRefGoogle ScholarPubMed
Chanarin, I. The Megaloblastic Anaemias. 2nd ed. Oxford: Blackwell Scientific Publications; 1980.Google Scholar
Luhby, AL, Cooperman, JM, Lopez, R, Giorgio, AJ. Vitamin B12 metabolism in thalassemia major. Ann NY Acad Sci. 1969;165:443–460.CrossRefGoogle ScholarPubMed
Wapnick, AA, Lynch, SR, Charlton, RW, Seftel, HC, Bothwell, TH. The effect of ascorbic acid deficiency on desferrioxamine-induced iron excretion. Br J Haematol. 1969;17:563–568.CrossRefGoogle Scholar
Chapman, RWG, Hussein, MAM, Gorman, A, et al. Effect of ascorbic acid deficiency on serum ferritin concentrations in patients with β-thalassaemia major and iron overload. J Clin Pathol. 1982;35:487–491.CrossRefGoogle ScholarPubMed
Cohen, A, Cohen, IJ, Schwartz, E. Scurvy and altered iron stores in thalassemia major. N Engl J Med. 1981;304:158–160.CrossRefGoogle ScholarPubMed
O'Brien, RT. Ascorbic acid enhancement of desferrioxamine induced urinary iron excretion in thalassemia major. Ann NY Acad Sci. 1974;232:221–225.CrossRefGoogle ScholarPubMed
Bridges, KR, Hoffman, KE. The effects of ascorbic acid on the intracellular metabolism of iron and ferritin. J Biol Chem. 1986;261:14273–14277.Google ScholarPubMed
Nienhuis, AW. Vitamin C and iron. N Engl J Med. 1981;304:170–171.CrossRefGoogle ScholarPubMed
Hyman, CB, Landing, B, Alfin-Slater, R, Kozak, L, Weitzman, J, Ortega, JA. D1-alpha-tocopherol, iron and lipofuscin in thalassemia. Ann NY Acad Sci. 1974;232:211.CrossRefGoogle Scholar
Rachmilewitz, EA. The role of intracellular hemoglobin precipitation, low MCHC and iron overload on red blood cell membrane peroxidation in thalassemia. In: Bergsma, D, Cerami, A, Peterson, CM, Graziano, JH, eds. Birth Defects: Original Article Series. New York: Liss; 1976:123–128.Google Scholar
Rachmilewitz, EA, Shifter, A, Kahane, I. Vitamin E deficiency in β-thalassemia major: changes in hematological and biochemical parameters after a therapeutic trial with α-tocopherol. Am J Clin Nutr. 1979;32:1850–1858.CrossRefGoogle ScholarPubMed
Erlandson, ME, Golubow, J, Smith, CH. Bivalent cations in homozygous thalassemia. J Pediatr. 1965;66:637–648.CrossRefGoogle ScholarPubMed
Prasad, AS, Diwany, M, Gabr, M, Sandstead, HH, Mokhtar, N, El Hefny, A. Biochemical studies in thalassemia. Ann Intern Med. 1965;62:87–96.CrossRefGoogle ScholarPubMed
Hyman, CB, Ortega, JA, Costin, G, Takahashi, M. The clinical significance of magnesium depletion in thalassaemia. Ann NY Acad Sci. 1980;344:436.CrossRefGoogle Scholar
Silprasert, A, Laokuldilok, T, Kulapongs, P. Zinc deficiency in β-thalassemic children. Birth Defects: Origin Artic Series. 1998;23:473–476.Google Scholar
Dewey, KW, Grossman, H, Canale, VC. Cholelithiasis in thalassemia major. Radiology. 1970;96:385–388.CrossRefGoogle ScholarPubMed
Fessas, P, Loukopoulos, D. The β thalassaemias. Clin Haematol. 1974;3:411–435.Google Scholar
Paik, CH, Alavi, L, Dunea, G, Weiner, L. Thalassemia and gouty arthritis. JAMA. 1970;213:296–297.CrossRefGoogle ScholarPubMed
Logothetis, J, Constantoulakis, M, Economidou, J, et al. Thalassemia major (homozygous beta-thalassemia): a survey of 138 cases with emphasis on neurological and muscular aspects. Neurology. 1972;22:294–304.CrossRefGoogle Scholar
Sinniah, D, Vegnaendra, V, Kammaruddin, A. Neurological complications of beta-thalassaemia major. Arch Dis Child. 1977;52:977–979.CrossRefGoogle ScholarPubMed
Manfre, L, Giarratano, E, Maggio, A, Banco, A, Vaccaro, G, Lagalla, R. MR imaging of the brain: findings in asymptomatic patients with thalassemia intermedia and sickle cell-thalassemia disease. AJR Am J Roentgenol. 1999;173(6):1477–1480.CrossRefGoogle ScholarPubMed
Matarugcheep, P, Chanyawattjwongs, M, Srisubat, K. Clinical silent cerebral infarct (SCI) in patients with thalassemia diseases assessed by magnetic resonsance imaging (MRI). In: The Eighth Cooley's Anemia Symposium; 2005; Lake Buena Vista, FL; 2005. Poster presentation.Google Scholar
Logothetis, J, Haritos-Fatouros, M, Constantoulakis, M, Economidou, J, Augoustaki, P, Loewensen, RB. Intelligence and behavioural patterns in patients with Cooley's anemia (homozygous beta-thalassemia); a study based on 138 consecutive cases. Pediatrics. 1971;48:740.Google ScholarPubMed
Tsiantis, J. Family reactions and relationships in thalassemia. Ann NY Acad Sci. 1990;612:451–461.CrossRefGoogle ScholarPubMed
Rutter, M, Graham, P. The reliability and validity of psychiatric assessment of the child: Interview with the child. Br J Psychiatry. 1968;114:581–592.CrossRefGoogle Scholar
Klein, N., Sen, A, Rusby, J, Ratip, S, Modell, B, Olivieri, NF. The psychosicial burden of Cooley's anemia in affected children and their parents. Ann NY Acad Sci. 1998;850:512–513.CrossRefGoogle Scholar
Armstrong, FD. Thalassemia and learning: neurocognitive functioning in children. Ann NY Acad Sci. 2005;1054:283–289.CrossRefGoogle ScholarPubMed
Seracchioli, R, Porcu, E, Colombi, C, et al. Transfusion-dependent homozygous β-thalassaemia major: successful twin pregnancy following in vitro fertilization and tubal embryo transfer. Hum Reprod. 1994;9:1964–1965.CrossRefGoogle ScholarPubMed
Tampakoudis, P, Tsatalas, C, Mamopoulos, M, et al. Transfusion-dependent homozygous β-thalassaemia major: successful pregnancy in five cases. Eur J Obstet Gynecol Reprod Biol. 1997;74:127–131.CrossRefGoogle ScholarPubMed
Singer, ST, Vichinsky, EP. Deferoxamine treatment during pregnancy: is it harmful?Am J Hematol. 1999;60:24–26.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Sonakul, D. Pathology of Thalassaemic Diseases. Thailand: Amarin Printing Group; 1989.Google Scholar
Astaldi, G, Tolentino, P, Sacchetti, G. La talassemia (Morbo di Cooley e forme affini). In: Biblioteca Haematologica. Pavia: Tipografia del libro; 1951.Google Scholar
Fink, HE. Transfusion hemochromatosis in Cooley's anemia. Ann NY Acad Sci. 1964;119:680–685.CrossRefGoogle ScholarPubMed
Modell, CB, Matthews, R. Thalassemia in Britain and Australia. In: Bergsma, D, Cerami, A, Peterson, CH, Graziano, JH, eds. Birth Defects: Original Article Series. New York: Liss; 1976:13–29.Google Scholar
Nathan, DG, Gunn, RB. Thalassemia: the consequences of unbalanced hemoglobin synthesis. Am J Med. 1966;41:815–830.CrossRefGoogle ScholarPubMed
Polliack, A, Rachmilewitz, EA. Ultrastructural studies in β-thalassaemia major. Br J Haematol. 1973;24:319–326.CrossRefGoogle Scholar
Rifkind, RA. Heinz body anemia: an ultrastructural study. II. Red cell sequestration and destruction. Blood. 1965;26:433–448.Google ScholarPubMed
Zaino, EC, Rossi, MB. Ultrastructure of the erythrocytes in β-thalassemia. Ann NY Acad Sci. 1974;232:238–260.CrossRefGoogle ScholarPubMed
Fessas, P. Inclusions of hemoglobin in erythroblasts and erythrocytes of thalassemia. Blood. 1963;21:21–32.Google ScholarPubMed
Yataganas, X, Gahrton, G, Fessas, P, Kesse-Elias, M, Thorell, B. Proliferative activity and glycogen accumulation of erythroblasts in β-thalassaemia. Br J Haematol. 1973;24:651–659.CrossRefGoogle Scholar
Zaino, EC, Rossi, MB, Pham, TD, Azar, HA. Gaucher's cells in thalassemia. Blood. 1971;38:457–462.Google ScholarPubMed
Bailey, IS, Prankerd, TAJ. Studies in thalassaemia. Br J Haematol. 1958;4:150–155.CrossRefGoogle ScholarPubMed
Hillcoat, BL, Waters, AH. The survival of 51Cr labelled autotransfused red cells in a patient with thalassaemia. Aust Med J. 1962;11:55–58.Google Scholar
Kaplan, E, Zuelzer, WW. Erythrocyte survival studies in childhood. II. Studies in Mediterranean anemia. J Lab Clin Med. 1950;36:517–523.Google ScholarPubMed
Gabuzda, TG, Nathan, DG, Gardner, FH. The turnover of hemoglobins A, F and A2 in the peripheral blood of three patients with thalassemia. J Clin Invest. 1963;42:1678–1688.CrossRefGoogle Scholar
Prankerd, TAJ. The spleen and anaemia. Br Med J. 1963;ii:517–524.CrossRefGoogle Scholar
Loukopoulos, D, Fessas, P. The distribution of hemoglobin types in thalassemic erythrocytes. J Clin Invest. 1965;44:231.CrossRefGoogle ScholarPubMed
Nathan, DG, Stossel, TB, Gunn, RB, Zarkowsky, HS, Laforet, MT. Influence of hemoglobin precipitation on erythrocyte metabolism in alpha and beta thalassemia. J Clin Invest. 1969;48:33–41.CrossRefGoogle ScholarPubMed
Heinrich, HC, Gabbe, EE, Oppitz, KH, et al. Absorption of inorganic and food iron in children with heterozygous and homozygous beta-thalassemia. Z Kinderheilkd. 1973;115:1–22.CrossRefGoogle ScholarPubMed
Hershko, C, Graham, G, Bates, CW, Rachmilewitz, ES. Non-specific serum iron in thalassaemia: an abnormal serum iron fraction of potential toxicity. Br J Haematol. 1978;40:255–263.CrossRefGoogle ScholarPubMed
Finch, CA, Deubelbeiss, K, Cook, JD, et al. Ferrokinetics in man. Medicine (Baltimore). 1970;49:17–53.CrossRefGoogle ScholarPubMed
Malamos, B, Belcher, EH, Gyftaki, E, Binopoulos, D. Simultaneous studies with Fe59 and Cr51 in congenital haemolytic anaemias. Nucl Med (Stuttg). 1961;2:1–20.Google ScholarPubMed
Rees, DC, Porter, JB, Clegg, JB, Weatherall, DJ. Why are hemoglobin F levels increased in Hb E/β thalassemia?Blood. 1999;94:3199–3204.Google Scholar
Schroeder, WA, Huisman, THJ. Nonallelic structural genes and hemoglobin synthesis. In: XIIth International Congress of Hematology Plenary Sessions, Lehmanns Munich; 1970:26.Google Scholar
Huisman, THJ, Schroeder, WA, Efremov, GD, et al. The present status of the heterogeneity of fetal hemoglobin in β-thalassemia; an attempt to unify some observations in thalassemia and related conditions. Ann NY Acad Sci. 1974; 232:107–124.CrossRefGoogle ScholarPubMed
Weatherall, DJ, Clegg, JB, Naughton, MA. Globin synthesis in thalassaemia: an in vitro study. Nature. 1965;208:1061–1065.CrossRefGoogle Scholar
Bank, A, Marks, PA. Excess a chain synthesis relative to β chain synthesis in thalassaemia major and minor. Nature. 1966;212:1198–1200.CrossRefGoogle ScholarPubMed
Bargellesi, A, Pontremoli, S, Conconi, F. Absence of beta globin synthesis and excess alpha globin synthesis in homozygous β thalassemia. Eur J Biochem. 1967;1:73–79.CrossRefGoogle ScholarPubMed
Modell, CB, Latter, A, Steadman, JH, Huehns, ER. Haemoglobin synthesis in β-thalassaemia. Br J Haematol. 1969;17:485–501.CrossRefGoogle ScholarPubMed
Weatherall, DJ, Clegg, JB, Na-Nakorn, S, Wasi, P. The pattern of disordered haemoglobin synthesis in homozygous and heterozygous β-thalassaemia. Br J Haematol. 1969;16:251–267.CrossRefGoogle ScholarPubMed
Bannerman, RM. Thalassemia. A Survey of Some Aspects. New York: Grune and Stratton; 1961.Google Scholar
Weatherall, DJ. Toward an understanding of the molecular biology of some common inherited anemias: the story of thalassemia. In: Wintrobe, MM, ed. Blood, Pure and Eloquent. New York: McGraw–Hill; 1980:373–414.Google Scholar
Chini, V, Valeri, CM. Mediterranean hemopathic syndromes. Blood. 1949;4:989–1013.Google ScholarPubMed
Bianco, I, Montalenti, G, Silvestroni, E, Siniscalco, M. Further data on genetics of microcythemia or thalassaemia minor and Cooley's disease or thalassaemia major. Ann Eugen. 1952;16:299–314.CrossRefGoogle ScholarPubMed
Sturgeon, P, Itano, HA, Bergren, WR. Genetic and biochemical studies of ‘intermediate’ types of Cooley's anaemia. Br J Haematol. 1955;1:264–277.CrossRefGoogle ScholarPubMed
Cao, A, Gasperini, D, Podda, A, Galanello, R. Molecular pathology of thalassemia intermedia. Eur J Int Med. 1990;1:227–236.Google Scholar
Wainscoat, JS, Thein, SL, Weatherall, DJ. Thalassaemia intermedia. Blood Rev. 1987;1:273–279.CrossRefGoogle ScholarPubMed
Antonarakis, SE, Kang, J, Lam, VMS, Tam, JWO, Li, AMC. Molecular characterization of β-globin gene mutations in patients with β-thalassemia intermedia in South China. Br J Haematol. 1988;70:357–361.CrossRefGoogle ScholarPubMed
Camaschella, C, Mazza, U, Roetto, A, et al. Genetic interactions in thalassemia intermedia: analysis of β-mutations, α-genotype, γ promoters, and β-LCR hypersensitive sites 2 and 4 in Italian patients. Am J Hematol. 1995;48:82–87.CrossRefGoogle ScholarPubMed
Galanello, R, Dessi, E, Melis, MA, et al. Molecular analysis of β0-thalassemia intermedia in Sardinia. Blood. 1989;74:823–827.Google Scholar
Kanavakis, E, Traeger-Synodinos, J, Tzetis, M, Metataxatou-Mavromati, A, Ladis, V, Kattamis, C. Molecular characterization of homozygous (high Hb A2) β-thalassemia intermedia in Greece. Pediatr Hematol Oncol. 1995;12:37–45.CrossRefGoogle Scholar
Rund, D, Oron-Karni, V, Filon, D, Goldfarb, A, Rachmilewitz, E, Oppenheim, A. Genetic analysis of β-thalassemia intermedia in Israel: diversity of mechanisms and unpredictability of phenotype. Am J Hematol. 1997;54:16–22.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Thein, SL, Hesketh, C, Wallace, RB, Weatherall, DJ. The molecular basis of thalassaemia major and thalassaemia intermedia in Asian Indians: application to prenatal diagnosis. Br J Haematol. 1988;70:225–231.CrossRefGoogle ScholarPubMed
Ho, PJ, Hall, GW, Luo, LY, Weatherall, DJ, Thein, SL. Beta thalassaemia intermedia: is it possible to predict phenotype from genotype?Br J Haematol. 1998;100:70–78.CrossRefGoogle ScholarPubMed
Camaschella, C, Cappellini, MD. Thalassemia intermedia. Haematologica. 1995;80:58–68.Google ScholarPubMed
Fiorelli, G, Sampietro, M, Romano, M, Albano, M, Cappellini, MD. Clinical features of thalassemia intermedia in Italy. Birth Defects: Origin Artic Series. 1988;23:287–295.Google Scholar
Pippard, MJ, Rajagopalan, B, Callender, ST, Weatherall, DJ. Iron loading, chronic anaemia, and erythroid hyperplasia as determinants of the clinical features of β-thalassaemia intermedia. In: Weatherall, DJ, Fiorelli, G, Gorini, S, eds. Advances in Red Blood Cell Biology. New York: Raven Press; 1982:103–113.Google Scholar
Bianco, I, Cappabianca, MP, Foglietta, E, et al. Silent thalassemias: genotypes and phenotypes. Haematologica. 1997;82:269–280.Google ScholarPubMed
Bianco, I, Lerone, M, Foglietta, E, et al. Phenotypes of individuals with a β thal classical allele associated either with a β thal silent allele or with a globin gene triplicate. Haematologica. 1997;82:513–525.Google ScholarPubMed
Ristaldi, MS, Pirastu, M, Murru, S, et al. A spontaneous mutation produced a novel elongated β0 globin chain structural variant (Hb Agnana) with a thalassemia-like phenotype. Blood. 1990;75:1378–1380.Google Scholar
Wong, C, Dowling, CE, Saiki, RK, Higuchi, RG, Erlich, HA, Kazazian, HHJ. Characterization of β-thalassaemia mutations using direct genomic sequencing of amplified single copy DNA. Nature. 1987;330:384–386.CrossRefGoogle ScholarPubMed
Athanassiadou, A, Papachatzopoulou, A, Zoumbos, N, Maniatis, G, Gibbs, R. A novel b-thalassaemia mutation in the 5′ untranslated region of the β-globin gene. Br J Haematol. 1994;88:307–310.CrossRefGoogle Scholar
Ho, PJ, Rochette, J, Fisher, CA, et al. Moderate reduction of β-globin gene transcript by a novel mutation in the 5′ untranslated region: a study of its interaction with other genotypes in two families. Blood. 1996;87:1170–1178.Google ScholarPubMed
Murru, S, Loudianos, G, Deiana, M, et al. Molecular characterization of β-thalassemia intermedia in patients of Italian descent and identification of three novel β-thalassemia mutations. Blood. 1991;77:1342–1347.Google ScholarPubMed
Gonzalez-Redondo, JH, Stoming, TA, Lanclos, KD, et al. Clinical and genetic heterogeneity in Black patients with homozygous β-thalassemia from the Southeastern United States. Blood. 1988;72:1007–1014.Google ScholarPubMed
Orkin, SH, Antonarakis, SE, Kazazian, HHJ. Base substitution at position –88 in a β-thalassemic globin gene. Further evidence for the role of distal promoter element ACACCC. J Biol Chem. 1984;259:8679–8681.Google Scholar
Camaschella, C, Alfarano, A, Gottardi, E, Serra, A, Revello, D, Saglio, G. The homozygous state for the -87 C→G β+ thalassaemia. Br J Haematol. 1990;75:132–133.CrossRefGoogle ScholarPubMed
Diaz-Chico, JC, Yang, KG, Stoming, TA, et al. Mild and severe b-thalassemia among homozygotes from Turkey: identification of the types by hybridization of amplified DNA with synthetic probes. Blood. 1988;71:248–251.Google Scholar
Rosatelli, C, Oggiano, L, Leoni, GB, et al. Thalassemia intermedia resulting from a mild beta-thalassemia mutation. Blood. 1989;73:601–605.Google ScholarPubMed
Fattoum, S, Guemira, F, Öner, C, et al. β-thalassemia, Hb S-β-thalassemia and sickle cell anemia among Tunisians. Hemoglobin. 1991;15:11–21.CrossRefGoogle ScholarPubMed
Takihara, Y, Nakamura, T, Yamada, H, Takagi, Y, Fukumaki, Y. A novel mutation in the TATA box in a Japanese patient with β+-thalassemia. Blood. 1986;67:547–550.Google Scholar
Safaya, S, Rieder, RF, Dowling, CE, Kazazian, HHJ, Adams, JG. Homozygous β-thalassemia without anemia. Blood. 1989;73:324–328.Google ScholarPubMed
Huang, S-Z, Wong, C, Antonarakis, SE, Ro-Lein, T, Lo, WHY, Kazazian, HHJ. The same TATA box β-thalassemia mutation in Chinese and U.S. blacks: another example of independent origins of mutation. Hum Genet. 1986;74:162–164.CrossRefGoogle Scholar
Galacteros, F, Delanoe-Garin, J, Monplaisir, N, et al. Two new cases of heterozygosity for hemoglobin Knossos α2β2 Ala→Ser detected in the French West Indies and Algeria. Hemoglobin. 1984;8:215–228.CrossRefGoogle Scholar
Olds, RJ, Sura, T, Jackson, B, Wonke, B, Hoffbrand, AV, Thein, SL. A novel δ0 mutation in cis with Hb Knossos: a study of different genetic interactions in three Egyptian families. Br J Haematol. 1991;78:430–436.CrossRefGoogle Scholar
Efremov, D, Dimovsky, A, Baysal, E, et al. Possible factors influencing the haemoglobin and fetal haemoglobin levels in patients with β-thalassaemia due to a homozygosity for the IVS-1-6 (T-C) mutation. Br J Haematol. 1994;86:824–830.CrossRefGoogle Scholar
Öner, R, Altay, C, Aksoy, M, et al. β-thalassemia in Turkey. Hemoglobin. 1990;14(1):1–13.CrossRefGoogle ScholarPubMed
Scerri, CA, Abela, W, Galdies, R, Pizzuto, M, Grech, JL, Felice, AE. The β+ IVS, I-NT no. 6 (T→C) thalassaemia in heterozygotes with an associated Hb Valletta or Hb S heterozygosity in homozygotes from Malta. Br J Haematol. 1993;83:669–671.CrossRefGoogle ScholarPubMed
Tamagnini, GP, Lopes, MC, Castanheira, ME, Wainscoat, JS, Wood, WG. b+ thalassaemia – Portuguese type: clinical, haematological and molecular studies of a newly defined form of β thalassaemia. Br J Haematol. 1983;54:189–200.CrossRefGoogle Scholar
Orkin, SH, Cheng, T-C, Antonarakis, SE, Kazazian, HH. Thalassaemia due to a mutation in the cleavage-polyadenylation signal of the human β-globin gene. EMBO J. 1985;4:453–456.Google ScholarPubMed
Kan, YW, Nathan, DG. Mild thalassemia: the result of interactions of alpha and beta thalassemia genes. J Clin Invest. 1970;49:635–642.CrossRefGoogle ScholarPubMed
Weatherall, DJ, Pressley, L, Wood, WG, Higgs, DR, Clegg, JB. The molecular basis for mild forms of homozygous β thalassaemia. Lancet. 1981;i:527–529.CrossRefGoogle Scholar
Furbetta, M, Tuveri, T, Rosatacelli, C, et al. Molecular mechanism accounting for milder types of thalassemia major. J Pediatr. 1983;103:35–39.CrossRefGoogle ScholarPubMed
Wainscoat, JS, Kanavakis, E, Wood, WG, et al. Thalassaemia intermedia in Cyprus: the interaction of alpha and beta thalassaemia. Br J Haematol. 1983;53:411–416.CrossRefGoogle ScholarPubMed
Galanello, R, Dessi, E, Melis, MA, et al. Molecular analysis of β0-thalassemia intermedia in Sardinia. Blood. 1989;74:823–827.Google Scholar
Winichagoon, P, Fucharoen, S, Weatherall, DJ, Wasi, P. Concomitant inheritance of α-thalassemia in β0-thalassemia/Hb E. Am J Hematol. 1985;20:217–222.CrossRefGoogle Scholar
Furbetta, M, Galanello, R, Ximenes, A, et al. Interaction of alpha and beta thalassaemia genes in two Sardinian families. Br J Haematol. 1979;41:203–210.CrossRefGoogle ScholarPubMed
Loukopoulos, D, Loutradi, A, Fessas, P. A unique thalassaemia syndrome: homozygous α-thalassaemia+ homozygous β-thalassaemia. Br J Haematol. 1978;39:377–389.CrossRefGoogle ScholarPubMed
Cividalli, G, Kerem, H, Execkiel, E, Rachmilewitz, EA. β+-thalassemia intermedia. Blood. 1978;52:345.Google Scholar
Godet, J, VErdier, G, Nigon, V, et al. β0-thalassemia from Algeria: genetic and molecular characterization. Blood. 1977; 50:463.Google Scholar
Knox-Macaulay, HHM, Weatherall, DJ, Clegg, JB, Pembrey, ME. Thalassaemia in the British. Br Med J. 1973;iii:150–155.CrossRefGoogle Scholar
Weatherall, DJ, Clegg, JB, Wood, WG, et al. The clinical and molecular heterogeneity of the thalassaemia syndromes. Ann NY Acad Sci. 1980;344:83–100.CrossRefGoogle Scholar
Labie, D, Pagnier, J, Lapoumeroulie, C, et al. Common haplotype dependency of high Gγ-globin gene expression and high Hb F levels in β-thalassemia and sickle cell anemia patients. Proc Natl Acad Sci USA. 1985;82:2111–2114.CrossRefGoogle Scholar
Thein, SL, Sampietro, M, Old, JM, et al. Association of thalassaemia intermedia with a beta-globin gene haplotype. Br J Haematol. 1987;65:370–373.CrossRefGoogle ScholarPubMed
Thein, SL. β-Thalassaemia. In: Higgs, DR, Weatherall, DJ, eds. Baillière's Clinical Haematology International Practice and Research: The Haemoglobinopathies. London: Baillière Tindall; 1993:151–176.Google Scholar
Cappellini, MD, Fiorelli, G, Bernini, LF. Interaction between homozygous β0 thalassaemia and the Swiss type of hereditary persistence of fetal haemoglobin. Br J Haematol. 1981;48:561–572.CrossRefGoogle Scholar
Thein, SL, Weatherall, DJ. A non-deletion hereditary persistence of fetal hemoglobin (HPFH) determinant not linked to the β-globin gene complex. In: Stamatoyannopoulos, G, Nienhuis, AW, eds. Hemoglobin Switching, Part B: Cellular and Molecular Mechanisms. New York: Alan R. Liss; 1989:97–112.Google Scholar
Gianni, AM, Bregni, M, Cappellini, MD, et al. A gene controlling fetal hemoglobin expression in adults is not linked to the non-α globin cluster. EMBO J. 1983;2:921–926.Google Scholar
Dover, GJ, Smith, KD, Chang, YC, et al. Fetal hemoglobin levels in sickle cell disease and normal individuals are partially controlled by an X-linked gene located at Xp22.2. Blood. 1992;80:816–824.Google ScholarPubMed
Premawardhena, A, Fisher, CA, Olivieri, NF, et al. A novel molecular basis for β thalassemia intermedia poses new questions about its pathophysiology. Blood. 2005;106:3251–3255.CrossRefGoogle ScholarPubMed
Galanello, R, Ruggeri, R, Paglietti, E, Addis, M, Melis, MA, Cao, A. A family with segregating triplicated alpha globin loci and beta thalassemia. Blood. 1983;62:1035–1040.Google ScholarPubMed
Sampietro, M, Cazzola, M, Cappellini, MD, Fiorelli, G. The triplicated alpha-gene locus and heterozygous beta thalassaemia: a case of thalassaemia intermedia. Br J Haematol. 1983;55:709–710.CrossRefGoogle ScholarPubMed
Thein, SL, Al-Hakim, I, Hoffbrand, AV. Thalassaemia intermedia: a new molecular basis. Br J Haematol. 1984;56:333–337.CrossRefGoogle ScholarPubMed
Traeger-Synodinos, J, Kanavakis, E, Vrettou, C, et al. The triplicated α-globin gene locus in β-thalassaemia heterozygotes: clinical, haematological, biosynthetic and molecular studies. Br J Haematol. 1996;95:467–471.CrossRefGoogle ScholarPubMed
Weatherall, DJ, Clegg, JB, Knox-Macaulay, HHM, Bunch, C, Hopkins, CR, Temperley, IJ. A genetically determined disorder with features both of thalassaemia and congenital dyserythropoietic anaemia. Br J Haematol. 1973;24:681–702.CrossRefGoogle ScholarPubMed
Stamatoyannopoulos, G, Woodson, R, Papayannopoulou, T, Heywood, D, Kurachi, MS. Inclusion-body b-thalasemia trait. A form of β thalassemia producing clinical manifestations in simple heterozygotes. N Engl J Med. 1974;290:939–943.CrossRefGoogle ScholarPubMed
Bannerman, RM, Keusch, G, Kreimer-Birnbaum, M, Vance, VK, Vaughan, S. Thalassemia intermedia, with iron overload, cardiac failure, diabetes mellitus, hypopituitarism and porphyrinuria. Am J Med. 1967;42:476–486.CrossRefGoogle ScholarPubMed
Erlandson, ME, Brilliant, R, Smith, CH. Comparison of sixty-six patients with thalassemia major and thirteen patients with thalassemia intermedia: including evaluations of growth, development, maturation and prognosis. Ann NY Acad Sci. 1964;119:727–735.CrossRefGoogle ScholarPubMed
Cossu, P, Toccafondi, C, Vardeu, F, et al. Iron overload and desferrioxamine chelation therapy in beta-thalassemia intermedia. Eur J Pediatr. 1981;137:267–271.CrossRefGoogle ScholarPubMed
Fiorelli, G, Fargion, S, Piperno, A, Battafarano, N, Cappellini, MD. Iron metabolism in thalassemia intermedia. Haematologica. 1990;75:89–95.Google ScholarPubMed
Mancuso, L, Iacona, MA, Marchi, S, Rigano, P, Geraci, E. Severe cardiomyopathy in a woman with intermediate beta-thalassemia. Regression of cardiac failure with desferrioxamine. G Ital Cardiol. 1985;15:916–920.Google Scholar
Olivieri, NF, Koren, G, Matsui, D, et al. Reduction of tissue iron stores and normalization of serum ferritin during treatment with the oral iron chelator L1 in thalassemia intermedia. Blood. 1992;79:2741–2748.Google ScholarPubMed
Aessopos, A, Stamatelos, G, Skoumas, V, Vassilopoulos, G, Mantzourani, M, Loukopoulos, D. Pulmonary hypertension and right heart failure in patients with b-thalassemia intermedia. Chest. 1995;107:50–53.CrossRefGoogle Scholar
Goldfarb, A, Grisaru, D, Gimmon, Z, Okon, E, Lebensart, P, Rachmilewitz, EA. High incidence of cholelithiasis in older patients with homozygous β-thalassemia. Acta Haematol. 1990;83:120–122.CrossRefGoogle ScholarPubMed
Gratwick, GM, Bullough, PG, Bohne, WHO, Markenson, AL, Peterson, CM. Thalassemia osteoarthropathy. Ann Intern Med. 1978;88:494–501.CrossRefGoogle ScholarPubMed
Ben-Bassat, I, Hertz, M, Selzer, G, Ramot, B. Extramedullary hematopoiesis with multiple tumor-simulating mediastinal masses in a patient with β-thalassemia intermedia. Israel J Med Sci. 1977;13:1206–1210.Google Scholar
Yu, YC, Kao, EL, Chou, SH, Lin, TJ, Chien, CH. Intrathoracic extremedullary hematopoiesis simulating posterior mediastinal mass – report of a case in a patient with beta-thalassemia intermedia. Kao Hsiung I Hsueh Ko Hsueh Tsa Chih. 1991;7:43–48.Google Scholar
Alam, R, Padmanabhan, K, Rao, H. Paravertebral mass in a patient with thalassemia intermedia. Chest. 1997;112:265–267.CrossRefGoogle Scholar
Cardia, E, Toscano, S, Rosa, G, Zaccone, C, d'Avella, D, Tomasello, F. Spinal cord compression in homozygous β-thalassemia intermedia. Pediatr Neurosurg. 1994;20:186–189.CrossRefGoogle ScholarPubMed
David, CV, Balusubramaniam, P. Paraplegia with thalassemia. Aust NZ J Med. 1983;53:283–284.CrossRefGoogle Scholar
Mancuso, P, Zingale, A, Basile, L, Chiaramonte, I, Tropea, R. Cauda equina compression syndrome in a patient affected by thalassemia intermedia: complete regression with blood transfusion therapy. Childs Nerv Syst. 1993;9:440–441.CrossRefGoogle Scholar
Smith, PR, Manjoney, DL, Teitcher, JB, Choi, KN, Braverman, AS. Massive hemothorax due to intrathoracic extramedullary hematopoiesis in a patient with thalassemia intermedia. Chest. 1988;94:658–660.CrossRefGoogle Scholar
Papavasiliou, C, Gouliamos, A, Vlahos, L, Trakadas, S, Kalovidouris, A, Pouliades, G. CT and MRI of symptomatic spinal involvement by extramedullary haemopoiesis. Clin Radiol. 1990;42:91–92.CrossRefGoogle ScholarPubMed
Sergiacomi, G, Palma, E, Cianciulli, P, Forte, L, Papa, G, Simonetti, G. Correlazioni clinico-radiologiche nella talassemia intermedia. Radiol Med Torino. 1993;85:570–573.Google Scholar
Martin, J, Palacio, A, Petit, J, Martin, C. Fatty transformation of thoracic extramedullary hematopoiesis following splenectomy: CT features. J Comput Assist Tomogr. 1990;14:477–478.Google ScholarPubMed
Brownell, AI, McSwiggan, DA, Cubitt, WD, Anderson, MJ. Aplastic and hypoplastic episodes in sickle cell disease and thalassaemia. J Clin Pathol. 1986;39:121–124.CrossRefGoogle ScholarPubMed
Mela, QS, Cacace, E, Ruggerio, V, Frigerio, R, Pitzus, F, Carcassi, U. Virus infection in β-thalssemia intermedia. Birth Defects: Origin Artic Series. 1988;23:557–564.Google Scholar
Gimmon, Z, Wexler, MR, Rachmilewitz, EA. Pathogenesis of juvenile leg ulcers in β-thalassaemia major and intermedia. Plast Reconstruct Surg. 1982;69:320–323.CrossRefGoogle ScholarPubMed
Afifi, AM. High transfusion regime in the management of reproductive wastage and maternal complications of pregnancy in thalassaemia major. Acta Haematol. 1974;52:331–335.CrossRefGoogle ScholarPubMed
Walker, EH, Whelton, MJ, Beaven, GH. Successful pregnancy in a patient with thalassaemia major. J Obstet Gynaecol Br Commonw. 1969;76:549–553.CrossRefGoogle Scholar
Ruf, A, Pick, M, Deutsch, V, et al. In vivo platelet activation correlates with red cell anionic phospholipid exposure in patients with β-thalassaemia major. Br J Haematol. 1997;98:51–56.CrossRefGoogle ScholarPubMed
Skarsgard, E, Doski, J, Jaksic, T, et al. Thrombosis of the portal venous system after splenectomy for pediatric hematologic disease. J Pediatr Surg. 1993;28:1109–1112.CrossRefGoogle ScholarPubMed
Dore, F, Bonfigli, S, Pardini, S, Pirozzi, F, Longinotti, M. Priapism in thalassemia intermedia. Haematologica. 1991;76:523.Google ScholarPubMed
Gallo, E, Massaro, P, Miniero, R, David, D, Tarella, C. The importance of the genetic picture and globin synthesis in determining the clinical and haematological features of thalassaemia intermedia. Br J Haematol. 1979;41:211–221.CrossRefGoogle ScholarPubMed
Alarcon, PA, Donovan, ME, Forbes, GB, Landau, SA, Stockman, JA. Iron absorption in the thalassemia syndromes and its inhibition by tea. N Engl J Med. 1979;300:5–8.CrossRefGoogle ScholarPubMed
Pippard, MJ, Warner, GT, Callender, ST, Weatherall, DJ. Iron absorption and loading in β-thalassaemia intermedia. Lancet. 1979;ii:819–821.CrossRefGoogle Scholar
Pippard, MJ, Weatherall, DJ. Iron absorption in non-transfused iron loading anaemias: prediction of risk for iron loading, and response to iron chelation treatment, in β thalassaemia and congenital sideroblastic anaemias. Haematologica. 1984;17:17–24.Google ScholarPubMed
Cavill, I, Ricketts, C, Jacobs, A, Letsky, E. Erythropoiesis and the effect of transfusion in homozygous beta-thalassemia. N Engl J Med. 1978;298:776–778.CrossRefGoogle ScholarPubMed
Najean, Y, Deschryver, F, Henni, T, Girot, R. Red cell kinetics in thalassaemia intermedia: its use for a prospective prognosis. Br J Haematol. 1985;59:533–539.CrossRefGoogle ScholarPubMed
Dore, F, Bonfigli, S, Gaviano, E, Pardini, S, Longinotti, M. Serum transferrin receptor levels in patients with thalassemia intermedia during rHuEPO administration. Haematologica. 1996;81:37–39.Google ScholarPubMed
Camaschella, C, Gonella, S, Calabrese, R, et al. Serum erythropoietin and circulating transferrin receptor in thalassemia intermedia patients with heterogeneous genotypes. Haematologica. 1996;81:397–403.Google ScholarPubMed
Dore, F, Bonfigli, S, Gaviano, E, et al. Serum erythropoietin levels in thalassemia intermedia. Ann Hematol. 1993;67:183–186.CrossRefGoogle ScholarPubMed
Galanello, R, Barella, S, Turco, MP, et al. Serum erythropoietin and erythropoiesis in high- and low-fetal hemoglobin β-thalassemia intermedias patients. Blood. 1994;83:561–565.Google Scholar
Efremov, DG, Efremov, GD, Zisovski, N, et al. Variation in clinical severity among patients with Hb Lepore-Boston-β-thalassaemia is related to the type of b-thalassaemia. Br J Haematol. 1988;68:351–355.CrossRefGoogle Scholar
Bianco, I, Graziani, B, Carboni, C. Genetic patterns in thalassemia intermedia (constitutional microcytic anemia). Familial, hematologic and biosynthetic studies. Hum Hered. 1977;27:257.CrossRefGoogle ScholarPubMed
Premawardena, A, Arambepola, M, Katugaha, N, Weatherall, DJ. Is the β thalassaemia trait of clinical importance. Br J Haematol. 2008:141:407–410.Google Scholar
Castaldi, G, Zavagli, G, Ambroso, G, Dallapiccolas, B, Trotta, F. Anaemia in beta-thalassaemia carriers. Br Med J. 1974;i:518.CrossRefGoogle Scholar
Mazza, U, Saglio, G, Cappio, FC, Camaschella, C, Neretto, G, Gallo, E. Clinical and haematological data in 254 cases of beta-thalassaemia trait in Italy. Br J Haematol. 1976;33:91–99.CrossRefGoogle ScholarPubMed
Yataganas, X, Fessas, P. The pattern of hemoglobin precipitation in thalassemia and its significance. Ann NY Acad Sci. 1969;165:270–287.CrossRefGoogle ScholarPubMed
Gallo, E, Pich, PG, Ricco, G, Saglio, G, Camaschella, C, Mazza, U. The relationship between anemia, fecal stercobilinogen, erythrocyte survival and globin synthesis in heterozygotes for β-thalassemia. Blood. 1975;46:692–698.Google ScholarPubMed
Pearson, HA, McFarland, W, King, ER. Erythrokinetic studies in thalassemia trait. J Lab Clin Med. 1960;56:866–873.Google ScholarPubMed
Pippard, MJ, Wainscoat, JS. Erythrokinetics and iron status in heterozygous β thalassaemia, and the effect of interaction with α thalassaemia. Br J Haematol. 1987;66:123–127.CrossRefGoogle ScholarPubMed
Galanello, R, Turco, MP, Barella, S, et al. Iron stores and iron deficiency anemia in children heterozygous for β-thalassemia. Haematologica. 1990;75:319–322.Google ScholarPubMed
Huisman, THJ, Gravely, ME, Sox, R. A note on the inheritance of the hereditary persistence of fetal haemoglobin and the delta chain variant HbA2. J Med Genet. 1976;13:62.CrossRefGoogle Scholar
Kattamis, C, Lagos, P, Metaxatou-Mavromati, A, Matsaniotis, N. Serum iron and unsaturated iron-binding capacity in the β-thalassaemia trait: their relation to the levels of haemoglobins A, A2 and F. J Med Genet. 1972;9:154–159.CrossRefGoogle Scholar
Pootrakul, P, Wasi, P, Na-Nakorn, S. Haematological data in 312 cases of β thalassaemia trait in Thailand. Br J Haematol. 1973;24:703–712.CrossRefGoogle Scholar
Bowdler, AJ, Huehns, ER. Thalassaemia major complicated by excessive iron storage. Br J Haematol. 1963;9:13–24.CrossRefGoogle ScholarPubMed
Tolot, F, Bocquet, B, Baron, M. Hemochromatosis and pigmentary cirrhosis in minor thalassemia in adults. J Med Lyon. 1970;51:655–660.Google ScholarPubMed
Fargion, S, Piperno, A, Panaiotopoulos, N, Taddei, MT, Fiorelli, G. Iron overload in subjects with β-thalassaemia trait: role of idiopathic haemochromatosis gene. Br J Haematol. 1985;61:487–490.CrossRefGoogle ScholarPubMed
Crosby, WH, Conrad, ME. Iron imbalance in thalassaemia minor. A preliminary report. Ann NY Acad Sci. 1964;119:616.CrossRefGoogle Scholar
Vedovato, M, Salvatorelli, G, Taddei-Masieri, M, Vullo, C. Epo serum levels in heterozygous β-thalassemia. Haematologia-Budap. 1993;25:19–24.Google ScholarPubMed
Landman, H. Haemoglobinopathies and Pregnancy. Groningen: Van Denderen Printing; 1988.Google Scholar
White, JM, Richards, R, Byrne, M, Buchanan, T, White, YS, Jelenski, G. Thalassaemia trait and pregnancy. J Clin Pathol. 1985;38:810–817.CrossRefGoogle Scholar
Schuman, JE, Tanser, CL, Peloquin, R, Leeuw, NKM. The erythropoietic response to pregnancy in β thalassaemia minor. Br J Haematol. 1973;25:249–260.CrossRefGoogle ScholarPubMed
Chanarin, I, Dacie, JV, Mollin, DL. Folic-acid deficiency in haemolytic anaemia. Br J Haematol. 1959;5:245–256.CrossRefGoogle ScholarPubMed
Silva, AE, Varella-Garcia, M. Plasma folate and vitamin B12 levels in β-thalassemia heterozygotes. Braz J Med Biol Res. 1989;22:1225–1226.Google ScholarPubMed
Gallerani, M, Cicognani, I, Ballardini, P, et al. Average life expectancy of heterozygous β thalassemia subjects. Haematologica. 1990;75:224–227.Google Scholar
Gallerani, M, Scapoli, C, Cicognani, I, et al. Thalassaemia trait and myocardial infarction: low infarction incidence in male subjects confirmed. J Intern Med. 1991;230:109–111.CrossRefGoogle ScholarPubMed
Tassiopoulos, S, Deftereos, S, Konstantopoulos, K, et al. Does heterozygous beta-thalassemia confer a protection against coronary artery disease?Ann NY Acad Sci. 2005;1054:467–470.CrossRefGoogle Scholar
Ceppellini, R. Discussion. Biochemistry of human genetics. In: Wolstenholme, GEW, O'Connor, CM, eds. Ciba Foundation Symposium. Boston: Little, Brown; 1959:133–134.Google Scholar
Huisman, THJ, Punt, K, Schaad, JDG. Thalassemia minor associated with hemoglobin B2 heterozygosity. Blood. 1961;17:747.Google ScholarPubMed
Weatherall, DJ, Clegg, JB, Milner, PF, Marsh, GW, Bolton, FG, Serjeant, GR. Linkage relationships between β- and δ-structural loci and African forms of thalassaemia. J Med Genet. 1976;13:20–26.CrossRefGoogle ScholarPubMed
Codrington, JF, Li, H-W, Kutlar, F, Gu, L-H, Ramachandran, M, Huisman, THJ. Observations on the levels of Hb A2 in patients with different β thalassemia mutations and a δ chain variant. Blood. 1990;76:1246–1249.Google Scholar
Wasi, P, Disthasongchan, P, Na-Nakorn, S. The effect of iron deficiency on the levels of hemoglobins A2 and E. J Lab Clin Med. 1968;71:85–91.Google ScholarPubMed
Steinberg, MH. Case report: effects of iron deficiency and the −88 C→T mutation on Hb A2 levels in β-thalassemia. Am J Med Sci. 1993;305:312–313.CrossRefGoogle Scholar
Beaven, GH, Ellis, MJ, White, JC. Studies in human foetal haemoglobin. III. The hereditary haemoglobinopathies and thalassaemia. Br J Haematol. 1961;7:169–186.CrossRefGoogle Scholar
Wood, WG, Weatherall, DJ, Clegg, JB. Interaction of heterocellular hereditary persistence of foetal haemoglobin with β thalassaemia and sickle cell anaemia. Nature. 1976;264:247–249.CrossRefGoogle ScholarPubMed
Popat, N, Wood, WG, Weatherall, DJ, Turnbull, AC. The pattern of maternal F-cell production during pregnancy. Lancet. 1977;ii:377–379.CrossRefGoogle Scholar
Selwyn, JG, Dacie, JV. Autohemolysis and other changes resulting from the incubation in vitro of red cells from patients with congenital hemolytic anemia. Blood. 1954;9(5):414–438.Google ScholarPubMed
Chapman, SJ, Allison, JV, Grimes, AJ. Abnormal cation movements in human hypochromic red cells incubates in vitro. Scand J Haematol. 1973;10:225–231.CrossRefGoogle Scholar
Gunn, RB, Silvers, ND, Rosse, WF. Potassium permeability in β-thalassemia minor red blood cells. J Clin Invest. 1972;51:1043–1050.CrossRefGoogle Scholar
Knox-Macaulay, HHM, Weatherall, DJ. Studies of red-cell membrane function in heterozygous β thalassaemia and other hypochromic anaemias. Br J Haematol. 1974;28:277–297.CrossRefGoogle ScholarPubMed
Vettore, L, Falezza, GC, Cetto, GL, Matteis, MC. Cation content and membrane deformability of heterozygous beta-thalassemia red blood cells. Br J Haematol. 1974;27:429–437.CrossRefGoogle ScholarPubMed
Knox-Macaulay, HHM, Weatherall, DJ, Clegg, JB, Bradley, J, Brown, MJ. Clinical and biosynthetic characterization of αβ-thalassaemia. Br J Haematol. 1972;22:497–512.CrossRefGoogle Scholar
Kan, YW, Nathan, DG, Lodish, HF. Equal synthesis of α and β globin chains in erythroid precursors in heterozygous β thalassemia. J Clin Invest. 1972;51:1906–1909.CrossRefGoogle Scholar
Schwartz, E. Heterozygous beta thalassemia: balanced globin synthesis in bone marrow cells. Science. 1970;167:1513–1514.CrossRefGoogle ScholarPubMed
Chalevelakis, G, Clegg, JB, Weatherall, DJ. Imbalanced globin chain synthesis in heterozygous β-thalassemia bone marrow. Proc Natl Acad Sci USA. 1975;72:3853–3857.CrossRefGoogle ScholarPubMed
Chalevelakis, G, Clegg, JB, Weatherall, DJ. Globin synthesis in normal human bone marrow. Br J Haematol. 1976;34:535–557.CrossRefGoogle ScholarPubMed
Galanello, R, Melis, MA, Ruggeri, R, Cao, A. Prospective study of red blood cell indices, hemoglobin A2 and hemoglobin F in infants heterozygous for b-thalassemia. J Pediatr. 1981;99:105–108.CrossRefGoogle Scholar
Wood, WG, Weatherall, DJ, Hart, GH, Bennett, M, Marsh, GW. Hematologic changes and hemoglobin analysis in β thalassemia heterozygotes during the first year of life. Pediatr Res. 1982;16:286–289.CrossRefGoogle ScholarPubMed
Galanello, R, Lilliu, F, Bertolino, F, Cao, A. Percentile curves for red cell indices of β0-thalassaemia heterozygotes in infancy and childhood. J Pediatr. 1991;150:413–415.Google Scholar
Metaxatou-Mavromati, AD, Antonopoulou, HK, Laskari, SS, Tsiarta, HK, Ladis, VA, Kattamis, CA. Developmental changes in hemoglobin F levels during the first two years of life in normal and heterozygous β-thalassemia infants. Pediatrics. 1982;69:734–738.Google Scholar
Rosatelli, C, Leoni, GB, Tuveri, T, et al. Heterozygous β-thalassemia: relationship between the hematological phenotype and the type of β-thalassemia mutation. Am J Hematol. 1992;39:1–4.CrossRefGoogle ScholarPubMed
Rund, D, Filon, D, Dowling, C, Kazazian, HHJ, Rachmilewitz, EA, Oppenheim, A. Molecular studies of β-thalassemia in Israel. Mutational analysis and expression studies. Ann NY Acad Sci. 1990;612:98–105.CrossRefGoogle ScholarPubMed
Stefanis, L, Kanavakis, E, Traeger-Synodinos, J, Tzetis, M, Metaxotou-Mavromati, A, Kattamis, C. I: Hematologic phenotype of the mutations IVS1-n6 (T→C), IVS1-n110 (G→A), and CD39 (C→T) in carriers of beta-thalassemia in Greece. Pediatr Hematol Oncol. 1994;11:509–517.CrossRefGoogle Scholar
Huisman, THJ. Levels of Hb A2 in heterozygotes and homozygotes for beta-thalassemia mutations: influence of mutations in the CACCC and ATAAA motifs of the beta-globin gene promoter. Acta Haematol. 1997;98:187–194.CrossRefGoogle ScholarPubMed
Kutlar, A, Kutlar, F, Gu, L-G, Mayson, SM, Huisman, TH. Fetal hemoglobin in normal adults and β-thalassemia heterozygotes. Hum Genet. 1990;85:106–110.CrossRefGoogle ScholarPubMed
Piomelli, S, Siniscalco, M. The haematological effects of glucose-6-phosphate dehydrogenase deficiency and thalassaemia trait: interaction between the two genes at the phenotype level. Br J Haematol. 1969;16:537–549.CrossRefGoogle ScholarPubMed
Sanna, G, Frau, F, Melis, MA, Galanello, R, Virgiliis, S, Cao, A. Interaction between glucose-6-phosphate dehydrogenase deficiency and thalassaemia genes at phenotype level. Br J Haematol. 1980;44:555–561.CrossRefGoogle ScholarPubMed
Galanello, R, Perseu, L, Melis, MA, et al. Hyperbilirubinaemia in heterozygous β-thalassaemia is related to co-inherited Gilbert's syndrome. Br J Haematol. 1997;99:433–436.CrossRefGoogle ScholarPubMed
Frick, P. Congenital elliptocytosis. Elliptocytosis and thalassemia in the same family. Schweiz Med Wschr. 1970; 100:1009–1012.Google ScholarPubMed
Pavri, RS, Baxi, AJ, Grover, S, Parande, RA. Study of glycolytic intermediates in hereditary elliptocytosis with thalassemia. J Postgrad Med. 1977;23:189–192.Google ScholarPubMed
Ros, G, Seynhaeve, V, Fiasse, L. Beta+-thalassaemia, haemoglobin A and hereditary elliptocytosis in a Zairian family. Ischaemic costal necroses in a child with sickle-cell beta+ thalassaemia. Acta Haematol. 1976;56:241–252.Google Scholar
Perillie, PE, Chernoff, AI. Heterozygous beta-thalassemia in association with hereditary elliptocytosis. Blood. 1965;25: 494–501.Google ScholarPubMed
Aksoy, M, Eredem, S. Combination of hereditary elliptocytosis and heterozygous beta-thalassaemia: a family study. J Med Genet. 1968;5:298–301.CrossRefGoogle ScholarPubMed
Cohen, F, Zuelzer, WW, Neel, JV, Robinson, AR. Multiple inherited erythrocyte abnormalities in an American Negro family: hereditary spherocytosis, sickling and thalassemia. Blood. 1959;14:816–827.Google Scholar
Cunningham, TA, Vella, F. Combination of spherocytosis and a variant of beta thalassaemia (‘isolated raised Hb A2’). J Med Genet. 1967;4:109.CrossRefGoogle Scholar
Swarup-Mitra, S, Ghosh, SK, Chatterjea, JB. Haemolytic anaemia due to interaction of genes for spherocytosis and beta-thalassaemia. Indian J Med Res. 1969;57.Google ScholarPubMed
Baughan, MA, Paglia, , Schneider, AS, Valentine, WN. An unusual haematological syndrome with pyruvate-kinase deficiency and thalassaemia minor in the kindreds. Acta Haematol. 1968;39:345–358.CrossRefGoogle Scholar
Zoratto, E, Norelli, MT, Lumare, A. Hemolytic anemia caused by association of a double anomaly beta-thalassemia and deficiency of G6PD. Minerva Pediatr. 1969;21:605–610.Google ScholarPubMed
Kattamis, C, Metaxatou-Mavromati, A, Wood, WG, Nash, JR, Weatherall, DJ. The heterogeneity of normal Hb A2-β thalassaemia in Greece. Br J Haematol. 1979;42:109–123.CrossRefGoogle Scholar
Schwartz, E. The silent carrier of beta thalassaemia. N Engl J Med. 1969;281:1327–1333.CrossRefGoogle Scholar
Silvestroni, E, Bianco, I, Graziani, B, Carboni, C. Heterozygous β-thalassaemia with normal haemoglobin pattern. Acta Haematol. 1978;59:332–340.CrossRefGoogle ScholarPubMed
Tzetis, M, Traeger-Synodinos, J, Kanavakis, E, Metaxotou-Mavromati, A, Kattamis, C. The molecular basis of normal Hb A2 (type 2) β-thalassemia in Greece. Hematol Pathol. 1994;8:25–34.Google Scholar
Loudianos, G, Cao, A, Ristaldi, MS, et al. Molecular basis of δβ-thalassemia with normal fetal hemoglobin. Blood. 1990;75:526–528.Google Scholar
Trifillis, P, Ioannou, P, Schwartz, E, Surrey, S. Identification of four novel δ-globin gene mutations in Greek Cypriots using polymerase chain reaction and automated fluorescence-based DNA sequence analysis. Blood. 1991;78:3298–3305.Google ScholarPubMed
Schokker, RC, Went, LN, Bok, J. A new genetic variant of beta-thalassaemia. Nature. 1966;209:44–46.CrossRefGoogle ScholarPubMed
Kanavakis, E, Wainscoat, JS, Wood, WG, et al. The interaction of α thalassaemia with heterozygous β thalassaemia. Br J Haematol. 1982;52:465–473.CrossRefGoogle ScholarPubMed
Melis, MA, Pirastu, M, Galanello, R, Furbetta, M, Tuveri, T, Cao, A. Phenotypic effect of heterozygous α and β0-thalassemia interaction. Blood. 1983;62:226–229.Google Scholar
Gasperini, D, Cao, A, Paderi, L, et al. Normal individuals with high Hb A2 levels. Br J Haematol. 1993;84:166–168.CrossRefGoogle ScholarPubMed
Murru, S, Loudianos, G, Porcu, S, et al. A β-thalassaemia phenotype not linked to the β-globin cluster in an Italian family. Br J Haematol. 1992;81:283–287.CrossRefGoogle ScholarPubMed
Schwartz, E, Cohen, A, Surrey, S. Overview of the β thalassemias: genetic and clinical aspects. Hemoglobin. 1988; 12:551–564.CrossRefGoogle ScholarPubMed
Semenza, GL, Delgrosso, K, Poncz, M, Mallidi, P, Schwartz, E, Surrey, S. The silent carrier allele: β thalassemia without a mutation in the β-globin gene or its immediate flanking regions. Cell. 1984;39:123–128.CrossRefGoogle ScholarPubMed
Thein, SL, Wood, WG, Wickramasinghe, SN, Galvin, MC. β-thalassemia unlinked to the β-globin gene in an English family. Blood. 1993;82:961–967.Google Scholar
Kazazian, HH. The thalassemia syndromes: molecular basis and prenatal diagnosis in 1990. Semin Hematol. 1990;27:209–228.Google ScholarPubMed
Galanello, R, Barella, S, Ideo, A, et al. Genotype of subjects with borderline hemoglobin A2 levels: Implication for β-thalassemia carrier screening. Am J Hematol. 1994;46:79–81.CrossRefGoogle ScholarPubMed
Weatherall, DJ, Clegg, JB. Thalassemia – a global public health problem. Nat Med. 1996;2(8):847–849.CrossRefGoogle ScholarPubMed
Cao, A, Galanello, R, Rosatelli, MC. Prenatal diagnosis and screening of the haemoglobinopathies. Clin Haematol. 1998;11:215–238.Google ScholarPubMed
Pootrakul, P, Kitcharoen, K, Yansukon, P, et al. The effect of erythroid hyperplasia on iron balance. Blood. 1988;71:1124–1129.Google ScholarPubMed
Fosburg, MT, Nathan, DG. Treatment of Cooley's anemia. Blood. 1990;76:435–444.Google ScholarPubMed
Cazzola, M, Borgna-Pignatti, C, Locatelli, F, Ponchio, L, Beguin, Y, De-Stefano, P. A moderate transfusion regimen may reduce iron loading in β-thalassemia major without producing excessive expansion of erythropoiesis. Transfusion. 1997;37:135–140.CrossRefGoogle ScholarPubMed
Piomelli, S, Seaman, C, Reibman, J, Tyrun, A, Graziano, J, Tabachnik, N. Separation of younger red cells with improved survival in vivo: an approach to chronic transfusion therapy. Proc Natl Acad Sci USA. 1978;75:3474–3478.CrossRefGoogle ScholarPubMed
Cohen, AR, Schmidt, JM, Martin, MB, Barnsley, W, Schwartz, E. Clinical trial of young red cell transfusions. J Pediatr. 1984;104:865–868.CrossRefGoogle ScholarPubMed
Simon, TL, Sohmer, P, Nelson, EF. Extended survival of neocytes produced by a new system. Transfusion. 1989;29:221–225.CrossRefGoogle ScholarPubMed
Kevy, SV, Jacobson, MS, Fosburg, M, et al. A new approach to neocyte transfusion: preliminary report. J Clin Apher. 1988;4:194–197.CrossRefGoogle ScholarPubMed
Spanos, T, Ladis, V, Palamidou, F, et al. The impact of neocyte transfusion in the management of thalasssaemia. Vox Sang. 1996;70:217–223.CrossRefGoogle Scholar
Collins, AF, Dias, GC, Haddad, S, et al. Evaluation of a new neocyte transfusion preparation vs. washed cell transfusion in patients with homozygous beta thalassemia. Transfusion. 1994;34:517–520.CrossRefGoogle Scholar
Graziano, JH, Piomelli, S, Hilgartner, M, et al. Chelation therapy in beta-thalassemia major. III. The role of splenectomy in achieving iron balance. J Pediatr. 1981;99:695–699.CrossRefGoogle ScholarPubMed
Okon, E, Levij, IS, Rachmilewitz, EA. Splenectomy, iron overload and liver cirrhosis in beta-thalassemia major. Acta Haematol. 1976;56:142–150.CrossRefGoogle ScholarPubMed
Pootrakul, P, Rugkiatsakul, R, Wasi, P. Increased tranbsferrin iron saturation in splenectomized thalassaemia patients. Br J Haematol. 1980;46:143–145.CrossRefGoogle Scholar
Borgna-Pignatti, C, Stefano, P, Bongo, IG, Avato, F, Cazzola, M. Spleen iron content is low in thalassemia. Am J Pediatr Hematol Oncol. 1984;6:340–343.Google ScholarPubMed
Politis, C, Spigos, DG, Georgiopoulou, P, et al. Partial splenic embolisation for hypersplenism of thalassaemia major: five year follow-up. Br Med J. 1987;294:665–667.CrossRefGoogle ScholarPubMed
Montalembert, M, Gitor, R, Revillon, Y, et al. Partial splenectomy in homozygous β thalassemia. Arch Dis Child. 1990;65:304–307.CrossRefGoogle Scholar
Kheradpir, MH, Albouyeh, M. Partial splenectomy in the treatment of thalassaemia major. Kinderchirurgie. 1985;40:195–198.Google ScholarPubMed
Porter, J, Huehns, ER. The toxic effects of desferrioxamine. Clin Haematol. 1989;2:459–474.Google ScholarPubMed
Loreal, O, Deugnier, Y, Moirand, R, et al. Liver fibrosis in genetic hemochromatosis. Respective roles of iron and non-iron related factors in 127 homozygous patients. J Hepatol. 1992;16:122–127.Google ScholarPubMed
Niederau, C, Fischer, R, Purschel, A, Stremmel, W, Haussinger, D, Strohmeyer, G. Long-term survival in patients with hereditary hemochromatosis. Gastroenterology. 1996;110:1304–1307.CrossRefGoogle ScholarPubMed
Cartwright, GE, Edwards, CQ, Kravitz, K, et al. Hereditary hemochromatosis: phenotypic expression of the disease. N Engl J Med. 1979;301:175–179.CrossRefGoogle ScholarPubMed
Araujo, A, Kosaryan, M, MacDowell, A, et al. A novel delivery system for continuous desferrioxamine infusion in transfusional iron overload. Br J Haematol. 1996;93:835–837.CrossRefGoogle ScholarPubMed
Lombardo, T, Frontini, V, Ferro, G, Sergi, P, Guidice, A, Lombardo, G. Laboratory evaluation of a new delivery system to improve patient compliance with chelation therapy. Clin Lab Haematol. 1996;18:13–17.CrossRefGoogle ScholarPubMed
Shalit, M, Tedeschi, A, Miadonna, A, Levi-Shaffer, A. Desferal (desferrioxamine) – A novel activator of connective tissue-type mast cells. J Allergy Clin Immunol. 1991;6:854–860.CrossRefGoogle Scholar
Bousquet, J, Navarro, M, Robert, G, Aye, P, Michel, FB. Rapid desensitization for desferrioxamine anaphylactoid reactions. Lancet. 1983;ii:859–860.CrossRefGoogle Scholar
Lombardo, T, Ferro, G, Frontini, V, Percolla, S. High-dose intravenous desferrioxamine (DFO) delivery in four thalassemic patients allergic to subcutaneous DFO administration. Am J Hematol. 1996;51:90–92.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Miller, KB, Rosenwasser, LJ, Bessette, JA, Beer, DJ, Rocklin, RE. Rapid desensitisation for desferrioxamine anaphylactic reaction. Lancet. 1981;i:1059.CrossRefGoogle Scholar
Davis, BA, Porter, JB. Long-term outcome of continuous 24-hour deferoxamine infusion via indwelling intravenous catheters in high-risk beta-thalassemia. Blood. 2000; 95(4):1229–1236.Google ScholarPubMed
Olivieri, NF. Long-term follow-up of body iron in patients with thalassemia major during therapy with the orally active iron chelator deferiprone (L1). Blood. 1996;88:310a.Google Scholar
Olivieri, NF. Randomized trial of deferiprone (L1) and deferoxamine (DFO) in thalssemia major. Blood. 1996;88:651a.Google Scholar
Hoffbrand, AV, al-Refaie, F, Davis, B, et al. Long-term trial of deferiprone in 51 transfusion-dependent iron overloaded patients. Blood. 1998;91:295–300.Google ScholarPubMed
Hoffbrand, AV, Cohen, A, Hershko, C. Role of deferiprone in chelation therapy for transfusional iron overload. Blood. 2003;102(1):17–24.CrossRefGoogle ScholarPubMed
Choudhry, VP, Pati, HP, Saxena, A, Malaviya, AN. Deferiprone, efficacy and safety. Indian J Pediatr. 2004;71(3):213–216.CrossRefGoogle ScholarPubMed
Borgna-Pignatti, C, Cappellini, MD, Stefano, P, et al. Cardiac morbidity and mortality in deferoxamine- or deferiprone-treated patients with thalassemia major. Blood. 2006;107(9):3733–3737.CrossRefGoogle ScholarPubMed
Pennell, DJ, Berdoukas, V, Karagiorga, M, et al. Randomized controlled trial of deferiprone or deferoxamine in beta-thalassemia major patients with asymptomatic myocardial siderosis. Blood. 2006;107(9):3738–3744.CrossRefGoogle ScholarPubMed
Neufeld, EJ. Oral chelators deferasirox and deferiprone for transfusional iron overload in thalassemia major: new data, new questions. Blood. 2006;107(9):3436–3441.CrossRefGoogle Scholar
Nisbet-Brown, E, Olivieri, NF, Giardina, PJ, et al. Effectiveness and safety of ICL670 in iron-loaded patients with thalassaemia: a randomised, double-blind, placebo-controlled, dose-escalation trial. Lancet. 2003;361(9369):1597–1602.CrossRefGoogle ScholarPubMed
Piga, A, Galanello, R, Cappellini, MD, et al. Phase II study of ICL670, an oral chelator, in adult thalassaemia patients with transfusional iron overload: efficacy, safety, pharmaco kinetics (PK) and pharmacodynamics (PD) after 18 months of therapy. Blood. 2003;102:121a (Abstract 412).Google Scholar
Weatherall, D, Kwiatkowski, D, Roberts, D. Hematologic manifestations of systemic disaeses in children of the developing world. In: Orkin, SH, Ginsburg, D, Nathan, DG, Look, AT, Fisher, , Lux, SE, eds. Nathan and Oski's Hematology of Infancy and Childhood. 7th ed. Elsevier; 2008:in press.Google Scholar
Tin, F, Magrin, S, Crax, A, Pagliaro, L. Interferon for non-A, non-B chronic hepatitis: a meta-analysis of randomized clinical trials. J Hepatol. 1991;13:192–199.CrossRefGoogle Scholar
Di Marco, V, Lo Iacono, O, Almasio, P, et al. Long-term efficacy of α-Interferon in β-thalassemics with chronic hepatitis C. Blood. 1997;90:2207–2212.Google ScholarPubMed
Donohue, SM, Wonke, B, Hoffbrand, AV, et al. Alpha interferon in the treatment of chronic hepatitis C infection in thalassaemia major. Br J Haematol. 1993;83:491–497.CrossRefGoogle ScholarPubMed
Preston, H, Wright, TL. Interferon therapy for hepatitis C. Lancet. 1996;348:973–974.CrossRefGoogle ScholarPubMed
Sherlock, S. Antiviral therapy for chronic hepatitis C viral infection. J Hepatol. 1995;23:3–7.Google ScholarPubMed
Butensky, E, Pakbaz, Z, Foote, D, Walters, MC, Vichinsky, EP, Harmatz, P. Treatment of hepatitis C virus infection in thalassemia. Ann NY Acad Sci. 2005;1054:290–299.CrossRefGoogle ScholarPubMed
Orvieto, R, Leichter, I, Rachmilewitz, EA, Margulies, JY. Bone density, mineral content, and cortical index in patients with thalassemia major and the correlation to their bone fractures, blood transfusions, and treatment with desferrioxamine. Calcif Tissue Int. 1992;50:397–399.CrossRefGoogle ScholarPubMed
Catanan, D, Akar, N, Arcasoy, A. Effects of calcitonin therapy on osteoporosis in patients with thalassemia. Acta Haematol. 1995;93:20–24.CrossRefGoogle Scholar
Saxon, BR, Rees, D, Olivieri, NF. Regression of extramedullary haemopoiesis and augmentation of fetal haemoglobin concentration during hydroxyurea therapy in β thalassaemia. Br J Haematol. 1998;101:416–419.CrossRefGoogle ScholarPubMed
Quek, L, Thein, SL. Molecular therapies in beta-thalassaemia. Br J Haematol. 2007;136(3):353–365.CrossRefGoogle ScholarPubMed
Olivieri, NF, Rees, DC, Ginder, GD, et al. Treatment of thalassaemia major with phenylbutyrate and hydroxyurea. Lancet. 1997;350:491–492.CrossRefGoogle ScholarPubMed
Efremov, DG, Efremov, GD, Zisovski, N, et al. Variation in clinical severity among patients with Hb Lepore-Boston-β-thalassaemia is related to the type of β-thalassaemia. Br J Haematol. 1988;68:351–355.CrossRefGoogle ScholarPubMed
Henthorn, PS, Smithies, O, Nakatsuji, T, et al. (Aγδβ)0-Thalassaemia in Blacks is due to a deletion of 34 kbp of DNA. Br J Haematol. 1985;59:343–356.CrossRefGoogle Scholar
Cao, A, Melis, MA, Galanello, R, et al. δβ(F)-thalassaemia in Sardinia. J Med Genet. 1982;19:184–192.CrossRefGoogle Scholar
Traeger-Synodinos, J, Tzetis, M, Kanavakis, E, Metaxotou-Mavromati, A, Kattamis, C. The Corfu δβ thalassaemia mutation in Greece: haematological phenotype and prevalence. Br J Haematol. 1991;79:302–305.CrossRefGoogle Scholar
Tzetis, M, Traeger-Synodinos, J, Kanavakis, E, Metaxotou-Mavromati, A, Kattamis, C. The molecular basis of normal Hb A2 (type 2) β-thalassemia in Greece. Hematol Pathol. 1994;8:25–34.Google Scholar
Trent, RJ, Williams, BG, Kearney, A, Wilkinson, T, Harris, PC. Molecular and hematologic characterization of Scottish-Irish type (εγδβ)0 thalassemia. Blood. 1990;76:2132–2138.Google Scholar
Charache, S, Clegg, JB, Weatherall, DJ. The Negro variety of hereditary persistence of fetal haemoglobin is a mild form of thalassaemia. Br J Haematol. 1976;34:527.CrossRefGoogle ScholarPubMed
Wainscoat, JS, Old, JM, Wood, WG, Trent, RJ, Weatherall, DJ. Characterization of an Indian (δβ)0 thalassaemia. Br J Haematol. 1984;58:353–360.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×