Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T13:33:36.407Z Has data issue: false hasContentIssue false

SECTION SEVEN - SPECIAL TOPICS IN HEMOGLOBINOPATHIES

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

Three chapters in this section, Population Genetics and Global Health Burden, Genetic Modulation of Sickle Cell Disease and Thalassemia, and Developments in Laboratory Methods to Detect Hemoglobinopathies, cover diverse subjects.

Without endemic malaria, the genes for HbS, HbC, HbE, and the thalassemias would not exist at polymorphic frequencies as the selective pressure from Plasmodium falciparum is so strong. Weatherall and Williams discuss the “Malaria hypothesis,” and the evidence that carriers of thalassemia and HbS, HbC, and HbE are protected from P. falciparum infection, although the mechanisms behind such protection are incompletely understood. The health burden of hemoglobinopathies and thalassemia is great, particularly in developing countries, and it is likely to increase as development proceeds. Many obstacles to providing genetic services are discussed, among them, the prioritization of scant healthcare resources and the problems posed by communicable disease and malnutrition, leaving hemoglobin disorders underserved.

Hemoglobinopathy detection is often a part of the evaluation of anemia and microcytosis. It should first be determined, using hemoglobin high-performance liquid chromatography, whether a variant hemoglobin is present, how abundant the variant is, and whether the variant is relevant to the clinical picture. With background information from the patient's history, studies of informative family members, physical examination, blood counts, and erythrocyte indices, high-performance liquid chromatography can suggest the genotype of sickle cell disease. Thalassemia mutations are multitudinous and only DNA-based studies can pinpoint the genotype of this disease.

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 623 - 624
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×