Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-14T02:42:54.051Z Has data issue: false hasContentIssue false

2 - Erythropoiesis

from SECTION ONE - THE MOLECULAR, CELLULAR, AND GENETIC BASIS OF HEMOGLOBIN DISORDERS

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

INTRODUCTION

Erythropoiesis involves the production of mature enucleated erythrocytes from committed erythroid progenitor cells, which in turn are derived from multilineage progenitors and ultimately from the hematopoietic stem cell (HSC). In human the mature erythrocytes turn over at a rate of approximately 1% per day and it can be estimated that maintaining the red blood cell count in an adult requires approximately 2.4 × 106 new erythrocytes to be produced each second. It is not surprising, therefore, that the regulation of erythropoiesis is a complex, multifaceted process that has to cope with not only maintaining the steady state but also with providing reserves to cope rapidly with increased demand as a result of physiological or pathological demands. In this chapter we will consider the developmental origins of red cell production, their differentiation from HSCs as well as production of the hormone erythropoietin. We will examine how erythropoietin responds to tissue hypoxia and exerts its effect through cell surface receptors on erythroid cells to trigger a number of cell signaling cascades to maintain, through critical transcription factors, the survival, proliferation, and maturation of the erythron.

ERYTHROPOIESIS DURING DEVELOPMENT

The first erythrocytes appearing during vertebrate development are known as primitive erythrocytes. These cells are produced by a transient first wave of hematopoiesis, which is almost entirely dedicated to the production of primitive red cells. Primitive erythropoiesis has been studied in evolutionary distant vertebrates, in particular in fish, amphibians, birds, and mammals.

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 24 - 45
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Driever, W, Solnica-Krezel, L, Schier, AF, et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development. 1996;123:37–46.Google ScholarPubMed
Heasman, J, Kofron, M, Wylie, C.Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev Biol. 2000;222(1):124–134.CrossRefGoogle ScholarPubMed
Ekker, SC. Morphants: a new systematic vertebrate functional genomics approach. Yeast. 2000;17(4):302–306.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Stuart, GW, McMurray, JV, Westerfield, M.Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development. 1988;103(2):403–412.Google ScholarPubMed
Motoike, T, Loughna, S, Perens, E, et al. Universal GFP reporter for the study of vascular development. Genesis. 2000;28(2):75–81.3.0.CO;2-S>CrossRefGoogle Scholar
Long, Q, Meng, A, Wang, H, Jessen, JR, Farrell, MJ, Lin, S. GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. Development. 1997;124(20):4105–4111.Google ScholarPubMed
Kobayashi, M, Nishikawa, K, Yamamoto, M.Hematopoietic regulatory domain of gata1 gene is positively regulated by GATA1 protein in zebrafish embryos. Development. 2001;128(12):2341–2350.Google ScholarPubMed
Bahary, N, Zon, LI. Use of the zebrafish (Danio rerio) to define hematopoiesis. Stem Cells. 1998;16(2):89–98.CrossRefGoogle ScholarPubMed
Orkin, SH, Zon, LI. Genetics of erythropoiesis: induced mutations in mice and zebrafish. Annu Rev Genet. 1997;31:33–60.CrossRefGoogle ScholarPubMed
Weinstein, BM, Schier, AF, Abdelilah, S, et al. Hematopoietic mutations in the zebrafish. Development. 1996;123:303–309.Google ScholarPubMed
Stainier, DY, Weinstein, BM, Detrich, HW 3rd, Zon LI, Fishman MC. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development. 1995;121(10):3141–3150.Google ScholarPubMed
Lyons, SE, Lawson, ND, Lei, L, Bennett, PE, Weinstein, BM, Liu, PP. A nonsense mutation in zebrafish gata1 causes the bloodless phenotype in vlad tepes. Proc Natl Acad Sci USA. 2002;99(8):5454–5459.CrossRefGoogle ScholarPubMed
Brownlie, A, Donovan, A, Pratt, SJ, et al. Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia. Nat Genet. 1998;20(3):244–250.CrossRefGoogle ScholarPubMed
Paw, BH, Davidson, AJ, Zhou, Y, et al. Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency. Nat Genet. 2003;34(1):59–64.CrossRefGoogle ScholarPubMed
Barut, BA, Zon, LI. Realizing the potential of zebrafish as a model for human disease. Physiol Genomics. 2000;2(2):49–51.CrossRefGoogle ScholarPubMed
Brownlie, A, Hersey, C, Oates, AC, et al. Characterization of embryonic globin genes of the zebrafish. Dev Biol. 2003;255(1):48–61.CrossRefGoogle ScholarPubMed
Murayama, E, Kissa, K, Zapata, A, et al. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity. 2006;25(6):963–975.CrossRefGoogle ScholarPubMed
Burns, CE, DeBlasio, T, Zhou, Y, Zhang, J, Zon, L, Nimer, SD. Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. Exp Hematol. 2002;30(12):1381–1389.CrossRefGoogle ScholarPubMed
Kalev–Zylinska, ML, Horsfield, JA, Flores, MV, et al. Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development. 2002;129(8):2015–2030.Google ScholarPubMed
Thompson, MA, Ransom, DG, Pratt, SJ, et al. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev Biol. 1998;197(2):248–269.CrossRefGoogle ScholarPubMed
Paffett-Lugassy, N, Hsia, N, Fraenkel, PG, et al. Functional conservation of erythropoietin signaling in zebrafish. Blood. 2007;110(7):2718–2726.CrossRefGoogle ScholarPubMed
Tata, JR. Early metamorphic competence of Xenopus larvae. Dev Biol. 1968;18(5):415–440.CrossRefGoogle ScholarPubMed
Nieuwkoop, PD. The organization center of the amphibian embryo: its origin, spatial organization, and morphogenetic action. Adv Morphog. 1973;10:1–39.Google ScholarPubMed
Ciau-Uitz, A, Walmsley, M, Patient, R. Distinct origins of adult and embryonic blood in Xenopus. Cell. 2000;102(6):787–796.CrossRefGoogle ScholarPubMed
Walmsley, M, Ciau-Uitz, A, Patient, R. Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus. Development. 2002;129(24):5683–5695.CrossRefGoogle ScholarPubMed
Beck, CW, JM, Slack. An amphibian with ambition: a new role for Xenopus in the 21st century. Genome Biol. 2001;2(10):REVIEWS1029.CrossRefGoogle ScholarPubMed
Godin, IE, Garcia-Porrero, JA, Coutinho, A, Dieterlen-Lievre, F, Marcos, MA. Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature. 1993;364(6432):67–70.CrossRefGoogle ScholarPubMed
Chegini, N, Aleporou, V, Bell, G, Hilder, VA, Maclean, N. Production and fate of erythroid cells in anaemic Xenopus laevis. J Cell Sci. 1979;35:403–415.Google ScholarPubMed
Guillemot, FP, Oliver, PD, Peault, BM, Le Douarin NM. Cells expressing Ia antigens in the avian thymus. J Exp Med. 1984;160(6):1803–1819.CrossRefGoogle ScholarPubMed
Peault, BM, Thiery, JP, Douarin, NM. Surface marker for hemopoietic and endothelial cell lineages in quail that is defined by a monoclonal antibody. Proc Natl Acad Sci USA. 1983;80(10):2976–2980.CrossRefGoogle ScholarPubMed
Dieterlen-Lievre, F.On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J Embryol Exp Morphol. 1975;33(3):607–619.Google Scholar
Caprioli, A, Jaffredo, T, Gautier, R, Dubourg, C, Dieterlen-Lievre, F.Blood-borne seeding by hematopoietic and endothelial precursors from the allantois. Proc Natl Acad Sci USA. 1998;95(4):1641–1646.CrossRefGoogle ScholarPubMed
Samarut, J, Bouabdelli, M. In vitro development of CFU-E and BFU-E in cultures of embryonic and postembryonic chicken hematopoietic cells. J Cell Physiol. 1980;105(3):553–563.CrossRefGoogle Scholar
Szenberg, A. Ontogeny of myelopoietic precursor cells in the chicken embryo. Adv Exp Med Biol. 1977;88:3–11.Google ScholarPubMed
Dolan, M, Sugarman, BJ, Dodgson, JB, Engel, JD. Chromosomal arrangement of the chicken beta-type globin genes. Cell. 1981;24(3):669–677.CrossRefGoogle ScholarPubMed
Hansen, DA, Seftor, EA, DeKloe, J, McCabe, JB, Tobin, AJ. Developmental regulation of globin and nonglobin messenger RNAs in avian erythroid cells. Dev Biol. 1984;102(2):278–289.CrossRefGoogle ScholarPubMed
Dieterlen-Lievre, F, Pouget, C, Bollerot, K, Jaffredo, T. Are intra-aortic hemopoietic cells derived from endothelial cells during ontogeny? Trends Cardiovasc Med. 2006;16(4):128–139.CrossRefGoogle ScholarPubMed
Brotherton, TW, Chui, DH, Gauldie, J, Patterson, M. Hemoglobin ontogeny during normal mouse fetal development. Proc Natl Acad Sci USA. 1979;76(6):2853–2857.CrossRefGoogle ScholarPubMed
Lin, CS, Lim, SK, Agati, V, Costantini, F.Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes Dev. 1996;10(2):154–164.CrossRefGoogle ScholarPubMed
Fraser, ST, Isern, J, Baron, MH. Maturation and enucleation of primitive erythroblasts during mouse embryogenesis is accompanied by changes in cell-surface antigen expression. Blood. 2007;109(1):343–352.CrossRefGoogle ScholarPubMed
Socolovsky, M. Molecular insights into stress erythropoiesis. Curr Opin Hematol. 2007;14(3):215–224.CrossRefGoogle ScholarPubMed
Boyer, SH, Belding, TK, Margolet, L, Noyes, AN. Fetal hemoglobin restriction to a few erythrocytes (F cells) in normal human adults. Science. 1975;188(4186):361–363.CrossRefGoogle Scholar
Papayannopoulou, T, Brice, M, Stamatoyannopoulos, G. Hemoglobin F synthesis in vitro: evidence for control at the level of primitive erythroid stem cells. Proc Natl Acad Sci USA. 1977;74(7):2923–2927.CrossRefGoogle ScholarPubMed
Stamatoyannopoulos, G. Control of globin gene expression during development and erythroid differentiation. Exp Hematol. 2005;33(3):259–271.CrossRefGoogle ScholarPubMed
Dillon, N, Grosveld, F. Human gamma-globin genes silenced independently of other genes in the betaglobin locus. Nature. 1991;350(6315):252–254.CrossRefGoogle Scholar
Strouboulis, J, Dillon, N, Grosveld, F. Developmental regulation of a complete 70-kb human beta-globin locus in transgenic mice. Genes Dev. 1992;6(10):1857–1864.CrossRefGoogle ScholarPubMed
Berry, M, Grosveld, F, Dillon, N. A single point mutation is the cause of the Greek form of hereditary persistence of fetal haemoglobin. Nature. 1992;358(6386):499–502.CrossRefGoogle ScholarPubMed
Peterson, KR, Li, QL, Clegg, CH, et al. Use of yeast artificial chromosomes (YACs) in studies of mammalian development: production of beta-globin locus YAC mice carrying human globin developmental mutants. Proc Natl Acad Sci USA. 1995;92(12):5655–5659.CrossRefGoogle ScholarPubMed
Buza-Vidas, N, Luc, S, Jacobsen, SE. Delineation of the earliest lineage commitment steps of haematopoietic stem cells: new developments, controversies and major challenges. Curr Opin Hematol. 2007;14(4):315–321.CrossRefGoogle ScholarPubMed
Hu, M, Krause, D, Greaves, M, et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 1997;11(6):774–785.CrossRefGoogle ScholarPubMed
Akashi, K, Traver, D, Miyamoto, T, Weissman, IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404(6774):193–197.CrossRefGoogle ScholarPubMed
Kondo, M, Weissman, IL, Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell. 1997;91(5):661–672.CrossRefGoogle ScholarPubMed
Manz, MG, Miyamoto, T, Akashi, K, Weissman, IL. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci USA. 2002;99(18):11872–11877.CrossRefGoogle ScholarPubMed
Adolfsson, J, Mansson, R, Buza-Vidas, N, et al. Identification of Flt3+lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell. 2005;121(2):295–306.CrossRefGoogle ScholarPubMed
Mansson, R, Hultquist, A, Luc, S, et al. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity. 2007;26(4):407–419.CrossRefGoogle ScholarPubMed
Pronk, CJH, Rossi, DJ, Mansson, R, et al. Elucidation of the phenotypic, functional and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell. 2007;1:428–442.CrossRefGoogle ScholarPubMed
Ye, M, Graf, T. Early decisions in lymphoid development. Curr Opin Immunol. 2007;19(2):123–128.CrossRefGoogle ScholarPubMed
Murre, C. Defining the pathways of early adult hematopoiesis. Cell Stem Cell. 2007;1:357–358.CrossRefGoogle ScholarPubMed
Migliaccio, A, Papayannopoulou, T. Erythropoiesis. In: Steinberg, MH, Forget, BG, Higgs, DR, Nagel, RL, eds. Disorders of Hemoglobin: Genetics, Pathophysiology and Clinical Management. Cambridge, UK: Cambridge University Press; 2001:52–71.Google Scholar
Dolznig, H, Boulme, F, Stangl, K, et al. Establishment of normal, terminally differentiating mouse erythroid progenitors: molecular characterization by cDNA arrays. Faseb J. 2001;15(8):1442–1444.CrossRefGoogle ScholarPubMed
Fibach, E, Manor, D, Oppenheim, A, Rachmilewitz, EA. Proliferation and maturation of human erythroid progenitors in liquid culture. Blood. 1989;73(1):100–103.Google ScholarPubMed
Migliaccio, G, Di Pietro, R, Giacomo, V, et al. In vitro mass production of human erythroid cells from the blood of normal donors and of thalassemic patients. Blood Cells Mol Dis. 2002;28(2):169–180.CrossRefGoogle ScholarPubMed
Pilat, S, Carotta, S, Schiedlmeier, B, et al. HOXB4 enforces equivalent fates of ES-cell-derived and adult hematopoietic cells. Proc Natl Acad Sci USA. 2005;102(34):12101–12106.CrossRefGoogle ScholarPubMed
Carotta, S, Pilat, S, Mairhofer, A, et al. Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells. Blood. 2004;104(6):1873–1880.CrossRefGoogle ScholarPubMed
Olivier, EN, Qiu, C, Velho, M, Hirsch, RE, Bouhassira, EE. Large-scale production of embryonic red blood cells from human embryonic stem cells. Exp Hematol. 2006;34(12):1635–1642.CrossRefGoogle ScholarPubMed
Neildez-Nguyen, TM, Wajcman, H, Marden, MC, et al. Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat Biotechnol. 2002;20(5):467–472.CrossRefGoogle ScholarPubMed
Giarratana, MC, Kobari, L, Lapillonne, H, et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol. 2005;23(1):69–74.CrossRefGoogle ScholarPubMed
Douay, L, Andreu, G. Ex vivo production of human red blood cells from hematopoietic stem cells: what is the future in transfusion? Transfus Med Rev. 2007;21(2):91–100.CrossRefGoogle ScholarPubMed
Nijhof, W, Wierenga, PK. Isolation and characterization of the erythroid progenitor cell: CFU-E. J Cell Biol. 1983;96(2):386–392.CrossRefGoogle ScholarPubMed
Wu, H, Klingmuller, U, Besmer, P, Lodish, HF. Interaction of the erythropoietin and stem-cell-factor receptors. Nature. 1995;377(6546):242–246.CrossRefGoogle ScholarPubMed
Wang, GL, Jiang, BH, Rue, EA, Semenza, GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;92(12):5510–5514.CrossRefGoogle ScholarPubMed
Jaakkola, P, Mole, DR, Tian, YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–472.CrossRefGoogle ScholarPubMed
Schofield, CJ, Ratcliffe, PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5(5):343–354.CrossRefGoogle ScholarPubMed
Bunn, HF, Gu, J, Huang, , Park, JW, Zhu, H. Erythropoietin: a model system for studying oxygendependent gene regulation. J Exp Biol. 1998;201(Pt 8):1197–1201.Google Scholar
Galson, DL, Tsuchiya, T, Tendler, DS, et al. The orphan receptor hepatic nuclear factor 4 functions as a transcriptional activator for tissue-specific and hypoxia-specific erythropoietin gene expression and is antagonized by EAR3/COUP-TF1. Mol Cell Biol. 1995;15(4):2135–2144.CrossRefGoogle ScholarPubMed
Fisher, JW. Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood). 2003;228(1):1–14.CrossRefGoogle ScholarPubMed
Ebert, BL, Bunn, HF. Regulation of the erythropoietin gene. Blood. 1999;94(6):1864–1877.Google ScholarPubMed
Wojchowski, DM, Gregory, RC, Miller, CP, Pandit, AK, Pircher, TJ. Signal transduction in the erythropoietin receptor system. Exp Cell Res. 1999;253(1):143–156.CrossRefGoogle ScholarPubMed
Suzuki, N, Obara, N, Yamamoto, M. Use of gene-manipulated mice in the study of erythropoietin gene expression. Meth Enzymol. 2007;435:157–177.CrossRefGoogle Scholar
Bunn, HF. New agents that stimulate erythropoiesis. Blood. 2007;109(3):868–873.CrossRefGoogle ScholarPubMed
Jelkmann, W. Erythropoietin after a century of research: younger than ever. Eur J Haematol. 2007;78(3):183–205.CrossRefGoogle Scholar
Watowich, SS, Wu, H, Socolovsky, M, Klingmuller, U, Constantinescu, SN, Lodish, HF. Cytokine receptor signal transduction and the control of hematopoietic cell development. Annu Rev Cell Dev Biol. 1996;12:91–128.CrossRefGoogle ScholarPubMed
Zang, H, Sato, K, Nakajima, H, McKay, C, Ney, PA, Ihle, JN. The distal region and receptor tyrosines of the Epo receptor are non-essential for in vivo erythropoiesis. Embo J. 2001;20(12):3156–3166.CrossRefGoogle ScholarPubMed
Fang, J, Menon, M, Kapelle, W, et al. EPO modulation of cell-cycle regulatory genes, and cell division, in primary bone marrow erythroblasts. Blood. 2007;110:2361–2370.CrossRefGoogle ScholarPubMed
Li, K, Menon, MP, Karur, VG, Hegde, S, Wojchowski, DM. Attenuated signaling by a phosphotyrosine-null Epo receptor form in primary erythroid progenitor cells. Blood. 2003;102(9):3147–3153.CrossRefGoogle ScholarPubMed
Kadri, Z, Maouche-Chretien, L, Rooke, HM, et al. Phosphatidylinositol 3-kinase/Akt induced by erythropoietin renders the erythroid differentiation factor GATA-1 competent for TIMP-1 gene transactivation. Mol Cell Biol. 2005;25(17):7412–7422.CrossRefGoogle ScholarPubMed
Zhao, W, Kitidis, C, Fleming, MD, Lodish, HF, Ghaffari, S. Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood. 2006;107(3):907–915.CrossRefGoogle ScholarPubMed
Rooke, HM, Orkin, SH. Phosphorylation of Gata1 at serine residues 72, 142, and 310 is not essential for hematopoiesis in vivo. Blood. 2006;107(9):3527–3530.CrossRefGoogle Scholar
Kralovics, R, Indrak, K, Stopka, T, Berman, BW, Prchal, JF, Prchal, JT. Two new EPO receptor mutations: truncated EPO receptors are most frequently associated with primary familial and congenital polycythemias. Blood. 1997;90(5):2057–2061.Google ScholarPubMed
Chapelle, A, Sistonen, P, Lehvaslaiho, H, Ikkala, E, Juvonen, E. Familial erythrocytosis genetically linked to erythropoietin receptor gene. Lancet. 1993;341(8837):82–84.CrossRefGoogle ScholarPubMed
Baxter, EJ, Scott, LM, Campbell, PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–1061.CrossRefGoogle ScholarPubMed
James, C, Ugo, V, Couedic, JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–1148.CrossRefGoogle ScholarPubMed
Rhodes, MM, Kopsombut, P, Bondurant, MC, Price, JO, Koury, MJ. Bcl-x(L) prevents apoptosis of late stage erythroblasts but does not mediate the antiapoptotic effect of erythropoietin. Blood. 2005;106(5):1857–1863.CrossRefGoogle Scholar
Wagner, KU, Claudio, E, Rucker, EB 3rd, et al. Conditional deletion of the Bcl-x gene from erythroid cells results in hemolytic anemia and profound splenomegaly. Development. 2000;127(22):4949–4958.Google ScholarPubMed
Motoyama, N, Wang, F, Roth, KA, et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science. 1995;267(5203):1506–1510.CrossRefGoogle ScholarPubMed
Wu, H, Liu, X, Jaenisch, R, Lodish, HF. Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell. 1995;83(1):59–67.CrossRefGoogle ScholarPubMed
Neubauer, H, Cumano, A, Muller, M, Wu, H, Huffstadt, U, Pfeffer, K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998;93(3):397–409.CrossRefGoogle ScholarPubMed
Parganas, E, Wang, D, Stravopodis, D, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93(3):385–395.CrossRefGoogle ScholarPubMed
Socolovsky, M, Fallon, AE, Wang, S, Brugnara, C, Lodish, HF. Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for Stat5 in Bcl-X(L) induction. Cell. 1999;98(2):181–191.CrossRefGoogle ScholarPubMed
Huddleston, H, Tan, B, Yang, FC, et al. Functional p85alpha gene is required for normal murine fetal erythropoiesis. Blood. 2003;102(1):142–145.CrossRefGoogle ScholarPubMed
Munugalavadla, V, Kapur, R. Role of c-Kit and erythropoietin receptor in erythropoiesis. Crit Rev Oncol Hematol. 2005;54(1):63–75.CrossRefGoogle ScholarPubMed
Blanchard, KL, Acquaviva, AM, Galson, DL, Bunn, HF. Hypoxic induction of the human erythropoietin gene: cooperation between the promoter and enhancer, each of which contains steroid receptor response elements. Mol Cell Biol. 1992;12(12):5373–5385.CrossRefGoogle ScholarPubMed
Gordon, AS, Zanjani, ED, Levere, RD, Kappas, A. Stimulation of mammalian erythropoiesis by 5beta-H steroid metabolites. Proc Natl Acad Sci USA. 1970;65(4):919–924.CrossRefGoogle ScholarPubMed
Singer, JW, Adamson, JW. Steroids and hematopoiesis. II. The effect of steroids on in vitro erythroid colony growth: evidence for different target cells for different classes of steroids. J Cell Physiol. 1976;88(2):135–143.CrossRefGoogle ScholarPubMed
Singer, JW, Samuels, AI, Adamson, JW. Steroids and hematopoiesis. I. The effect of steroids on in vitro erythroid colony growth: structure/activity relationships. J Cell Physiol. 1976;88(2):127–134.CrossRefGoogle ScholarPubMed
Lindern, M, Zauner, W, Mellitzer, G, et al. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood. 1999;94(2):550–559.Google Scholar
Leberbauer, C, Boulme, F, Unfried, G, Huber, J, Beug, H, Mullner, EW. Different steroids co-regulate longterm expansion versus terminal differentiation in primary human erythroid progenitors. Blood. 2005;105(1):85–94.CrossRefGoogle Scholar
Dainiak, N, Hoffman, R, Maffei, , Forget, BG. Potentiation of human erythropoiesis in vitro by thyroid hormone. Nature. 1978;272(5650):260–262.CrossRefGoogle ScholarPubMed
Golde, DW, Bersch, N, Chopra, IJ, Cline, MJ. Thyroid hormones stimulate erythropoiesis in vitro. Br J Haematol. 1977;37(2):173–177.CrossRefGoogle ScholarPubMed
Popovic, WJ, Brown, JE, Adamson, JW. The influence of thyroid hormones on in vitro erythropoiesis. Mediation by a receptor with beta adrenergic properties. J Clin Invest. 1977;60(4):907–913.CrossRefGoogle ScholarPubMed
Angelin-Duclos, C, Domenget, C, Kolbus, A, Beug, H, Jurdic, P, Samarut, J. Thyroid hormone T3 acting through the thyroid hormone alpha receptor is necessary for implementation of erythropoiesis in the neonatal spleen environment in the mouse. Development. 2005;132(5):925–934.CrossRefGoogle ScholarPubMed
Bessis, M. L'ilot erythroblastique, unite fonctionnelle de la moelle osseuse. Rev Hematol. 1958;13(1):8–11.Google Scholar
Soni, S, Bala, S, Gwynn, B, Sahr, KE, Peters, LL, Hanspal, M. Absence of erythroblast macrophage protein (Emp) leads to failure of erythroblast nuclear extrusion. J Biol Chem. 2006;281(29):20181–20189.CrossRefGoogle ScholarPubMed
Koury, ST, Koury, MJ, Bondurant, MC. Cytoskeletal distribution and function during the maturation and enucleation of mammalian erythroblasts. J Cell Biol. 1989;109(6 Pt 1):3005–3013.CrossRefGoogle ScholarPubMed
Liu, XS, Li, XH, Wang, Y, et al. Disruption of palladin leads to defects in definitive erythropoiesis by interfering erythroblastic island formation in mouse fetal liver. Blood. 2007;110:870–876.CrossRefGoogle ScholarPubMed
Kawane, K, Fukuyama, H, Kondoh, G, et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science. 2001;292(5521):1546–1549.CrossRefGoogle ScholarPubMed
Yoshida, H, Okabe, Y, Kawane, K, Fukuyama, H, Nagata, S. Lethal anemia caused by interferon-beta produced in mouse embryos carrying undigested DNA. Nat Immunol. 2005;6(1):49–56.CrossRefGoogle ScholarPubMed
Lee, G, Lo, A, Short, SA, et al. Targeted gene deletion demonstrates that the cell adhesion molecule ICAM-4 is critical for erythroblastic island formation. Blood. 2006;108(6):2064–2071.CrossRefGoogle ScholarPubMed
Scott, LM, Priestley, GV, Papayannopoulou, T. Deletion of alpha4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing. Mol Cell Biol. 2003;23(24):9349–9360.CrossRefGoogle ScholarPubMed
Maria, R, Zeuner, A, Eramo, A, et al. Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1. Nature. 1999;401(6752):489–493.CrossRefGoogle ScholarPubMed
Ribeil, JA, Zermati, Y, Vandekerckhove, J, et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature. 2007;445(7123):102–105.CrossRefGoogle ScholarPubMed
Zeuner, A, Eramo, A, Testa, U, et al. Control of erythroid cell production via caspase-mediated cleavage of transcription factor SCL/Tal-1. Cell Death Differ. 2003;10(8):905–913.CrossRefGoogle ScholarPubMed
Papadaki, HA, Kritikos, HD, Valatas, V, Boumpas, DT, Eliopoulos, GD. Anemia of chronic disease in rheumatoid arthritis is associated with increased apoptosis of bone marrow erythroid cells: improvement following anti-tumor necrosis factor-alpha antibody therapy. Blood. 2002;100(2):474–482.CrossRefGoogle ScholarPubMed
Centis, F, Tabellini, L, Lucarelli, G, et al. The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with beta-thalassemia major. Blood. 2000;96(10):3624–3629.Google ScholarPubMed
Mathias, , Fisher, TC, Zeng, L, et al. Ineffective erythropoiesis in beta-thalassemia major is due to apoptosis at the polychromatophilic normoblast stage. Exp Hematol. 2000;28(12):1343–1353.CrossRefGoogle ScholarPubMed
Pootrakul, P, Sirankapracha, P, Hemsorach, S, et al. A correlation of erythrokinetics, ineffective erythropoiesis, and erythroid precursor apoptosis in thai patients with thalassemia. Blood. 2000;96(7):2606–2612.Google ScholarPubMed
Wanachiwanawin, W, Wiener, E, Siripanyaphinyo, U, et al. Serum levels of tumor necrosis factor-alpha, interleukin-1, and interferon-gamma in beta(o)-thalassemia/HbE and their clinical significance. J Interferon Cytokine Res. 1999;19(2):105–111.CrossRefGoogle ScholarPubMed
Yoshida, H, Kawane, K, Koike, M, Mori, Y, Uchiyama, Y, Nagata, S. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature. 2005;437(7059):754–758.CrossRefGoogle ScholarPubMed
Whyatt, D, Lindeboom, F, Karis, A, et al. An intrinsic but cell-nonautonomous defect in GATA-1-overexpressing mouse erythroid cells. Nature. 2000;406(6795):519–524.Google ScholarPubMed
Gutierrez, L, Lindeboom, F, Langeveld, A, Grosveld, F, Philipsen, S, Whyatt, D. Homotypic signalling regulates Gata1 activity in the erythroblastic island. Development. 2004;131(13):3183–3193.CrossRefGoogle ScholarPubMed
Syed, RS, Reid, SW, Li, C, et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature. 1998;395(6701):511–516.CrossRefGoogle ScholarPubMed
Lenox, , Perry, JM, Paulson, RF. BMP4 and Madh5 regulate the erythroid response to acute anemia. Blood. 2005;105(7):2741–2748.CrossRefGoogle ScholarPubMed
Socolovsky, M, Nam, H, Fleming, MD, Haase, VH, Brugnara, C, Lodish, HF. Ineffective erythropoiesis in Stat5a(−/−)5b(−/−) mice due to decreased survival of early erythroblasts. Blood. 2001;98(12):3261–3273.CrossRefGoogle ScholarPubMed
Menon, MP, Karur, V, Bogacheva, O, Bogachev, O, Cuetara, B, Wojchowski, DM. Signals for stress erythropoiesis are integrated via an erythropoietin receptor–phosphotyrosine-343-Stat5 axis. J Clin Invest. 2006;116(3):683–694.CrossRefGoogle ScholarPubMed
Bauer, A, Tronche, F, Wessely, O, et al. The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev. 1999;13(22):2996–3002.CrossRefGoogle ScholarPubMed
Tong, W, Zhang, J, Lodish, HF. Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood. 2005;105(12):4604–4612.CrossRefGoogle ScholarPubMed
Liu, Y, Pop, R, Sadegh, C, Brugnara, C, Haase, VH, Socolovsky, M. Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood. 2006;108(1):123–133.CrossRefGoogle ScholarPubMed
Shivdasani, RA, Mayer, EL, Orkin, SH. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature. 1995;373(6513):432–434.CrossRefGoogle ScholarPubMed
Porcher, C, Swat, W, Rockwell, K, Fujiwara, Y, Alt, FW, Orkin, SH. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell. 1996;86(1):47–57.CrossRefGoogle Scholar
Robb, L, Lyons, I, Li, R, et al. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci USA. 1995;92(15):7075–7079.CrossRefGoogle ScholarPubMed
Robb, L, Elwood, NJ, Elefanty, AG, et al. The scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J. 1996;15(16):4123–4129.Google ScholarPubMed
Tsai, FY, Keller, G, Kuo, FC, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994;371(6494):221–226.CrossRefGoogle ScholarPubMed
Tsai, FY, Orkin, SH. Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood. 1997;89(10):3636–3643.Google Scholar
Okuda, T, Deursen, J, Hiebert, SW, Grosveld, G, Downing, JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996;84(2):321–330.CrossRefGoogle ScholarPubMed
Huang, G, Zhang, P, Hirai, H, et al. PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nat Genet. 2008;40:51–60.CrossRefGoogle ScholarPubMed
Nerlov, C, Graf, T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev. 1998;12(15):2403–2412.CrossRefGoogle ScholarPubMed
Scott, EW, Simon, MC, Anastasi, J, Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science. 1994;265(5178):1573–1577.CrossRefGoogle ScholarPubMed
Ferreira, R, Ohneda, K, Yamamoto, M, Philipsen, S. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol. 2005;25(4):1215–1227.CrossRefGoogle ScholarPubMed
Fujiwara, Y, Browne, CP, Cunniff, K, Goff, SC, Orkin, SH. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci USA. 1996;93(22):12355–12358.CrossRefGoogle ScholarPubMed
Takahashi, S, Onodera, K, Motohashi, H, et al. Arrest in primitive erythroid cell development caused by promoter-specific disruption of the GATA-1 gene. J Biol Chem. 1997;272(19):12611–12615.CrossRefGoogle ScholarPubMed
McDevitt, MA, Shivdasani, RA, Fujiwara, Y, Yang, H, Orkin, SH. A “knockdown” mutation created by ciselement gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. Proc Natl Acad Sci USA. 1997;94(13):6781–6785.CrossRefGoogle Scholar
Gregory, T, Yu, C, Ma, A, Orkin, SH, Blobel, GA, Weiss, MJ. GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood. 1999;94(1):87–96.Google ScholarPubMed
Whyatt, DJ, Karis, A, Harkes, IC, et al. The level of the tissue-specific factor GATA-1 affects the cell-cycle machinery. Genes Funct. 1997;1(1):11–24.CrossRefGoogle ScholarPubMed
Rylski, M, Welch, JJ, Chen, YY, et al. GATA-1-mediated proliferation arrest during erythroid maturation. Mol Cell Biol. 2003;23(14):5031–5042.CrossRefGoogle ScholarPubMed
Kulessa, H, Frampton, J, Graf, T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev. 1995;9(10):1250–1262.CrossRefGoogle ScholarPubMed
Hirasawa, R, Shimizu, R, Takahashi, S, et al. Essential and instructive roles of GATA factors in eosinophil development. J Exp Med. 2002;195(11):1379–1386.CrossRefGoogle ScholarPubMed
Heyworth, C, Gale, K, Dexter, M, May, G, Enver, T. A GATA-2/estrogen receptor chimera functions as a ligand-dependent negative regulator of self-renewal. Genes Dev. 1999;13(14):1847–1860.CrossRefGoogle ScholarPubMed
Iwasaki, H, Mizuno, S, Wells, RA, Cantor, AB, Watanabe, S, Akashi, K. GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages. Immunity. 2003;19(3):451–462.CrossRefGoogle ScholarPubMed
Crossley, M, Merika, M, Orkin, SH. Self-association of the erythroid transcription factor GATA-1 mediated by its zinc finger domains. Mol Cell Biol. 1995;15(5):2448–2456.CrossRefGoogle ScholarPubMed
Merika, M, Orkin, SH. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF. Mol Cell Biol. 1995;15(5):2437–2447.CrossRefGoogle ScholarPubMed
Tsang, AP, Visvader, JE, Turner, CA, et al. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell. 1997;90(1):109–19.CrossRefGoogle ScholarPubMed
Rekhtman, N, Radparvar, F, Evans, T, Skoultchi, AI. Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. Genes Dev. 1999;13(11):1398–1411.CrossRefGoogle ScholarPubMed
Boyes, J, Byfield, P, Nakatani, Y, Ogryzko, V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature. 1998;396(6711):594–598.CrossRefGoogle ScholarPubMed
Blobel, GA, Nakajima, T, Eckner, R, Montminy, M, Orkin, SH. CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc Natl Acad Sci USA. 1998;95(5):2061–2066.CrossRefGoogle ScholarPubMed
Rodriguez, P, Bonte, E, Krijgsveld, J, et al. GATA-1 forms distinct activating and repressive complexes in erythroid cells. EMBO J. 2005;24(13):2354–2366.CrossRefGoogle ScholarPubMed
Stumpf, M, Waskow, C, Krotschel, M, et al. The mediator complex functions as a coactivator for GATA-1 in erythropoiesis via subunit Med1/TRAP220. Proc Natl Acad Sci USA. 2006;103(49):18504–18509.CrossRefGoogle ScholarPubMed
Welch, JJ, Watts, JA, Vakoc, CR, et al. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood. 2004;104(10):3136–3147.CrossRefGoogle ScholarPubMed
Tubman, VN, Levine, JE, Campagna, DR, et al. X-linked gray platelet syndrome due to a GATA1 Arg216Gln mutation. Blood. 2007;109(8):3297–3299.CrossRefGoogle ScholarPubMed
Freson, K, Devriendt, K, Matthijs, G, et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood. 2001;98(1):85–92.CrossRefGoogle ScholarPubMed
Freson, K, Matthijs, G, Thys, C, et al. Different substitutions at residue D218 of the X-linked transcription factor GATA1 lead to altered clinical severity of macrothrombocytopenia and anemia and are associated with variable skewed X inactivation. Hum Mol Genet. 2002;11(2):147–152.CrossRefGoogle ScholarPubMed
Nichols, KE, Crispino, JD, Poncz, M, et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet. 2000;24(3):266–270.CrossRefGoogle Scholar
Yu, C, Niakan, KK, Matsushita, M, Stamatoyannopoulos G, Orkin SH, Raskind WH. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood. 2002;100(6):2040–2045.CrossRefGoogle ScholarPubMed
Balduini, CL, Pecci, A, Loffredo, G, et al. Effects of the R216Q mutation of GATA-1 on erythropoiesis and megakaryocytopoiesis. Thromb Haemost. 2004;91(1):129–140.Google ScholarPubMed
Wechsler, J, Greene, M, McDevitt, MA, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet. 2002;32(1):148–152.CrossRefGoogle ScholarPubMed
Hollanda, LM, Lima, CS, Cunha, AF, et al. An inherited mutation leading to production of only the short isoform of GATA-1 is associated with impaired erythropoiesis. Nat Genet. 2006;38(7):807–812.CrossRefGoogle ScholarPubMed
Southwood, CM, Downs, KM, Bieker, JJ. Erythroid Kruppel-like factor exhibits an early and sequentially localized pattern of expression during mammalian erythroid ontogeny. Dev Dyn. 1996;206(3):248–259.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Crossley, M, Tsang, AP, Bieker, JJ, Orkin, SH. Regulation of the erythroid Kruppel-like factor (EKLF) gene promoter by the erythroid transcription factor GATA-1. J Biol Chem. 1994;269(22):15440–15444.Google ScholarPubMed
Philipsen, S, Talbot, D, Fraser, P, Grosveld, F. The beta-globin dominant control region: hypersensitive site 2. EMBO J. 1990;9(7):2159–2167.Google ScholarPubMed
Miller, IJ, Bieker, JJ. A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol. 1993;13(5):2776–2786.CrossRefGoogle ScholarPubMed
Faustino, P, Lavinha, J, Marini, MG, Moi, P. beta-Thalassemia mutation at −90C–>T impairs the interaction of the proximal CACCC box with both erythroid and nonerythroid factors. Blood. 1996;88(8):3248–3249.Google Scholar
Feng, WC, Southwood, CM, Bieker, JJ. Analyses of beta-thalassemia mutant DNA interactions with erythroid Kruppel-like factor (EKLF), an erythroid cell-specific transcription factor. J Biol Chem. 1994;269(2):1493–1500.Google Scholar
Orkin, SH, Antonarakis, SE, Kazazian, HHBase substitution at position -88 in a beta-thalassemic globin gene. Further evidence for the role of distal promoter element ACACCC. J Biol Chem. 1984;259(14):8679–8681.Google Scholar
Donze, D, Townes, TM, Bieker, JJ. Role of erythroid Kruppel-like factor in human gamma- to beta-globin gene switching. J Biol Chem. 1995;270(4):1955–1959.CrossRefGoogle ScholarPubMed
Perkins, AC, Sharpe, AH, Orkin, SH. Lethal beta-thalassaemia in mice lacking the erythroid CACCC transcription factor EKLF. Nature. 1995;375(6529):318–322.CrossRefGoogle ScholarPubMed
Nuez, B, Michalovich, D, Bygrave, A, Ploemacher, R, Grosveld, F. Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature. 1995;375(6529):316–318.CrossRefGoogle ScholarPubMed
Zhou, D, Pawlik, KM, Ren, J, Sun, CW, Townes, TM. Differential binding of erythroid Krupple-like factor to embryonic/fetal globin gene promoters during development. J Biol Chem. 2006;281(23):16052–16057.CrossRefGoogle ScholarPubMed
Yang, B, Kirby, S, Lewis, J, Detloff, PJ, Maeda, N, Smithies, O. A mouse model for beta-thalassemia. Proc Natl Acad Sci USA. 1995;92(25):11608–11612.CrossRefGoogle Scholar
Perkins, AC, Peterson, KR, Stamatoyannopoulos, G, Witkowska, HE, Orkin, SH. Fetal expression of a human Agamma globin transgene rescues globin chain imbalance but not hemolysis in EKLF null mouse embryos. Blood. 2000;95(5):1827–1833.Google Scholar
Chen, X, Bieker, JJ. Stage-specific repression by the EKLF transcriptional activator. Mol Cell Biol. 2004;24(23):10416–10424.CrossRefGoogle ScholarPubMed
Siatecka, M, Xue, L, Bieker, JJ. Sumoylation of EKLF promotes transcriptional repression and is involved in inhibition of megakaryopoiesis. Mol Cell Biol. 2007;27(24):8547–8560.CrossRefGoogle ScholarPubMed
Drissen, R, Lindern, M, Kolbus, A, et al. The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol. 2005;25(12):5205–5214.CrossRefGoogle ScholarPubMed
Hodge, D, Coghill, E, Keys, J, et al. A global role for EKLF in definitive and primitive erythropoiesis. Blood. 2006;107(8):3359–3370.CrossRefGoogle ScholarPubMed
Nilson, DG, Sabatino, , Bodine, DM, Gallagher, PG. Major erythrocyte membrane protein genes in EKLF-deficient mice. Exp Hematol. 2006;34(6):705–712.CrossRefGoogle ScholarPubMed
Tallack, MR, Keys, JR, Perkins, AC. Erythroid Kruppel-like factor regulates the G1 cyclin dependent kinase inhibitor p18INK4c. J Mol Biol. 2007;369(2):313–321.CrossRefGoogle ScholarPubMed
Armstrong, JA, Bieker, JJ, Emerson, BM. A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro. Cell. 1998;95(1):93–104.CrossRefGoogle ScholarPubMed
Kadam, S, McAlpine, GS, Phelan, ML, Kingston, RE, Jones, KA, Emerson, BM. Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes Dev. 2000;14(19):2441–2451.CrossRefGoogle ScholarPubMed
Bultman, SJ, Gebuhr, TC, Magnuson, T. A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in beta-globin expression and erythroid development. Genes Dev. 2005;19(23):2849–2861.CrossRefGoogle ScholarPubMed
Zhang, W, Kadam, S, Emerson, BM, Bieker, JJ. Site-specific acetylation by p300 or CREB binding protein regulates erythroid Kruppel-like factor transcriptional activity via its interaction with the SWI-SNF complex. Mol Cell Biol. 2001;21(7):2413–2422.CrossRefGoogle ScholarPubMed
Gregory, RC, Taxman, DJ, Seshasayee, D, Kensinger, MH, Bieker, JJ, Wojchowski, DM. Functional interaction of GATA1 with erythroid Kruppel-like factor and Sp1 at defined erythroid promoters. Blood. 1996;87(5):1793–1801.Google ScholarPubMed
Drissen, R, Palstra, RJ, Gillemans, N, et al. The active spatial organization of the beta-globin locus requires the transcription factor EKLF. Genes Dev. 2004;18(20):2485–2490.CrossRefGoogle ScholarPubMed
Vakoc, CR, Letting, DL, Gheldof, N, et al. Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell. 2005;17(3):453–462.CrossRefGoogle ScholarPubMed
Goh, SH, Josleyn, M, Lee, YT, et al. The human reticulocyte transcriptome. Physiol Genomics. 2007;30(2):172–178.CrossRefGoogle ScholarPubMed
Keller, MA, Addya, S, Vadigepalli, R, et al. Transcriptional regulatory network analysis of developing human erythroid progenitors reveals patterns of coregulation and potential transcriptional regulators. Physiol Genomics. 2006;28(1):114–128.CrossRefGoogle ScholarPubMed
Goodman, SR, Kurdia, A, Ammann, L, Kakhniashvili, D, Daescu, O. The human red blood cell proteome and interactome. Exp Biol Med (Maywood). 2007;232(11):1391–1408.CrossRefGoogle ScholarPubMed
Kakhniashvili, DG, Bulla, ., Goodman, SR. The human erythrocyte proteome: analysis by ion trap mass spectrometry. Mol Cell Proteomics. 2004;3(5):501–509.CrossRefGoogle ScholarPubMed
Pasini, EM, Kirkegaard, M, Mortensen, P, Lutz, HU, Thomas, AW, Mann, M. In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood. 2006;108(3):791–801.CrossRefGoogle ScholarPubMed
Beug, H, Palmieri, S, Freudenstein, C, Zentgraf, H, Graf, T. Hormone-dependent terminal differentiation in vitro of chicken erythroleukemia cells transformed by ts mutants of avian erythroblastosis virus. Cell. 1982;28(4):907–919.CrossRefGoogle ScholarPubMed
Richmond, TD, Chohan, M, Barber, DL. Turning cells red: signal transduction mediated by erythropoietin. Trends Cell Biol. 2005;15(3):146–155.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×