Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T13:50:06.183Z Has data issue: false hasContentIssue false

8 - Mesoscale self-assembly of metal nanocrystals into ordered arrays and giant clusters

Published online by Cambridge University Press:  18 December 2009

W. Jones
Affiliation:
University of Cambridge
C. N. R. Rao
Affiliation:
Indian Institute of Science, Bangalore
Get access

Summary

Nanocrystals of semiconductors as well as of metals covered by alkanethiols organize themselves in two-dimensional arrays. We discuss such arrays of metal nanocrystals at length, with our focus on the dependence of the structure and stability of the arrays on the particle diameter and the distance between the particles. Three-dimensional superstructures of metal nanocrystals obtained by the use of alkanedithiols are examined. These ordered two-and three-dimensional structures of thiolized metal nanocrystals are good examples of mesoscale self-assembly. The association of metal nanocrystals to give rise to giant clusters with magic nuclearity provides an even more graphic demonstration of mesoscale self-assembly.

Introduction

Mesoscale self-assembly of objects of nanometric dimensions is a topic attracting wide attention currently. It is becoming recognized that such self-assembly can occur through a variety of weak forces. Cooperative assemblies of ligated metal [1] and semiconductor nanocrystals [2], as well as of colloidal polymer spheres seem to occur through the mediation of electrostatic and capillary forces [3, 4]. The ability to engineer such assemblies extends the reach of current lithographic techniques and holds promise for a new generation of electronics of the nanoworld. In this context, synthesis and programmed assembly of metal nanocrystals assumes significance [1].

A metal nanocrystal is a tiny chunk of the bulk, measuring a few nanometers with a finite number of metal atoms in it. The forces that govern the nanocrystal structure, however, are different in many ways.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×