Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T18:24:48.615Z Has data issue: false hasContentIssue false

6 - Nanofabrication by the surface sol-gel process and molecular imprinting

Published online by Cambridge University Press:  18 December 2009

W. Jones
Affiliation:
University of Cambridge
C. N. R. Rao
Affiliation:
Indian Institute of Science, Bangalore
Get access

Summary

Introduction

Fabrication and nanostructural control of metal oxide thin films have been playing important roles in various areas of materials science. A thin surface oxide layer can give rise to excellent properties for materials. For example, improvement of abrasion resistance or lubricativity, chemical and mechanical stabilization, enhancement of hydrophilicity or water repellency can be achieved by forming thin oxide surfaces. Thin oxide layers with nanocontrolled structures are known to display advantages for designing unique chemical functions like specific adsorption of organic molecules, improved catalytic properties and capture of light energy.

High-vacuum dry-processes, such as chemical vapor deposition (CVD) and molecular beam epitaxy (MBE), have made it feasible to control precisely the thickness of metal oxide thin films. In these techniques, the preparative conditions like pressure and substrate temperature can be widely varied, and the elemental composition in individual atomic layers is controllable by sequential supply of precursor gases [1]. The dense, defect-less oxide films thus prepared are frequently used as underlayers of microelectronics devices.

On the other hand, the progress of wet-processes as preparative techniques of metal oxide films has been remarkable. The so-called soft solution process that provides oxide layers by means of electrochemical oxidation of a metal surface is expanding as a synthetic method of various mixed metal oxides with controlled thickness [2]. The two-dimensional (2D) sol-gel process based on the hydrolysis of metal alkoxides at the air/water interface has been reported as a preparative technique of ultrathin oxide films (Fig. 6.1a) [3].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×