Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T12:07:28.099Z Has data issue: false hasContentIssue false

15 - RNA interference in postimplantation mouse embryos

Published online by Cambridge University Press:  31 July 2009

Frank Buchholz
Affiliation:
Max Plank Institute of Molecular Cell Biology and Genetics
Federico Calegari
Affiliation:
Max Plank Institute of Molecular Cell Biology and Genetics
Ralf Kittler
Affiliation:
Max Plank Institute of Molecular Cell Biology and Genetics
Wieland B. Huttner
Affiliation:
Max Plank Institute of Molecular Cell Biology and Genetics
Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Andrew Fire
Affiliation:
Stanford University, California
Get access

Summary

Introduction

Sequencing of whole genomes has provided new perspectives into the blueprints of diverse organisms, including the genome of the mouse (Waterston et al., 2002). Although the complete sequence is now available, the estimation of total gene number encoded by the mouse genome is ranging approximately from 25,000 to 50,000 (Okazaki et al., 2002). This uncertainty about the functional units within the genome highlights the importance of a detailed analysis of the encoded genes.

A significant step toward a better understanding of the genome has been the development of large-scale gene expression analysis tools utilizing DNA microarrays (Bono et al., 2003). This technology allows the generation of gene expression profiles that can give important clues for the interpretation of biological processes. However, the obtained data do not directly address the function of individual genes. Rather, they present a snapshot of global gene expression changes. While this is a very useful parameter for understanding the genome, it is not very useful for studying detailed phenotypic changes after gene ablation.

About 15 years ago gene function analysis became available in the mouse through the development of gene knock-out technology (Capecchi, 1989). In this approach genes are targeted in embryonic stem (ES) cells through homologous recombination. The manipulated ES cells are subsequently injected into blastocysts, and chimeric offspring are checked for germline transmission. Successful germline transmission allows the production of animals deficient in the gene of interest. Careful phenotypic analyses of these animals can then disclose the function(s) of the knocked-out gene.

Type
Chapter
Information
RNA Interference Technology
From Basic Science to Drug Development
, pp. 207 - 219
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akamatsu, W., Okano, H. J., Osumi, N., Inoue, T., Nakamura, S., Sakakibara, S., Miura, M., Matsuo, N., Darnell, R. B. and Okano, H. (1999). Mammalian ELAV-like neuronal RNA-binding proteins HuB and HuC promote neuronal development in both the central and the peripheral nervous systems. Proceedings of the National Academy of Sciences USA, 96, 9885–9890CrossRefGoogle ScholarPubMed
Banga, A. K. and Prausnitz, M. R. (1998). Assessing the potential of skin electroporation for the delivery of protein- and gene-based drugs. Trends in Biotechnology, 16, 408–412CrossRefGoogle ScholarPubMed
Biggers, J. D. (1998). Reflections on the culture of the preimplantation embryo. International Journal of Developmental Biology, 42, 879–884Google ScholarPubMed
Bono, H., Yagi, K., Kasukawa, T., Nikaido, I., Tominaga, N., Miki, R., Mizuno, Y., Tomaru, Y., Goto, H., Nitanda, H. et al. (2003). Systematic expression profiling of the mouse transcriptome using RIKEN cDNA microarrays. Genome Research, 13, 1318–1323CrossRefGoogle ScholarPubMed
Calegari, F., Haubensak, W., Yang, D., Huttner, W. B. and Buchholz, F. (2002). Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proceedings of the National Academy of Sciences USA, 99, 14236–14240CrossRefGoogle ScholarPubMed
Calegari, F. and Huttner, W. B. (2003). An inhibition of cyclinlin-002D;dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. Journal of Cell Science, 116, 4947–4955CrossRefGoogle Scholar
Calegari, F., Marzesco, A. M., Kittler, R., Buchholz, F. and Huttner, W. B. (2004). Tissue-specific RNA interference in post-implantation mouse embryos using directional electroporation and whole embryo culture. Differentiation, 72, 92–102CrossRefGoogle ScholarPubMed
Capecchi, M. R. (1989). Altering the genome by homologous recombination. Science, 244, 1288–1292CrossRefGoogle ScholarPubMed
Check, E. (2003). Gene regulation: RNA to the rescue?Nature, 425, 10–12CrossRefGoogle ScholarPubMed
Cockroft, D. L. (1990). Dissection and culture of postimplantation embryos. In Postimplantatio mammalian embryos. A practical approach (ed. Rickwood, D. and Hames, B. D.), pp. 15–40. Oxford: Oxford University Press
Diaz-Cueto, L. and Gerton, G. L. (2001). The influence of growth factors on the development of preimplantation mammalian embryos. Archives of Medical Research, 32, 619–626CrossRefGoogle ScholarPubMed
Drake, C. J. and Little, C. D. (1991). Integrins play an essential role in somite adhesion to the embryonic axis. Developmental Biology, 143, 418–421CrossRefGoogle ScholarPubMed
Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. and Tuschl, T. (2001a). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498CrossRefGoogle Scholar
Elbashir, S. M., Lendeckel, W. and Tuschl, T. (2001b). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes & Development, 15, 188–200CrossRefGoogle Scholar
Gratsch, T. E., Boer, L. S. and O'Shea, K. S. (2003). RNA inhibition of BMP-4 gene expression in postimplantation mouse embryos. Genetics, 37, 12–17Google ScholarPubMed
Hasuwa, H., Kaseda, K., Einarsdottir, T. and Okabe, M. (2002). Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Letters, 532, 227–230CrossRefGoogle ScholarPubMed
Haubensak, W., Attardo, A., Denk, W. and Huttner, W. B. (2004). Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proceedings of the National Academy of Science USA, 101, 3196–3201CrossRefGoogle Scholar
Heape, W. (1890). Preliminary note on the transplantation and growth of mammalian ova within a uterine foster-mother. Proceedings of the Royal Society of London, B. Biological Sciences, 48, 457–459CrossRefGoogle Scholar
Henschel, A., Buchholz, F. and Habermann, B. (2004). DEQOR: a web-based tool for the design and quality control of siRNAs. Nucleic Acids Res. 2004 Jul 1; 32 (Web Server issue): W113–20CrossRef
Iacopetti, P., Michelini, M., Stuckmann, I., Oback, B., Aaku-Saraste, E. and Huttner, W. B. (1999). Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proceedings of the National Academy of Sciences USA, 96, 4639–4644CrossRefGoogle ScholarPubMed
Inoue, T., Nakamura, S. and Osumi, N. (2000). Fate mapping of the mouse prosencephalic neural plate. Developmental Biology, 219, 373–383CrossRefGoogle ScholarPubMed
Kawasaki, H., Suyama, E., Iyo, M. and Taira, K. (2003). siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Research, 31, 981–987CrossRefGoogle ScholarPubMed
Kittler, R. and Buchholz, F. (2003). RNA interference: Gene silencing in the fast lane. Seminars in Cancer Biology, 13, 259–265CrossRefGoogle ScholarPubMed
Kuhn, R. and Schwenk, F. (2003). Conditional knockout mice. Methods in Molecular Biology, 209, 159–185Google ScholarPubMed
Kunath, T., Gish, G., Lickert, H., Jones, N., Pawson, T. and Rossant, J. (2003). Transgenic RNA interference in ES cell-derived embryos recapitulates a genetic null phenotype. Nature Biotechnology, 21, 559–561CrossRefGoogle ScholarPubMed
Lewandoski, M. (2001). Conditional control of gene expression in the mouse. Nature Reviews Genetics, 2, 743–755CrossRefGoogle ScholarPubMed
Lewis, D. L., Hagstrom, J. E., Loomis, A. G., Wolff, J. A. and Herweijer, H. (2002). Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nature Genetics, 32, 107–108CrossRefGoogle ScholarPubMed
McCaffrey, A. P., Meuse, L., Pham, T. T., Conklin, D. S., Hannon, G. J. and Kay, M. A. (2002). RNA interference in adult mice. Nature, 418, 38–39CrossRefGoogle ScholarPubMed
Mellitzer, G., Hallonet, M., Chen, L. and Ang, S. L. (2002). Spatial and temporal ‘knock down’ of gene expression by electroporation of double-stranded RNA and morpholinos into early postimplantation mouse embryos. Mechanisms of Development, 118, 57–63CrossRefGoogle ScholarPubMed
Myers, J. W., Jones, J. T., Meyer, T. and Ferrell, J. E. Jr. (2003). Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nature Biotechnology, 21, 324–328CrossRefGoogle ScholarPubMed
Nagy, A., Gertsenstein, M., Vintersten, K. and Behringer, R. R. (2003). In Manipulating the mouse embryo. A laboratory manual (eds. J. Inglis and J. Cuddihy), pp. 209–250. New York: Cold Spring Harbor Laboratory Press
New, D. A. (1978). Whole-embryo culture and the study of mammalian embryos during embryogenesis. Biological Reviews, 53, 81–122CrossRefGoogle Scholar
Nicholas, J. S. and Rudnick, D. (1938). The development of rat embryos in tissue culture. Proceedings of the National Academy of Sciences USA, 656–658
Oback, B., Cid-Arregui, A. and Huttner, W. B. (2000). Gene transfer into cultured postimplantation mouse embryos using herpes simplex amplicons. In Viral Vectors: Basic Science and Gene Therapy, (ed. A. C. -A. A. García-Carrancá), pp. 277–293. Natick, MA: Eaton Publishing
Okazaki, Y.Furuno, M.Kasukawa, T.Adachi, J.Bono, H.Kondo, S.Nikaido, I.Osato, N.Saito, R.Suzuki, H. et al. (2002). Analysis of the mouse transcriptome based on functional annotation of 60770 full-length cDNAs. Nature, 420, 563–573CrossRefGoogle ScholarPubMed
Osumi, N. and Inoue, T. (2001). Gene transfer into cultured mammalian embryos by electroporation. Methods, 24, 35–42CrossRefGoogle ScholarPubMed
Saito, T. and Nakatsuji, N. (2001). Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Developmental Biology, 240, 237–246CrossRefGoogle ScholarPubMed
Stuhlmann, H., Cone, R., Mulligan, R. C. and Jaenisch, R. (1984). Introduction of a selectable gene into different animal tissue by a retrovirus recombinant vector. Proceedings of the National Academy of Sciences USA, 81, 7151–7155CrossRefGoogle ScholarPubMed
Swartz, M., Eberhart, J., Mastick, G. S. and Krull, C. E. (2001). Sparking new frontiers: using in vivo electroporation for genetic manipulations. Developmental Biology, 233, 13–21CrossRefGoogle ScholarPubMed
Tabata, H. and Nakajima, K. (2001). Efficient in utero gene transfer system to the developing mouse brain using electroporation: Visualization of neuronal migration in the developing cortex. Neuroscience, 103, 865–872CrossRefGoogle ScholarPubMed
Takahashi, M., Sato, K., Nomura, T. and Osumi, N. (2002). Manipulating gene expressions by electroporation in the developing brain of mammalian embryos. Differentiation, 70, 155–162CrossRefGoogle ScholarPubMed
Tam, P. P. (1998). Postimplantation mouse development: Whole embryo culture and micro-manipulation. International Journal of Developmental Biology, 42, 895–902Google ScholarPubMed
Waterston, R. H.Lindblad-Toh, K.Birney, E.Rogers, J.Abril, J. F.Agarwal, P.Agarwala, R.Ainscough, R.Alexandersson, M.An, P. et al. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature, 420, 520–562Google ScholarPubMed
Webster, W. S., Brown-Woodman, P. D. and Ritchie, H. E. (1997). A review of the contribution of whole embryo culture to the determination of hazard and risk in teratogenicity testing. International Journal of Developmental Biology, 41, 329–335Google ScholarPubMed
Yang, D., Buchholz, F., Huang, Z., Goga, A., Chen, C. Y., Brodsky, F. M. and Bishop, J. M. (2002). Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells. Proceedings of the National Academy of Sciences USA, 99, 9942–9947CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×