Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T07:23:55.611Z Has data issue: false hasContentIssue false

14 - Chemical modifications to achieve increased stability and sensitive detection of siRNA

Published online by Cambridge University Press:  31 July 2009

Philipp Hadwiger
Affiliation:
Research and Development, Alnylam Europe AG
Hans-Peter Vornlocher
Affiliation:
Research and Development, Alnylam Europe AG
Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Andrew Fire
Affiliation:
Stanford University, California
Get access

Summary

Introduction

RNA interference (RNAi) was discovered in the worm C. elegans as an endogenous, double-stranded RNA (dsRNA) driven mechanism resulting in a specific inhibition of gene expression on a posttranscriptional level (Fire et al., 1998). Since then, gene suppression by RNA interference has been widely applied to study gene function in a variety of organisms (Hannon, 2002). Double-stranded small interfering RNA (siRNA) of 21 to 23 nucleotides was identified as mediator of this silencing signal in a Drosophila embryo lysate system (Elbashir et al., 2001b). In a seminal study it was demonstrated that exogenously delivered chemically synthesized siRNA can function as trigger for this specific silencing mechanism in mammalian cells (Elbashir et al., 2001a). Initial experiments indicated that, in contrast to long dsRNA, siRNA does not stimulate an unspecific inhibition of protein synthesis mediated by activation of protein kinase R (PKR) in mammals (Caplen et al., 2001). Because of its specificity and high efficiency as well as simple practicability, siRNA triggered RNAi has become rapidly accepted as the method of choice for studying gene function in cell culture systems. Moreover, recent reports demonstrated the successful siRNA-mediated down-regulation of reporter genes (McCaffrey et al., 2002; Lewis et al., 2002) as well as endogenous target genes in mice (Xia et al., 2002; Song et al., 2003; Rubinson et al., 2003). Now, researchers in academia and industry are attempting to utilize RNAi as a platform for the development of therapeutics.

Type
Chapter
Information
RNA Interference Technology
From Basic Science to Drug Development
, pp. 194 - 206
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amarzguioui, M., Holen, T., Babaie, E., and Prydz, H. (2003). Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Research, 31, 589–595CrossRefGoogle Scholar
Beaucage, S. L. and Radhakrishnan, P. I. (1992). Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron, 48, 2223–2311CrossRefGoogle Scholar
Beigelman, L., McSwiggen, J. A., Draper, K. G., Gonzalez, C., Jensen, K., Karpeisky, A. M., Modak, A. S., Matulic-Adamic, J., DiRenzo, A. B., Haeberli, P., Sweedler, D., Tracz, D., Grimm, S., Wincott, F., Thackray, V. G. and Usman, N. (1995). Chemical modification of hammerhead ribozymes. Catalytic activity and nuclease resistance. Journal of Biological Chemistry, 270, 25702–25708CrossRefGoogle ScholarPubMed
Boutla, A., Delidakis, C., Livadaras, I., Tsagris, M., and Tabler, M. (2001). Short 5′-phosphorylated double-stranded RNAs induce RNA interference in Drosophila. Current Biology, 11, 1776–1780CrossRefGoogle ScholarPubMed
Braasch, D. A., Jensen, S., Liu, Y., Kaur, K., Arar, K., White, M. A., and Corey, D. R. (2003). RNA interference in mammalian cells by chemically modified RNA. Biochemistry, 42, 7967–7975CrossRefGoogle ScholarPubMed
Brummelkamp, T. R., Bernards, R., and Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science, 296, 550–553CrossRefGoogle ScholarPubMed
Caplen, N. J., Parrish, S., Imani, F., Fire, A., and Morgan, R. A. (2001). Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proceedings of the National Academy of Science USA, 98, 9742–9747CrossRefGoogle ScholarPubMed
Chiu, Y. L., and Rana, T. M. (2002). RNAi in human cells: Basic structural and functional features of small interfering RNA. Molecular Cell, 10, 549–561CrossRefGoogle ScholarPubMed
Chiu, Y. L., and Rana, T. M. (2003). siRNA function in RNAi: A chemical modification analysis. RNA, 9, 1034–1048CrossRefGoogle ScholarPubMed
Cook, P. D. (1999). Making drugs out of oligonucleotides: A brief review and perspective. Nucleosides & Nucleotides, 18, 1141–1162CrossRefGoogle ScholarPubMed
Crooke, S.-T. (2001). Antisense drug technology, New York, NY and Basel, Switzerland; Marcel Dekker, Inc.
Czauderna, F., Fechtner, M., Aygun, H., Arnold, W., Klippel, A., Giese, K., and Kaufmann, J. (2003a). Functional studies of the PI(3)-kinase signalling pathway employing synthetic and expressed siRNA. Nucleic Acids Research, 31, 670–682CrossRefGoogle Scholar
Czauderna, F., Fechtner, M., Dames, S., Aygun, H., Klippel, A., Pronk, G. J., Giese, K., and Kaufmann, J. (2003b). Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Research, 31, 2705–2716CrossRefGoogle Scholar
Eckstein, F. (2002). Developments in RNA chemistry, a personal view. Biochimie, 84, 841–848CrossRefGoogle ScholarPubMed
Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001a). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498CrossRefGoogle Scholar
Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001b). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes & Development, 15, 188–200CrossRefGoogle Scholar
Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W., and Tuschl, T. (2001c). Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. European Molecular Biology Organization Journal, 20, 6877–6888CrossRefGoogle Scholar
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811CrossRefGoogle ScholarPubMed
Hamada, M., Ohtsuka, T., Kawaida, R., Koizumi, M., Morita, K., Furukawa, H., Imanishi, T., Miyagishi, M., and Taira, K. (2002). Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3′-ends of siRNAs. Antisense and Nucleic Acid Drug Development, 12, 301–309CrossRefGoogle ScholarPubMed
Hannon, G. J. (2002). RNA interference. Nature, 418, 244–251CrossRefGoogle ScholarPubMed
Harborth, J., Elbashir, S. M., Vandenburgh, K., Manninga, H., Scaringe, S. A., Weber, K., and Tuschl, T. (2003). Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense and Nucleic Acid Drug Development, 13, 83–105CrossRefGoogle ScholarPubMed
Heidenreich, O., Benseler, F., Fahrenholz, A., and Eckstein, F. (1994). High activity and stability of hammerhead ribozymes containing 2 ′-modified pyrimidine nucleosides and phosphorothioates. Journal of Biological Chemistry, 269, 2131–2138Google ScholarPubMed
Heidenreich, O., Krauter, J., Riehle, H., Hadwiger, P., John, M., Heil, G., Vornlocher, H. -P., and Nordheim, A. (2003). AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentation of t(8;21)-positive leukemic cells. Blood, 101, 3157–3163CrossRefGoogle Scholar
Hohjoh, H. (2002). RNA interference (RNA(i)) induction with various types of synthetic oligonucleotide duplexes in cultured human cells. Federation of the European Biochemical Society Letters, 521, 195–199CrossRefGoogle ScholarPubMed
Holen, T., Amarzguioui, M., Wⅱger, M. T., Babaie, E., and Prydz, H. (2002). Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Research, 30, 1757–1766CrossRefGoogle ScholarPubMed
James, H. A. and Gibson, I. (1998). The therapeutic potential of ribozymes. Blood, 91, 371–382Google ScholarPubMed
Jarvis, T. C., Wincott, F. E., Alby, L. J., McSwiggen, J. A., Beigelman, L., Gustofson, J., DiRenzo, A., Levy, K., Arthur, M., Matulic-Adamic, J., Karpeisky, A., Gonzalez, C., Woolf, T. M., Usman, N., and Stinchcomb, D. T. (1996). Optimizing the cell efficacy of synthetic ribozymes. Site selection and chemical modifications of ribozymes targeting the proto-oncogene c-myb. Journal of Biological Chemistry, 271, 29107–29112CrossRefGoogle ScholarPubMed
Kurreck, J. (2003). Antisense technologies. Improvement through novel chemical modifications. European Journal of Biochemistry, 270, 1628–1644CrossRefGoogle ScholarPubMed
Lewis, D. L., Hagstrom, J. E., Loomis, A. G., Wolff, J. A., and Herweijer, H. (2002). Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nature Genetics, 32, 107–108CrossRefGoogle ScholarPubMed
Lipardi, C., Wei, Q., and Paterson, B. M. (2001). RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell, 107, 297–307CrossRefGoogle ScholarPubMed
Manoharan, M. (1999). 2′-carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochimica et Biophysica Acta, 1489, 117–130CrossRefGoogle ScholarPubMed
McCaffrey, A. P., Meuse, L., Pham, T. T., Conklin, D. S., Hannon, G. J., and Kay, M. A. (2002). RNA interference in adult mice. Nature, 418, 38–39CrossRefGoogle ScholarPubMed
Nykanen, A., Haley, B., and Zamore, P. D. (2001). ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 107, 309–321CrossRefGoogle ScholarPubMed
Opalinska, J. B., and Gewirtz, A. M. (2002). Nucleic-acid therapeutics: Basic principles and recent applications. Nature Reviews in Drug Discovery, 1, 503–514CrossRefGoogle ScholarPubMed
Parrish, S., Fleenor, J., Xu, S., Mello, C., and Fire, A. (2000). Functional anatomy of a dsRNA trigger: Differential requirement for the two trigger strands in RNA interference. Molecular Cell, 6, 1077–1087CrossRefGoogle ScholarPubMed
Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., Sievers, C., Yang, L., Kopinja, J., Rooney, D. L., Ihrig, M. M., McManus, M. T., Gertler, F. B., Scott, M. L., and Parijs, L. (2003). A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genetics, 33, 401–406CrossRefGoogle ScholarPubMed
Schwarz, D. S., Hütvagner, G., Haley, B., and Zamore, P. D. (2002). Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Molecular Cell, 10, 537–548CrossRefGoogle Scholar
Sijen, T., Fleenor, J., Simmer, F., Thijssen, K. L., Parrish, S., Timmons, L., Plasterk, R. H., and Fire, A. (2001). On the role of RNA amplification in dsRNA-triggered gene silencing. Cell, 107, 465–476CrossRefGoogle ScholarPubMed
Song, E., Lee, S. K., Wang, J., Ince, N., Ouyang, N., Min, J., Chen, J., Shankar, P., and Lieberman, J. (2003). RNA interference targeting Fas protects mice from fulminant hepatitis. Nature Medicine, 9, 347–351CrossRefGoogle ScholarPubMed
Sun, L. Q., Cairns, M. J., Saravolac, E. G., Baker, A., and Gerlach, W. L. (2000). Catalytic nucleic acids: From lab to applications. Pharmacolocical Reviews, 52, 325–347Google ScholarPubMed
Thomson, J. B., Tuschl, T., and Eckstein, F. (1993). Activity of hammerhead ribozymes containing non-nucleotidic linkers. Nucleic Acids Research, 21, 5600–5603CrossRefGoogle ScholarPubMed
Usman, N. and Blatt, L. M. (2000). Nuclease-resistant synthetic ribozymes: Developing a new class of therapeutics. Journal of Clinical Investigations, 106, 1197–1202CrossRefGoogle ScholarPubMed
Walters, D. K. and Jelinek, D. F. (2002). The effectiveness of double-stranded short inhibitory RNAs (siRNAs) may depend on the method of transfection. Antisense and Nucleic Acid Drug Development, 12, 411–418CrossRefGoogle ScholarPubMed
Wincott, F., DiRenzo, A., Shaffer, C., Grimm, S., Tracz, D., Workman, C., Sweedler, D., Gonzalez, C., Scaringe, S., and Usman, N. (1995). Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Research, 23, 2677–2684CrossRefGoogle ScholarPubMed
Xia, H., Mao, Q., Paulson, H. L., and Davidson, B. L. (2002). siRNA-mediated gene silencing in vitro and in vivo. Nature Biotechnology, 20, 1006–1010CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×