Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-04-30T12:52:20.106Z Has data issue: false hasContentIssue false

8 - Endocrine, metabolic, and toxin-related disorders

Published online by Cambridge University Press:  15 December 2009

A. J. Larner
Affiliation:
Walton Centre for Neurology and Neurosurgery, Liverpool
Get access

Summary

Endocrine disorders

Diabetes mellitus

A link between diabetes mellitus per se and cognitive decline may be obscured by comorbid cerebrovascular disease (both microvascular and macrovascular), hypertension, or depression (Messier, 2005), since these conditions may confound any assessment of cognitive performance. Nonetheless, a meta-analysis of studies of cognitive performance in type 1 diabetes found evidence for slowing of mental speed and diminished mental flexibility with sparing of learning and memory (Brands et al., 2005). Systematic reviews have shown a greater risk and rate of cognitive functional decline (Cukierman et al., 2005) and of dementia (Biessels et al., 2006) in diabetes, with processing speed and verbal memory the domains most affected (Messier, 2005). Diabetes does not appear to be a risk factor for the development of Alzheimer's disease overall, but might increase relative risk in certain subgroups (Akomolafe et al., 2006).

Epidemiological studies provide some evidence that cognition may be impaired in the early stages of type 2 diabetes. In the Whitehall II study, a prospective study of the incidence of diabetes, an association was noted between diabetes and poor performance on a test of inductive reasoning (Alice Heim 4) in stroke-free patients, but verbal memory, verbal meaning, and verbal fluency tests were not affected. The study suggested that effects of diabetes on cognitive performance may be evident within 5 years of diagnosis (Kumari & Marmot, 2005). Hence, cognitive dysfunction is one of the chronic complications of diabetes, but the pathophysiology is uncertain.

Type
Chapter
Information
Neuropsychological Neurology
The Neurocognitive Impairments of Neurological Disorders
, pp. 188 - 203
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akomolafe, A, Beiser, A, Meigs, JB, et al. Diabetes mellitus and risk of developing Alzheimer disease: results from the Framingham Study. Arch Neurol 2006; 63: 1551–5CrossRefGoogle ScholarPubMed
Biessels, GJ, Staekenborg, S, Brunner, E, Brayne, C, Scheltens, P.Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol 2006; 5: 64–74.CrossRefGoogle ScholarPubMed
Brands, AMA, Biessels, GJ, Haan, EHF, Kappelle, LJ, Kessels, RPC.The effects of type 1 diabetes on cognitive performance. Diabetes Care 2005; 28: 726–35.CrossRefGoogle ScholarPubMed
Cox, DJ, Kovatchev, B, Gonder-Frederick, , et al. Relationships between hyperglycemia and cognitive performance among adults with type 1 and type 2 diabetes. Diabetes Care 2005; 28: 71–7.CrossRefGoogle ScholarPubMed
Cukierman, T, Gerstein, HC, Williamson, JD.Cognitive decline and dementia in diabetes: systematic overview of progressive observational studies. Diabetologia 2005; 48: 2460–9.CrossRefGoogle Scholar
Deary, IJ, Frier, BM.Severe hypoglycaemia and cognitive impairment in diabetes. BMJ 1996; 313: 767–8.CrossRefGoogle ScholarPubMed
Diabetes Control and Complications Trial Research Group. Effects of intensive diabetes therapy on neuropsychological function in adults in the diabetes control and complications trial. Ann Intern Med 1996; 124: 379–88.CrossRef
Dizon, AM, Kowalyk, S, Hoogwerf, BJ.Neuroglycopenic and other symptoms in patients with insulinomas. Am J Med 1999; 106: 307–10.CrossRefGoogle ScholarPubMed
Fisher, CM.Unexplained sudden amnesia. Arch Neurol 2002; 59: 1310–13.CrossRefGoogle ScholarPubMed
Holemans, X, Dupuis, M, Missan, N, Vanderijst, JF.Reversible amnesia in a type 1 diabetic patient and bilateral hippocampal lesions on magnetic resonance imaging (MRI). Diabet Med 2001; 18: 761–3.CrossRefGoogle Scholar
Kumari, M, Marmot, M.Diabetes and cognitive function in a middle-aged cohort: findings from the Whitehall II study. Neurology 2005; 65: 1597–603.CrossRefGoogle Scholar
Langan, SJ, Deary, IJ, Hepburn, DA, Frier, BM.Cumulative cognitive impairment following severe hypoglycaemia in adult patients with insulin-treated diabetes mellitus. Diabetologia 1991; 34: 337–44.CrossRefGoogle ScholarPubMed
Larner, AJ, Moffat, MA, Ghadiali, E, et al. Amnesia following profound hypoglycaemia in a type 1 diabetic patient. Eur J Neurol 2003; 10 (Suppl 1): 92 (abstract P1170).Google Scholar
Lincoln, NB, Faleiro, RM, Kelly, C, Kirk, BA, Jeffcoate, WJ.Effect of long-term glycemic control on cognitive function. Diabetes Care 1996; 19: 656–8.CrossRefGoogle ScholarPubMed
Luchsinger, JA, Tang-Ming, X, Shea, S, Mayeux, R.Hyperinsulinemia and risk of Alzheimer disease. Neurology 2004; 63: 1187–92.CrossRefGoogle ScholarPubMed
Messier, C.Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging. Neurobiol Aging 2005; 26 (Suppl 1): 26–30.CrossRefGoogle ScholarPubMed
Reichard, P, Pihl, M.Mortality and treatment side effects during long-term intensified conventional insulin treatment in Stockholm Diabetes Intervention Study. Diabetes 1994; 43: 313–17.CrossRefGoogle ScholarPubMed
Sachon, C, Grimaldi, A, Digy, JP, et al. Cognitive function, insulin-dependent diabetes and hypoglycaemia. J Intern Med 1992; 231: 471–5.CrossRefGoogle ScholarPubMed
Wredling, R, Levander, S, Adamson, U, Lins, P.Permanent neuropsychological impairment after recurrent episodes of severe hypoglycaemia in man. Diabetologia 1990; 33: 152–7.CrossRefGoogle ScholarPubMed
Asher R. Myxoedematous madness. In: Jones, Avery F (ed.), Richard Asher Talking Sense. Edinburgh: Churchill Livingstone, 1986: 77–95.Google Scholar
Baldini, IM, Vita, A, Mauri, MC, et al. Psychopathological and cognitive features in subclinical hypothyroidism. Prog Neuropsychopharmacol Biol Psychiatry 1997; 21: 925–35.CrossRefGoogle ScholarPubMed
Bono, G, Fancellu, R, Blandini, F, Santoro, G, Mauri, M.Cognitive and affective status in mild hypothyroidism and interactions with L-thyroxine treatment. Acta Neurol Scand 2004; 110: 59–66.CrossRefGoogle ScholarPubMed
Bulens, C.Neurological complications of hyperthyroidism: remission of spastic paraplegia, dementia, and optic neuropathy. Arch Neurol 1981; 38: 669–70.CrossRefGoogle Scholar
Burmeister, , Ganguli, M, Dodge, HH, et al. Hypothyroidism and cognition: preliminary evidence for a specific defect in memory. Thyroid 2001; 11: 1177–85.CrossRefGoogle ScholarPubMed
Clarnette, RM, Patterson, CJ.Hypothyroidism: does treatment cure dementia?J Geriatr Psychiatry Neurol 1994; 7: 23–7.CrossRefGoogle ScholarPubMed
Dugbartey, AT.Neurocognitive aspects of hypothyroidism. Arch Intern Med 1998; 158: 1413–18.CrossRefGoogle ScholarPubMed
Fukui, T, Hasegawa, Y, Takenaka, H.Hyperthyroid dementia: clinicoradiological findings and response to treatment. J Neurol Sci 2001; 184: 81–8.CrossRefGoogle ScholarPubMed
Kalmijn, S, Mehta, KM, Pols, HA, et al. Subclinical hyperthyroidism and the risk of dementia: the Rotterdam study. Clin Endocrinol (Oxf) 2000; 53: 733–7.CrossRefGoogle ScholarPubMed
Larner, AJ.Caleb Hillier Parry (1755–1822): clinician, scientist, friend of Edward Jenner (1749–1823). J Med Biogr 2005; 13: 189–94.CrossRefGoogle Scholar
Mennemeier, M, Garner, RD, Heilman, KM.Memory, mood and measurement in hypothyroidism. J Clin Exp Neuropsychol 1993; 15: 822–31.CrossRefGoogle ScholarPubMed
Vogel, A, Elberling, TV, Hørding, M, et al. Affective symptoms and cognitive functions in the acute phase of Graves' thyrotoxicosis. Psychoneuroendocrinology 2007; 32: 36–43.CrossRefGoogle ScholarPubMed
Volpato, S, Guralnik, JM, Fried, LP, et al. Serum thyroxine level and cognitive decline in euthyroid older women. Neurology 2002; 58: 1055–61.CrossRefGoogle ScholarPubMed
Waldemar G, Dubois B, Emre M, et al. Alzheimer's disease and other disorders associated with dementia. In: Hughes, R, Brainin, M, Gilhus, NE (eds.), European Handbook of Neurological Management. Oxford: Blackwell, 2006: 266–98.CrossRefGoogle Scholar
Zhu, DF, Wang, ZX, Zhang, DR, et al. fMRI revealed neural substrate for reversible working memory dysfunction in subclinical hypothyroidism. Brain 2006; 129: 2923–30.CrossRefGoogle ScholarPubMed
Eraut, D.Idiopathic hypoparathyroidism presenting as dementia. BMJ 1974; 1: 429–30.CrossRefGoogle ScholarPubMed
Logullo, F, Babbini, MT, Di Bella, P, Provinciali, L.Reversible combined cognitive impairment and severe polyneuropathy resulting from primary hyperparathyroidism. Ital J Neurol Sci 1998; 19: 86–9.CrossRefGoogle ScholarPubMed
Mateo, D, Gimenez-Roldan, S.Dementia in idiopathic hypoparathyroidism: rapid efficacy of alfacalcidol. Arch Neurol 1982; 39: 424–5.CrossRefGoogle ScholarPubMed
Robinson, KC, Kallberg, MH, Crowley, MF.Idiopathic hypoparathyroidism presenting as dementia. BMJ 1954; 2: 1203–6.CrossRefGoogle ScholarPubMed
Slyter, H.Idiopathic hypoparathyroidism presenting as dementia. Neurology 1979; 29: 393–4.CrossRefGoogle ScholarPubMed
Stuerenburg, HJ, Hansen, HC, Thie, A, Kunze, K.Reversible dementia in idiopathic hypoparathyroidism associated with normocalcemia. Neurology 1996; 47: 474–6.CrossRefGoogle ScholarPubMed
Forget, H, Lacroix, A, Cohen, H.Persistent cognitive impairment following surgical treatment of Cushing's syndrome. Psychoneuroendocrinology 2002; 27: 367–83.CrossRefGoogle ScholarPubMed
Forget, H, Lacroix, A, Somma, M, Cohen, H.Cognitive decline in patients with Cushing's syndrome. J Int Neuropsychol Soc 2000; 6: 20–9.Google ScholarPubMed
Heald, A, Parr, C, Gibson, C, O'Driscoll, K, Fowler, H.A cross-sectional study to investigate long-term cognitive function in people with treated pituitary Cushing's disease. Exp Clin Endocrinol Diabetes 2006; 114: 490–7.CrossRefGoogle ScholarPubMed
Lupien, SJ, Leon, M, Santi, S, et al. Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci 1998; 1: 69–73.CrossRefGoogle ScholarPubMed
Mauri, M, Sinforiani, E, Bono, G, et al. Memory impairment in Cushing's disease. Acta Neurol Scand 1993; 87: 52–5.CrossRefGoogle ScholarPubMed
Starkman, MN, Gebarski, SS, Berent, S, Schteingart, DE.Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing's syndrome. Biol Psychiatry 1992; 32: 756–65.CrossRefGoogle ScholarPubMed
Whelan, TB, Schteingart, , Starkman, MN, Smith, A.Neuropsychological deficits in Cushing's syndrome. J Nerv Ment Dis 1980; 168: 753–7.CrossRefGoogle ScholarPubMed
Gudin, M, Sanabria, C, Legido, B, et al. Cognitive dysfunction related to hormonal and ionic levels in a patient diagnosed of [sic] Conn syndrome. J Neurol 2000; 247 (Suppl 3): III/75 (abstract P275).Google Scholar
Adams, RD, Victor, M, Mancall, EL.Central pontine myelinolysis: a hitherto undescribed disease occurring in alcoholic and malnourished patients. Arch Neurol Psychiatr Chicago 1959; 81: 154–72.CrossRefGoogle ScholarPubMed
Schmid, Ghika F, Ghika, J, Assal, G, Bogousslavsky, J.Callosal dementia: behavioral disorders related to central and extrapontine myelinolysis [in French]. Rev Neurol Paris 1999; 155: 367–73.Google Scholar
Kleinschmidt-DeMasters, BK, Rojiani, AM, Filley, CM.Central and extrapontine myelinolysis: then … and now. J Neuropathol Exp Neurol 2006; 65: 1–11.CrossRefGoogle Scholar
Lee, TMC, Cheung, CCY, Lau, EYY, Mak, A, Li, LSW.Cognitive and emotional dysfunction after central pontine myelinolysis. Behav Neurol 2003; 14: 103–7.CrossRefGoogle ScholarPubMed
Ruchinskas, R.Cognitive dysfunction after central pontine myelinolysis. Neurocase 1998; 4: 173–9.Google Scholar
Sterns, RH, Riggs, JE, Schochet, SS.Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med 1986; 314: 1535–42.CrossRefGoogle ScholarPubMed
Zandvoort, M, Haan, E, Gijn, J, Kappelle, LJ.Cognitive functioning in patients with a small infarct in the brainstem. J Int Neuropsychol Soc 2003; 9: 490–4.Google ScholarPubMed
Vermetten, E, Rutten, SJ, Boon, PJ, Hofman, PA, Leentjens, AF.Neuropsychiatric and neuropsychological manifestations of central pontine myelinolysis. Gen Hosp Psychiatry 1999; 21: 296–302.CrossRefGoogle ScholarPubMed
Al-Memar, AY, Preece, MA, Ross, C, Green, S, Pall, HS.Combined methylmalonic aciduria and homocystinuria: a defect in cellular metabolism of cobalamin and a treatable cause of dementia. J Neurol Neurosurg Psychiatry 1998; 65: 420 (abstract).Google Scholar
Savvopoulou, Augoustides P, Mylonas, I, Sewell, AC, Rosenblatt, DS.Reversible dementia in an adolescent with cblC disease: clinical heterogeneity within the same family. J Inherit Metab Dis 1999; 22: 756–8.CrossRefGoogle Scholar
Chiu, HFK.Vitamin B12 deficiency and dementia. Int J Geriatr Psychiatry 1996; 11: 851–8.3.0.CO;2-L>CrossRefGoogle Scholar
Clarfield, AM.The decreasing prevalence of reversible dementia: an updated meta-analysis. Arch Intern Med 2003; 163: 2219–29.CrossRefGoogle ScholarPubMed
Clarke, R, Smith, AD, Jobst, KA, et al. Folate, vitamin B12, and serum total homocysteine in confirmed Alzheimer disease. Arch Neurol 1998; 55: 1449–55.CrossRefGoogle ScholarPubMed
Collin, P, Pirttilä, T, Nurmikko, T, et al. Celiac disease, brain atrophy, and dementia. Neurology 1991; 41: 372–5.CrossRefGoogle ScholarPubMed
Connick, P, Cooper, S, Grosset, D.Investigating B12 deficiency amongst neurological patients. J Neurol Neurosurg Psychiatry 2006; 77: 126 (abstract 002).Google Scholar
Doran, M, du Plessis, DG, Larner, AJ.Disseminated enteropathy-type T-cell lymphoma: cauda equina syndrome complicating coeliac disease. Clin Neurol Neurosurg 2005; 107: 517–20.CrossRefGoogle ScholarPubMed
Eastley, R, Wilcock, GK, Bucks, RS.Vitamin B12 deficiency in dementia and cognitive impairment: the effects of treatment on neuropsychological function. Int J Geriatr Psychiatry 2000; 15: 226–33.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Healton, EB, Savage, DG, Brust, JCM, et al. Neurologic aspects of cobalamin deficiency. Medicine (Baltimore) 1991; 70: 229–45.CrossRefGoogle ScholarPubMed
Hu, WT, Murray, JA, Greenaway, MC, Parisi, JE, Josephs, KA.Cognitive impairment and celiac disease. Arch Neurol 2006; 63: 1440–6.CrossRefGoogle ScholarPubMed
Knopman, DS, DeKosky, ST, Cummings, JL, et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001; 56: 1143–53.CrossRefGoogle ScholarPubMed
Larner, AJ, Janssen, JC, Cipolotti, L, Rossor, MN.Cognitive profile in dementia associated with vitamin B12 deficiency due to pernicious anaemia. J Neurol 1999; 246: 317–9.CrossRefGoogle ScholarPubMed
Larner, AJ, Rakshi, JS.Vitamin B12 deficiency and dementia. Eur J Neurol 2001; 8: 730.CrossRefGoogle ScholarPubMed
McCaddon, A, Davies, G, Hudson, P, Tandy, S, Cattell, H.Total serum homocysteine in senile dementia of Alzheimer type. Int J Geriatr Psychiatry 1998; 13: 235–9.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
McCaddon, A, Regland, B, Hudson, P, Davies, G.Functional vitamin B12 deficiency and Alzheimer disease. Neurology 2002; 58: 1395–9.CrossRefGoogle ScholarPubMed
Martin, DC, Francis, J, Protetch, J, Huff, FJ.Time dependency of cognitive recovery with cobalamin replacement: report of a pilot study. J Am Geriatr Soc 1992; 40: 168–72.CrossRefGoogle ScholarPubMed
Meadows, ME, Kaplan, RF, Bromfield, EB.Cognitive recovery with vitamin B12 therapy: a longitudinal neuropsychiatric assessment. Neurology 1994; 44: 1764–5.CrossRefGoogle Scholar
Tengah, Pengiran DSNA, Wills, AJ, Holmes, GKT.Neurological complications of coeliac disease. Postgrad Med J 2002; 78: 393–8.CrossRefGoogle Scholar
Saracaceanu, E, Tramoni, AV, Henry, JM.An association between subcortical dementia and pernicious anaemia: a psychiatric mask. Compr Psychiatry 1997; 38: 349–51.CrossRefGoogle ScholarPubMed
Serdaru, M, Hausser-Hauw, C, Laplane, D, et al. The clinical spectrum of alcoholic pellagra encephalopathy. Brain 1988; 111: 829–42.CrossRefGoogle ScholarPubMed
Shinnar, S, Singer, HS.Cobalamin C mutation (methylmalonic aciduria and homocystinuria) in adolescence: a treatable cause of dementia and myelopathy. N Engl J Med 1984; 311: 451–4.CrossRefGoogle ScholarPubMed
Teunisse, S, Bollen, AE, Gool, WA, Walstra, GJM.Dementia and subnormal levels of vitamin B12: effects of replacement therapy on dementia. J Neurol 1996; 243: 522–9.CrossRefGoogle ScholarPubMed
Waldemar G, Dubois B, Emre M, et al. Alzheimer's disease and other disorders associated with dementia. In: Hughes, R, Brainin, M, Gilhus, NE (eds.), European Handbook of Neurological Management. Oxford: Blackwell, 2006: 266–98.CrossRefGoogle Scholar
Wang, HX, Wahlin, A, Basun, H, et al. Vitamin B12 and folate in relation to the development of Alzheimer's disease. Neurology 2001; 56: 1188–94.CrossRefGoogle ScholarPubMed
Abad, VC, Guilleminault, C.Neurological perspective on obstructive and nonobstructive sleep apnea. Semin Neurol 2004; 24: 261–9.CrossRefGoogle ScholarPubMed
Incalzi, Antonelli R, Marra, C, Salvigni, BL, et al. Does cognitive dysfunction conform to a distinctive pattern in obstructive sleep apnea syndrome?J Sleep Res 2004; 13: 79–86.CrossRefGoogle Scholar
Badr, MS.Central sleep apnea. Prim Care 2005; 32: 361–74.CrossRefGoogle ScholarPubMed
Balla, C, Kanta, O, Paschalidou, M, Artemis, N, Milonas, I.Delayed encephalopathy of carbon monoxide (CO) poisoning. Eur J Neurol 2005; 12 (Suppl 2): 290 (abstract P2484).Google Scholar
Douglas, NJ.The obstructive sleep apnoea/hypopnoea syndrome. Pract Neurol 2003; 3: 22–8.CrossRefGoogle Scholar
Durmer, JS, Dinges, DF.Neurocognitive consequences of sleep deprivation. Semin Neurol 2005; 25: 117–29.CrossRefGoogle ScholarPubMed
Engelman, HM, Kingshott, RN, Martin, SE, Douglas, NJ.Cognitive function in the sleep apnea/hypopnea syndrome (SAHS). Sleep 2000; 23 (Suppl 4): S102–8.Google Scholar
Ernst, A, Zibrak, JD.Carbon monoxide poisoning. N Engl J Med 1998; 339: 1603–8.CrossRefGoogle ScholarPubMed
Findley, LJ, Barth, JT, Powers, DC, et al. Cognitive impairment in patients with obstructive sleep apnea and associated hypoxemia. Chest 1986; 90: 686–90.CrossRefGoogle ScholarPubMed
Goodale, MA, Milner, AD.Sight Unseen: an Exploration of Conscious and Unconscious Vision. Oxford: Oxford University Press, 2004.Google Scholar
Grant, I, Heaton, RK, McSweeny, AJ, Adams, KM, Timms, RM.Neuropsychologic findings in hypoxemic chronic obstructive pulmonary disease. Arch Intern Med 1982; 142: 1470–6.CrossRefGoogle ScholarPubMed
Grant, I, Prigatano, GP, Heaton, RK, et al. Progressive neuropsychologic impairment and hypoxemia: relationship in chronic obstructive pulmonary disease. Arch Gen Psychiatry 1987; 44: 999–1006.CrossRefGoogle ScholarPubMed
Heaton, RK, Grant, I, McSweeny, AJ, Adams, KM, Petty, TL.Psychologic effects of continuous and nocturnal oxygen therapy in hypoxemic chronic obstructive pulmonary disease. Arch Intern Med 1983; 143: 1941–7.CrossRefGoogle ScholarPubMed
Incalzi, RA, Chiappini, F, Fuso, L, et al. Predicting cognitive decline in patients with hypoxaemic COPD. Respir Med 1998; 92: 527–33.CrossRefGoogle ScholarPubMed
Incalzi, RA, Gemma, A, Marra, C, et al. Chronic obstructive pulmonary disease: an original model of cognitive decline. Am Rev Respir Dis 1993; 148: 418–24.CrossRefGoogle ScholarPubMed
Incalzi, RA, Gemma, A, Marra, C, et al. Verbal memory impairment in COPD: its mechanisms and clinical relevance. Chest 1997; 112: 1506–13.CrossRefGoogle ScholarPubMed
Kamba, M, Inoue, Y, Higami, S, et al. Cerebral metabolic impairments in patients with obstructive sleep apnoea: an independent association of obstructive sleep apnoea with white matter change. J Neurol Neurosurg Psychiatry 2001; 71: 334–9.CrossRefGoogle Scholar
Kesler, SR, Hopkins, RO, Blatter, DD, Booth, Edge H, Bigler, ED.Verbal memory deficits associated with fornix atrophy in carbon monoxide poisoning. J Int Neuropsychol Soc 2001; 7: 640–6.CrossRefGoogle ScholarPubMed
Kozora, E, Filley, CM, Julian, LJ, Cullum, CM.Cognitive functioning in patients with chronic obstructive pulmonary disease and mild hypoxemia compared with patients with mild Alzheimer disease and normal controls. Neuropsychiatry Neuropsychol Behav Neurol 1999; 12: 178–83.Google ScholarPubMed
Larner, AJ.Obstructive sleep apnoea syndrome presenting in a neurology outpatient clinic. Int J Clin Pract 2003; 57: 150–2.Google Scholar
Larner, AJ.Delayed motor and visual complications after attempted suicide. Lancet 2005; 366: 1826.CrossRefGoogle ScholarPubMed
Özge, C, Ünal, O, Özge, A, Saraçoglu, M.Cognitive and functional deterioration in patients with severe COPD. Eur J Neurol 2004; 11 (Suppl 2): 24–5 (abstract SC221).Google Scholar
Parkinson, RB, Hopkins, RO, Cleavinger, HB, et al. White matter hyperintensities and neuropsychological outcome following carbon monoxide poisoning. Neurology 2002; 58: 1525–32.CrossRefGoogle ScholarPubMed
Redline, S, Kapur, VK, Sanders, MH, et al. Effects of varying approaches for identifying respiratory disturbances on sleep apnea assessment. Am J Respir Crit Care Med 2000; 161: 369–74.CrossRefGoogle ScholarPubMed
Roehrs, T, Merrion, M, Pedrosi, B, et al. Neuropsychological function in obstructive sleep apnea syndrome (OSAS) compared to chronic obstructive pulmonary disease (COPD). Sleep 1995; 18: 382–8.CrossRefGoogle Scholar
Scheltens, P, Visscher, F, Keimpema, ARJ, et al. Sleep apnea syndrome presenting with cognitive impairment. Neurology 1991; 41: 155–6.CrossRefGoogle ScholarPubMed
Schofield, PW, Tang, M, Marder, K, et al. Consistency of clinical diagnosis in a community-based longitudinal study of dementia and Alzheimer's disease. Neurology 1995; 45: 2159–64.CrossRefGoogle Scholar
Bates, ME, Bowden, SC, Barry, D.Neurocognitive impairment associated with alcohol use disorders: implications for treatment. Exp Clin Psychopharmacol 2002; 10: 193–212.CrossRefGoogle ScholarPubMed
Bowden SC, Ritter AJ. Alcohol-related dementia and the clinical spectrum of Wernicke–Korsakoff syndrome. In: Burns, A, O'Brien, J, Ames, D (eds.), Dementia (3rd edition). London: Hodder Arnold, 2005: 738–44.CrossRefGoogle Scholar
Brun, A, Andersson, J.Frontal dysfunction and frontal cortical synapse loss in alcoholism: the main cause of alcohol dementia?Dement Geriatr Cogn Disord 2001; 12: 289–94.CrossRefGoogle ScholarPubMed
Butters, N.The clinical aspects of memory disorders: contributions from experimental studies of amnesia and dementia. J Clin Neuropsychol 1984; 6: 17–36.CrossRefGoogle ScholarPubMed
Butters, N.Alcoholic Korsakoff's syndrome: some unresolved issues concerning etiology, neuropathology, and cognitive deficits. J Clin Exp Neuropsychol 1985; 7: 181–210.CrossRefGoogle ScholarPubMed
Butters, N, Cermak, LS.Alcoholic Korsakoff's Syndrome: an Information-Processing Approach to Amnesia. London: Academic Press, 1980.Google Scholar
Caine, D, Halliday, GM, Kril, JJ, Harper, CG.Operational criteria for the classification of chronic alcoholics: identification of Wernicke's encephalopathy. J Neurol Neurosurg Psychiatry 1997; 62: 51–60.CrossRefGoogle ScholarPubMed
Caulo, M, Hecke, J, Toma, L, et al. Functional MRI study of diencephalic amnesia in Wernicke–Korsakoff syndrome. Brain 2005; 128: 1584–94.CrossRefGoogle ScholarPubMed
Schmid, Ghika F, Ghika, J, Assal, G, Bogousslavsky, J.Callosal dementia: behavioral disorders related to central and extrapontine myelinolysis [in French]. Rev Neurol Paris 1999; 155: 367–73.Google Scholar
Halliday, G, Cullen, K, Harding, A.Neuropathological correlates of memory dysfunction in the Wernicke–Korsakoff syndrome. Alcohol Alcohol Suppl 1994; 2: 245–51.Google ScholarPubMed
Harding, A, Halliday, G, Caine, D, Kril, J.Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain 2000; 123: 141–54.CrossRefGoogle ScholarPubMed
Harper, C.The neuropathology of alcohol-specific brain damage, or does alcohol damage the brain?J Neuropathol Exp Neurol 1998; 57: 101–10.CrossRefGoogle ScholarPubMed
Harper C, Scolyer RA. Alcoholism and dementia. In: Esiri, MM, Lee, VMY, Trojanowski, JQ (eds.), The Neuropathology of Dementia (2nd edition). Cambridge: Cambridge University Press, 2004: 427–41.CrossRefGoogle Scholar
Heinrich, A, Runge, U, Khaw, AV.Clinicoradiologic subtypes of Marchiafava-Bignami disease. J Neurol 2004; 251: 1050–9.CrossRefGoogle ScholarPubMed
Kalckreuth, W, Zimmermann, P, Preilowski, B, Wallesch, CW.Incomplete split-brain syndrome in a patient with chronic Marchiafava–Bignami disease. Behav Brain Res 1994; 64: 219–28.CrossRefGoogle Scholar
Kleinschmidt-DeMasters, BK, Filley, CM, Rojiani, AM.Overlapping features of extrapontine myelinolysis and acquired chronic (non-Wilsonian) hepatocerebral degeneration. Acta Neuropathol (Berl) 2006; 112: 605–16.CrossRefGoogle ScholarPubMed
Kohler, CG, Ances, BM, Coleman, AR, et al. Marchiafava–Bignami disease: literature review and case report. Neuropsychiatry Neuropsychol Behav Neurol 2000; 13: 67–76.Google ScholarPubMed
Mayes, AR, Mendell, PR, Mann, D, Pickering, A.Location of lesions in Korsakoff's syndrome: neuropsychological and neuropathological data on two patients. Cortex 1988; 24: 367–88.CrossRefGoogle ScholarPubMed
Monaghan, TS, Murphy, DT, Tubridy, N, Hutchinson, M.The woman who mistook the past for the present. Adv Clin Neurosci Rehabil 2006; 6 (3); 27–8.Google Scholar
Moriyama, Y, Mimura, M, Kato, M, Kashima, H.Primary alcoholic dementia and alcohol-related dementia. Psychogeriatrics 2006; 6: 114–8.CrossRefGoogle Scholar
Oslin, D, Atkinson, RM, Smith, DM, et al. Alcohol related dementia: proposed clinical criteria. Int J Geriatr Psychiatry 1998; 13: 203–12.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Park, SA, Heo, K.Prominent cerebellar symptoms with unusual magnetic resonance imaging findings in acquired hepatocerebral degeneration. Arch Neurol 2004; 61: 1458–60.CrossRefGoogle ScholarPubMed
Ruitenberg, A, Swieten, JC, Witteman, JCM, et al. Alcohol consumption and risk of dementia: the Rotterdam Study. Lancet 2002; 359: 281–6.CrossRefGoogle ScholarPubMed
Saunders, PA, Copeland, JR, Dewey, ME, et al. Heavy drinking as a risk factor for depression and dementia in elderly men. Findings from the Liverpool longitudinal community study. Br J Psych 1991; 159: 213–16.CrossRefGoogle ScholarPubMed
Ueki, Y, Isozaki, E, Miyazaki, Y, et al. Clinical and neuroradiological improvement in chronic acquired hepatocerebral degeneration after branched-chain amino acid therapy. Acta Neurol Scand 2002; 106: 113–16.CrossRefGoogle ScholarPubMed
Victor, M.The irrelevance of the mammillary body lesions in the causation of the Korsakoff amnesic state. Int J Neurol 1987; 21–22: 51–7.Google ScholarPubMed
Victor, M, Adams, RD, Cole, M.The acquired (non-Wilsonian) type of chronic hepatocerebral degeneration. Medicine (Baltimore) 1965; 44: 345–95.CrossRefGoogle ScholarPubMed
Victor, M, Adams, RD, Collins, GH.The Wernicke–Korsakoff Syndrome and Related Neurologic Disorders Due to Alcoholism and Malnutrition (2nd edition). Philadelphia: Davis, 1989.Google Scholar
Allison, WM, Jerrom, DW.Glue sniffing: a pilot study of the cognitive effects of long-term use. Int J Addict 1984; 19: 453–8.CrossRefGoogle ScholarPubMed
Arlien-Soberg, P, Bruhn, P, Gyldensted, C, Melgaard, B.Chronic painters' syndrome: toxic encephalopathy in house painters. Acta Neurol Scand 1979; 60: 149–56.CrossRefGoogle Scholar
Dryson, E, Ogden, JA.Organic solvent induced chronic toxic encephalopathy: extent of recovery and associated factors, following cessation of exposure. Neurotoxicology 2000; 21: 659–66.Google Scholar
Ogden, JA.The psychological and neuropsychological assessment of chronic occupational solvent neurotoxicity: a case series. NZ J Psychol 1993; 23: 83–94.Google Scholar
Ridgway, P, Nixon, TE, Leach, JP.Occupational exposure to organic solvents and long-term nervous system damage detectable by brain imaging, neurophysiology or histopathology. Food Chem Toxicol 2003; 41: 153–87.CrossRefGoogle ScholarPubMed
Perl, TM, Bédard, L, Kosatsky, T, et al. An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid. N Engl J Med 1990; 322: 1775–80.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×