Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-04-30T12:52:26.930Z Has data issue: false hasContentIssue false

5 - Neurogenetic disorders

Published online by Cambridge University Press:  15 December 2009

A. J. Larner
Affiliation:
Walton Centre for Neurology and Neurosurgery, Liverpool
Get access

Summary

Although great advances have been made in elucidating the genetic basis of neurological disorders in recent years, with profound implications not only for diagnosis but also for beginning to understand disease pathogenesis, nonetheless a clinical rather than a pathogenetic classification of disorders is used here, in part because the pathogenetic pathway from mutant gene to disease phenotype remains uncertain in many instances.

Hereditary dementias

Under this rubric, dementia syndromes with confirmed genetic basis, with or without additional neurological features, are included. Autosomal dominant Alzheimer's disease (see Section 2.1), frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17: Section 2.2.4) and hereditary forms of prion disease (Section 2.5.3) are discussed elsewhere, as are other genetic disorders which may result in dementia such as CADASIL (Section 3.6.2) and some of the hereditary cerebral amyloid angiopathies (Section 3.6.3).

Huntington's disease (HD)

The archetypal hereditary dementia is Huntington's disease (HD), although a number of the common neurodegenerative dementias may sometimes be inherited in an autosomal dominant manner (see Chapter 2). In his description of the disorder that now bears his name, George Huntington not only delineated the movement disorder, most usually chorea (cortical myoclonus and parkinsonism may also occur), the neuropsychiatric features, and the mode of inheritance, but also alluded to the gradually progressive impairment of the mind (Huntington, 1872). Cognition is one of the four characteristics, along with motor function, behaviour, and functional abilities, assessed by the Unified Huntington's Disease Rating Scale (UHDRS), which has now become the universal scale for measuring HD function (Huntington's Study Group, 1996).

Type
Chapter
Information
Neuropsychological Neurology
The Neurocognitive Impairments of Neurological Disorders
, pp. 125 - 156
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, ML, Feldman, RG, Willis, AL.The ‘subcortical dementia’ of progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 1974; 37: 121–30.CrossRefGoogle ScholarPubMed
Brandt, J, Folstein, SE, Folstein, MF.Differential cognitive impairment in Alzheimer's disease and Huntington's disease. Ann Neurol 1988; 23: 555–61.CrossRefGoogle ScholarPubMed
Brouwers, P, Cox, C, Martin, A, Chase, T, Fedio, P.Differential perceptual–spatial impairment in Huntington's and Alzheimer's dementia. Arch Neurol 1984; 41: 1073–6.CrossRefGoogle Scholar
Butters, N, Wolfe, J, Granholm, E, Martone, M.An assessment of verbal recall, recognition, and fluency abilities in patients with Huntington's disease. Cortex 1986; 22: 11–32.CrossRefGoogle ScholarPubMed
Campodonico, JR, Codori, AM, Brandt, J.Neuropsychological stability over two years in asymptomatic carriers of the Huntington's disease mutation. J Neurol Neurosurg Psychiatry 1996; 61: 621–4.CrossRefGoogle ScholarPubMed
Craufurd D, Snowden JS. Neuropsychological and neuropsychiatric aspects of Huntington's disease. In: Bates, G, Harper, PS, Jones, L (eds.), Huntington's Disease (3rd edition). Oxford: Oxford University Press, 2003: 62–94.Google ScholarPubMed
Hahn-Barma, V, Deweer, B, Dürr, A, et al. Are cognitive changes the first symptoms of Huntington's disease? A study of gene carriers. J Neurol Neurosurg Psychiatry 1998; 64: 172–7.CrossRefGoogle ScholarPubMed
Hamilton, JM, Haaland, KY, Adair, JC, Brandt, J.Ideomotor limb apraxia in Huntington's disease: implications for corticostriate involvement. Neuropsychologia 2003; 41: 614–21.CrossRefGoogle ScholarPubMed
Ho, AK, Sahakian, BJ, Brown, RG, et al. Profile of cognitive progression in early Huntington's disease. Neurology 2003; 61: 1702–6.CrossRefGoogle ScholarPubMed
Hodges, JR, Salmon, DP, Butters, N.Differential impairment of semantic and episodic memory in Alzheimer's and Huntington's diseases: a controlled prospective study. J Neurol Neurosurg Psychiatry 1990; 53: 1089–95.CrossRefGoogle ScholarPubMed
Hodges, JR, Salmon, DP, Butters, N.The nature of the naming deficit in Alzheimer's and Huntington's disease. Brain 1991; 114: 1547–58.CrossRefGoogle ScholarPubMed
Huntington, G.On chorea. Med Surg Rep 1872; 26: 317–21.Google Scholar
Huntington's, Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993; 72: 971–83.Google Scholar
Huntington's Study Group. Unified Huntington's Disease Rating Scale: reliability and consistency. Mov Disord 1996; 11: 136–42.CrossRef
Kirkwood, SC, Siemers, E, Hodes, ME, et al. Subtle changes among presymptomatic carriers of the Huntington's disease gene. J Neurol Neurosurg Psychiatry 2000; 69: 773–9.CrossRefGoogle ScholarPubMed
Kosinski CM, Landwehrmeyer B. Huntington's disease. In: Beal, MF, Lang, AE, Ludolph, A (eds.), Neurodegenerative Diseases: Neurobiology, Pathogenesis and Therapeutics. Cambridge: Cambridge University Press, 2005: 847–60.CrossRefGoogle Scholar
Larner, AJ.Monogenic Mendelian disorders in general neurological practice. Int J Clin Pract 2008; 62: in press.Google ScholarPubMed
Lawrence, AD, Hodges, JR, Rosser, AE, et al. Evidence for specific cognitive deficits in preclinical Huntington's disease. Brain 1998; 121: 1329–41.CrossRefGoogle ScholarPubMed
Lawrence, AD, Sahakian, BJ, Hodges, JR, et al. Executive and mnemonic functions in early Huntington's disease. Brain 1996; 119: 1633–45.CrossRefGoogle ScholarPubMed
Lawrence, AD, Watkins, LH, Sahakian, BJ, et al. Visual object and visuospatial cognition in Huntington's disease: implications for information processing in corticostriatal circuits. Brain 2000; 123: 1349–64.CrossRefGoogle ScholarPubMed
Lemiere, J, Decruyenaere, M, Evers-Kiebooms, G, Vandenbussche, E, Dom, R.Cognitive changes in patients with Huntington's disease (HD) and asymptomatic carriers of the HD mutation: a longitudinal follow-up study. J Neurol 2004; 251: 935–42.CrossRefGoogle Scholar
McHugh PR, Folstein MF. Psychiatric symptoms of Huntington's chorea: a clinical and phenomenological study. In: Benson, DF, Blumer, D (eds.), Psychiatric Aspects of Neurological Disease. New York: Raven Press, 1975: 267–85.Google Scholar
Massman, PJ, Delis, DC, Butters, N, Levin, BE, Salmon, DP.Are all subcortical dementias alike? Verbal learning and memory in Parkinson's and Huntington's disease patients. J Clin Exp Neuropsychol 1990; 12: 729–44.CrossRefGoogle ScholarPubMed
Paulsen, JS, Conybeare, RA.Cognitive changes in Huntington's disease. Adv Neurol 2005; 96: 209–25.Google ScholarPubMed
Peinemann, A, Schuller, S, Pohl, C, et al. Executive dysfunction in early stages of Huntington's disease is associated with striatal and insular atrophy: a neuropsychological and voxel-based morphometric study. J Neurol Sci 2005; 239: 11–19.CrossRefGoogle ScholarPubMed
Randolph, C, Braun, AR, Goldberg, TE, Chase, T.Semantic fluency in Alzheimer's, Parkinson's, Huntington's disease: dissociation of storage and retrieval failures. Neuropsychology 1993; 7: 82–8.CrossRefGoogle Scholar
Rohrer, D, Salmon, DP, Wixted, JT, Paulsen, JS.The disparate effects of Alzheimer's disease and Huntington's disease on semantic memory. Neuropsychology 1999; 13: 381–8.CrossRefGoogle ScholarPubMed
Rosenblatt, A, Ranen, NG, Rubinsztein, DG, et al. Patients with features similar to Huntington's disease, without CAG expansion in huntingtin. Neurology 1998; 51: 215–20.CrossRefGoogle ScholarPubMed
Rosser, AE, Hodges, JR.The Dementia Rating Scale in Alzheimer's disease, Huntington's disease and progressive supranuclear palsy. J Neurol 1994a; 241: 531–6.CrossRefGoogle Scholar
Rosser, AE, Hodges, JR.Initial letter and semantic category fluency in Alzheimer's disease, Huntington's disease and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 1994b; 57: 1389–94.CrossRefGoogle Scholar
Shelton, PA, Knopman, DS.Ideomotor apraxia in Huntington's disease. Arch Neurol 1991; 48: 35–41.CrossRefGoogle ScholarPubMed
Snowden, J, Craufurd, D, Griffiths, H, Thompson, J, Neary, D.Longitudinal evaluation of cognitive disorder in Huntington's disease. J Int Neuropsychol Soc 2001; 7: 33–44.CrossRefGoogle ScholarPubMed
Speedie, LJ, Brake, N, Folstein, SE, Bowers, D, Heilman, KM.Comprehension of prosody in Huntington's disease. J Neurol Neurosurg Psychiatry 1990; 53: 607–10.CrossRefGoogle ScholarPubMed
Stevanin, G, Fujigasaki, H, Lebre, AS, et al. Huntington's disease like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain 2003; 126: 1599–603.CrossRefGoogle ScholarPubMed
Vonsattel JPG, Lianski M. Huntington's disease. In: Esiri, MM, Lee, VMY, Trojanowski, JQ (eds.), The Neuropathology of Dementia (2nd edition). Cambridge: Cambridge University Press, 2004: 376–401.CrossRefGoogle Scholar
Zakzanis, KK.The subcortical dementia of Huntington's disease. J Clin Exp Neuropsychol 1998; 20: 565–78.CrossRefGoogle ScholarPubMed
Ross CA, Ellerby LM, Wood JD, Nucifora FC Jr. Dentatorubral-pallidoluysian atrophy (DRPLA): model for Huntington's disease and other polyglutamine diseases. In: Beal, MF, Lang, AE, Ludolph, A (eds.), Neurodegenerative Diseases: Neurobiology, Pathogenesis and Therapeutics. Cambridge: Cambridge University Press, 2005: 861–70.CrossRefGoogle Scholar
Warner, TT, Williams, LD, Walker, RW, et al. A clinical and molecular genetic study of dentatorubropallidoluysian atrophy in four European families. Ann Neurol 1995; 37: 452–9.CrossRefGoogle ScholarPubMed
Mead, S, James-Galton, M, Revesz, T, et al. Familial British dementia with amyloid angiopathy: early clinical, neuropsychological and imaging findings. Brain 2000; 123: 975–91.CrossRefGoogle ScholarPubMed
Plant GT, Ghiso J, Holton JL, Frangione B, Revesz T. Familial and sporadic cerebral amyloid angiopathies associated with dementia and the BRI dementias. In: Esiri, MM, Lee, VMY, Trojanowski, JQ (eds.), The Neuropathology of Dementia (2nd edition). Cambridge: Cambridge University Press, 2004: 330–52.CrossRefGoogle Scholar
Vidal, R, Frangione, B, Rostagno, A, et al. A stop-codon mutation in the BRI gene associated with familial British dementia. Nature 1999; 399: 776–81.CrossRefGoogle ScholarPubMed
Worster-Drought, C, Hill, TR, McMenemey, WH.Familial presenile dementia with spastic paralysis. J Neurol Psychopathol 1933; 14: 27–34.CrossRefGoogle ScholarPubMed
Holton, JL, Lashley, T, Ghiso, J, et al. Familial Danish dementia: a novel form of cerebral amyloidosis associated with deposition of both amyloid-Dan and amyloid-β. J Neuropathol Exp Neurol 2002; 61: 254–67.CrossRefGoogle ScholarPubMed
Plant GT, Ghiso J, Holton JL, Frangione B, Revesz T. Familial and sporadic cerebral amyloid angiopathies associated with dementia and the BRI dementias. In: Esiri, MM, Lee, VMY, Trojanowski, JQ (eds.), The Neuropathology of Dementia (2nd edition). Cambridge: Cambridge University Press, 2004: 330–52.CrossRefGoogle Scholar
Vidal, R, Revesz, T, Rostagno, A, et al. A decamer duplication in the 3′ region of the BRI gene originates an amyloid peptide that is associated with dementia in a Danish kindred. Proc Natl Acad Sci USA 2000; 97: 4920–5.CrossRefGoogle Scholar
Bradshaw, CB, Davis, RL, Shrimpton, AE, et al. Cognitive deficits associated with a recently reported familial neurodegenerative disease: familial encephalopathy with neuroserpin inclusion bodies. Arch Neurol 2001; 58: 1429–34.CrossRefGoogle ScholarPubMed
Davis, RL, Shrimpton, AE, Carrell, RW, et al. Association between conformational mutations in neuroserpin and onset and severity of dementia. Lancet 2002; 359: 2242–7.CrossRefGoogle ScholarPubMed
Davis, RL, Shrimpton, AE, Holohan, PD, et al. Familial dementia caused by polymerization of mutant neuroserpin. Nature 1999; 401: 376–9.CrossRefGoogle ScholarPubMed
Bianchin, MM, Capella, HM, Chaves, DL, et al. Nasu–Hakola disease (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy – PLOSL): a dementia associated with bone cystic lesions. From clinical to genetic and molecular aspects. Cell Mol Neurobiol 2004; 24: 1–24.CrossRefGoogle ScholarPubMed
Klünemann, HH, Ridha, BH, Magy, L, et al. The genetic causes of basal ganglia calcification, dementia, and bone cysts: DAP12 and TREM2. Neurology 2005; 64: 1502–7.CrossRefGoogle ScholarPubMed
Kondo, T, Takahashi, K, Kohara, N, et al. Heterogeneity of presenile dementia with bone cysts (Nasu–Hakola disease): three genetic forms. Neurology 2002; 59: 1105–7.CrossRefGoogle ScholarPubMed
Montalbetti, L, Ratti, MT, Greco, B, et al. Neuropsychological tests and functional nuclear neuroimaging provide evidence of subclinical impairment in Nasu–Hakola disease heterozygotes. Funct Neurol 2005; 20: 71–5.Google ScholarPubMed
Paloneva, J, Autti, T, Raininko, R, et al. CNS manifestations of Nasu–Hakola disease: a frontal dementia with bone cysts. Neurology 2001; 56: 1552–8.CrossRefGoogle ScholarPubMed
Benke, T, Karner, S, Seppi, K, et al. Subacute dementia and imaging correlates in a case of Fahr's disease. J Neurol Neurosurg Psychiatry 2004; 75: 1163–5.CrossRefGoogle Scholar
Kobari, M, Nogawa, S, Sugimoto, Y, Fukuuchi, Y.Familial idiopathic brain calcification with autosomal dominant inheritance. Neurology 1997; 48: 645–9.CrossRefGoogle ScholarPubMed
Modrego, PJ, Mojonero, J, Serrano, M, Fayed, N.Fahr's syndrome presenting with pure and progressive presenile dementia. Neurol Sci 2005; 26: 367–9.CrossRefGoogle ScholarPubMed
Haubenberger, D, Bittner, RE, Rauch, SS, et al. Inclusion body myopathy and Paget disease is linked to a novel mutation in the VCP gene. Neurology 2005; 65: 1304–5.CrossRefGoogle ScholarPubMed
Kimonis, VE, Watts, GDJ.Autosomal dominant inclusion body myopathy, Paget disease of bone, and frontotemporal dementia. Alzheimer Dis Assoc Disord 2005; 19 (suppl 1): S44–7.CrossRefGoogle ScholarPubMed
Schröder, R, Watts, GDJ, Mehta, SG, et al. Mutant valosin-containing protein causes a novel type of frontotemporal dementia. Ann Neurol 2005; 57: 457–61.CrossRefGoogle ScholarPubMed
Watts, GDJ, Wymer, J, Kovach, MJ, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 2004; 36: 377–81.CrossRefGoogle ScholarPubMed
Al-Din, NAS, Wriekat, A, Mubaidin, A, Dasouki, M, Hiari, M.Pallido-pyramidal degeneration, supranuclear upgaze paresis and dementia: Kufor–Rakeb syndrome. Acta Neurol Scand 1994; 89: 347–52.CrossRefGoogle Scholar
Davidson, C.Pallido-pyramidal disease. J Neuropathol Exp Neurol 1954; 13: 50–9.CrossRefGoogle Scholar
Ramirez, A, Heimbach, A, Gründemann, J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 2006; 38: 1184–91.CrossRefGoogle ScholarPubMed
Caparros-Lefebvre, D, Girard-Buttoz, I, Reboul, S, et al. Cognitive and psychiatric impairment in herpes simplex virus encephalitis suggest involvement of the amygdalo-frontal pathways. J Neurol 1996; 243: 248–56.CrossRefGoogle ScholarPubMed
Markowitsch, HJ, Calabrese, P, Würker, M, et al. The amygdala's contribution to memory: a study on two patients with Urbach–Wiethe disease. Neuroreport 1994; 5: 1349–52.Google ScholarPubMed
Siebert, M, Markowitsch, HJ, Bartel, P.Amygdala, affect and cognition: evidence from 10 patients with Urbach–Wiethe disease. Brain 2003; 126: 2627–37.CrossRefGoogle ScholarPubMed
Bennetto, L, Pennington, BF, Porter, D, Taylor, AK, Hagerman, RJ.Profile of cognitive functioning in women with the fragile X mutation. Neuropsychology 2001; 15: 290–9.CrossRefGoogle ScholarPubMed
Brunberg, JA, Jacquemont, S, Hagerman, RJ, et al. Fragile X premutation carriers: characteristic MR imaging findings of adult male patients with progressive cerebellar and cognitive dysfunction. AJNR Am J Neuroradiol 2002; 23: 1757–66.Google ScholarPubMed
Davies, KE (ed.). The Fragile X Syndrome. Oxford: Oxford University Press, 1989.Google Scholar
Hagerman, RJ, Leavitt, BR, Farzin, F, et al. Fragile X-associated tremor/ataxia syndrome (FXTAS) in females with the FMR1 premutation. Am J Hum Genet 2004; 74: 1051–6.CrossRefGoogle ScholarPubMed
Hall, DA, Berry, KE, Jacquemont, S, et al. Initial diagnoses given to persons with the fragile X associated tremor/ataxia syndrome (FXTAS). Neurology 2005; 65: 299–301.CrossRefGoogle Scholar
Jacquemont, S, Hagerman, RJ, Leehey, M, et al. Fragile X premutation tremor/ataxia syndrome: molecular, clinical and neuroimaging correlates. Am J Hum Genet 2003; 72: 869–78.CrossRefGoogle ScholarPubMed
Schapiro, MB, Murphy, DG, Hagerman, RJ, et al. Adult fragile X syndrome: neuropsychology, brain anatomy, and metabolism. Am J Med Genet 1995; 60: 480–93.CrossRefGoogle ScholarPubMed
Steyaert, J, Legius, E, Borghgraef, M, Fryns, JP.A distinct neurocognitive phenotype in female fragile-X premutation carriers assessed with visual attention tasks. Am J Med Genet A 2003; 116: 44–51.CrossRefGoogle Scholar
Verkerk, AJ, Pieretti, M, Sutcliffe, JS, et al. Identification of a gene (FMR1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991; 65: 905–14.CrossRefGoogle ScholarPubMed
Bürk, K, Bösch, S, Müller, CA, et al. Sporadic cerebellar ataxia associated with gluten sensitivity. Brain 2001; 124: 1013–19.CrossRefGoogle ScholarPubMed
Michele, G, Coppola, G, Cocozza, S, Filla, A.A pathogenetic classification of hereditary ataxias: is the time ripe?J Neurol 2004; 251: 913–22.CrossRefGoogle ScholarPubMed
Holmes, G.The Croonian lectures on the clinical symptoms of cerebellar disease and their interpretation. Lancet 1922: i: 1177–82; 1231–7; ii: 59–65; 111–15.Google Scholar
Schmahmann, JD, Sherman, JC.The cerebellar cognitive affective syndrome. Brain 1998; 121: 561–79.CrossRefGoogle ScholarPubMed
Boesch, SM, Globas, C, Bürk, K, Poewe, W, Dichgans, J.Cognitive deficits in spinocerebellar ataxia type 2 (SCA2): a comparative study in two founder populations. Mov Disord 2000; 15 (suppl 3): 235 (abstract P1092).Google Scholar
Bruni, AC, Takahashi-Fujigasaki, J, Maltecca, F, et al. Behavioral disorder, dementia, ataxia, and rigidity in a large family with TATA Box-binding protein mutation. Arch Neurol 2004; 61: 1314–20.CrossRefGoogle Scholar
Bürk, K, Bosch, S, Globas, C, et al. Executive dysfunction in spinocerebellar ataxia type 1. Eur Neurol 2001; 46: 43–8.CrossRefGoogle ScholarPubMed
Bürk, K, Globas, C, Bösch, S, et al. Cognitive deficits in spinocerebellar ataxia 2. Brain 1999; 122: 769–77.CrossRefGoogle ScholarPubMed
Harding, AE.The Hereditary Ataxias and Related Disorders. Edinburgh: Churchill Livingstone, 1984.Google Scholar
Ishikawa, A, Yamada, M, Makino, K, et al. Dementia and delirium in 4 patients with Machado-Joseph disease. Arch Neurol 2002; 59: 1804–8.CrossRefGoogle ScholarPubMed
Maruff, P, Tyler, P, Burt, T, et al. Cognitive deficits in Machado–Joseph disease. Ann Neurol 1996; 40: 421–7.CrossRefGoogle ScholarPubMed
O'Hearn, E, Holmes, SE, Calvert, PC, Ross, CA, Margolis, RL.SCA-12: tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion. Neurology 2001; 56: 299–303.CrossRefGoogle ScholarPubMed
Paulson HL. Autosomal dominant cerebellar ataxia. In: Beal, MF, Lang, AE, Ludolph, A (eds.), Neurodegenerative Diseases: Neurobiology, Pathogenesis and Therapeutics. Cambridge: Cambridge University Press, 2005: 709–18.CrossRefGoogle Scholar
Rolfs, A, Koeppen, AH, Bauer, I, et al. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Ann Neurol 2003; 54: 367–75.CrossRefGoogle Scholar
Silveira, I, Alonso, I, Guimaraes, L, et al. High germinal instability of the (CTG)n at the SCA8 locus of both expanded and normal alleles. Am J Hum Genet 2000; 66: 830–40.CrossRefGoogle Scholar
Stone, J, Smith, L, Watt, K, Barron, L, Zeman, A.Incoordinated thought and emotion in spinocerebellar ataxia type 8. J Neurol 2001; 248: 229–32.CrossRefGoogle ScholarPubMed
Storey, E, Forrest, SM, Shaw, JH, Mitchell, P, Gardner, McKinley RJ.Spinocerebellar ataxia type 2: clinical features of a pedigree displaying prominent frontal-executive dysfunction. Arch Neurol 1999; 56: 43–50.CrossRefGoogle ScholarPubMed
Tashiro, H, Suzuki, SO, Hitotsumatsu, T, Iwaki, T.An autopsy case of spinocerebellar ataxia type 6 with mental symptoms of schizophrenia and dementia. Clin Neuropathol 1999; 18: 198–204.Google ScholarPubMed
Verbeek, DS, Schelhaas, JH, Ippel, EF, et al. Identification of a novel locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21–q21. Hum Genet 2002; 111: 388–93.CrossRefGoogle Scholar
Walker, M, Farrell, D.Spinocerebellar ataxia type 7 (SCA7). Pract Neurol 2006; 6: 44–7.CrossRefGoogle Scholar
Colvin, IB, Lennox, GG.Cognitive function in ataxia telangiectasia. J Neurol Neurosurg Psychiatry 1997; 62: 210 (abstract).Google Scholar
Dürr, A.Friedreich's ataxia: treatment within reach. Lancet Neurol 2002; 1: 370–4.CrossRefGoogle ScholarPubMed
Engert, JC, Berube, P, Mercier, J, et al. ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Genet 2000; 24: 120–5.CrossRefGoogle Scholar
Gatti RA, Crawford TO, Mandir AS, Perlman S, Mount HTJ. Ataxia telangiectasia. In: Beal, MF, Lang, AE, Ludolph, A (eds.), Neurodegenerative Diseases: Neurobiology, Pathogenesis and Therapeutics. Cambridge: Cambridge University Press, 2005: 738–48.CrossRefGoogle Scholar
Gomez, CM.ARSACS goes global. Neurology 2004; 62: 10–11.CrossRefGoogle ScholarPubMed
Hara, K, Onodera, O, Endo, M, et al. Sacsin-related autosomal recessive ataxia without prominent retinal myelinated fibers in Japan. Mov Disord 2005; 20: 380–2.CrossRefGoogle ScholarPubMed
Mrissa, N, Belal, S, Hamida, Ben M, et al. Linkage to chromosome 13q11-12 of an autosomal recessive cerebellar ataxia in a Tunisian family. Neurology 2000; 54: 1408–14.CrossRefGoogle Scholar
Puccio H, Koenig M. Friedreich's ataxia and other autosomal recessive ataxias. In: Beal, MF, Lang, AE, Ludolph, A (eds.). Neurodegenerative Diseases: Neurobiology, Pathogenesis and Therapeutics. Cambridge: Cambridge University Press, 2005: 719–37.CrossRefGoogle Scholar
Spacey, SD, Gatti, RA, Bebb, G.The molecular basis and clinical management of ataxia telangiectasia. Can J Neurol Sci 2000; 27: 184–91.CrossRefGoogle ScholarPubMed
White, M, Lalonde, R, Botez-Marquard, T.Neuropsychologic and neuropsychiatric characteristics of patients with Friedreich's ataxia. Acta Neurol Scand 2000; 102: 222–6.CrossRefGoogle ScholarPubMed
Wollmann, T, Barroso, J, Monton, F, Nieto, A.Neuropsychological test performance of patients with Friedreich's ataxia. J Clin Exp Neuropsychol 2002; 24: 677–86.CrossRefGoogle ScholarPubMed
Ferrer, I, Olivé, M, Rivera, R, et al. Hereditary spastic paraparesis with dementia, amyotrophy and peripheral neuropathy: a neuropathological study. Neuropathol Appl Neurobiol 1995; 21: 255–61.CrossRefGoogle ScholarPubMed
Fink, JK.The hereditary spastic paraplegias: nine genes and counting. Arch Neurol 2003; 60: 1045–9.CrossRefGoogle ScholarPubMed
Larner, AJ, Doran, M.Clinical phenotypic heterogeneity of Alzheimer's disease associated with mutations of the presenilin-1 gene. J Neurol 2006; 253: 139–58.CrossRefGoogle ScholarPubMed
McDermott, CJ, Shaw, PJ.Hereditary spastic paraplegia. Int Rev Neurobiol 2002; 53: 191–204.CrossRefGoogle ScholarPubMed
Webb, S, Hutchinson, M.Cognitive impairment in families with pure autosomal dominant hereditary spastic paraparesis. Brain 1998; 121: 923–9.CrossRefGoogle ScholarPubMed
Byrne, P, McMonagle, P, Webb, S, et al. Age-related cognitive decline in hereditary spastic paraparesis linked to chromosome 2p. Neurology 2000; 54: 1510–17.CrossRefGoogle ScholarPubMed
McDermott, CJ, Burness, CE, Kirby, J, et al. Clinical features of hereditary spastic paraplegia due to spastin mutation. Neurology 2006; 67: 45–51.CrossRefGoogle ScholarPubMed
McMonagle, P, Byrne, P, Hutchinson, M.Further evidence of dementia in SPG4-linked autosomal dominant hereditary spastic paraplegia. Neurology 2004; 62: 407–10.CrossRefGoogle ScholarPubMed
Tallaksen, CME, Guichart-Gomez, E, Verpillat, P, et al. Subtle cognitive impairment but no dementia in patients with spastin mutations. Arch Neurol 2003; 60: 1113–18.CrossRefGoogle ScholarPubMed
Webb, S, Coleman, D, Byrne, P, et al. Autosomal dominant hereditary spastic paraparesis with cognitive loss linked to chromosome 2p. Brain 1998; 121: 601–9.CrossRefGoogle ScholarPubMed
Cross, HE, McKusick, VA.The mast syndrome: a recessively inherited form of presenile dementia with motor disturbances. Arch Neurol 1967; 16: 1–13.CrossRefGoogle ScholarPubMed
D'Hooge, M.Probable cases of mast syndrome in a non-Amish family. J Neurol Neurosurg Psychiatry 1992; 55: 1210.CrossRefGoogle Scholar
Simpson, MA, Cross, H, Proukakis, C, et al. Maspardin is mutated in mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. Am J Hum Genet 2003; 73: 1147–56.CrossRefGoogle ScholarPubMed
Brewer, GJ.Behavioral abnormalities in Wilson's disease. Adv Neurol 2005; 96: 262–74.Google ScholarPubMed
Goldstein, NP, Ewert, JC, Randall, RV, Gross, JB.Psychiatric aspects of Wilson's disease (hepatolenticular degeneration): results of psychometric tests during long-term therapy. Am J Psychiatry 1968; 124: 1555–61.CrossRefGoogle ScholarPubMed
Lang, C, Müller, D, Claus, D, Druschky, KF.Neuropsychological findings in treated Wilson's disease. Acta Neurol Scand 1990; 81: 75–81.CrossRefGoogle ScholarPubMed
LeWitt PA, Brewer GJ. Neurological aspects of Wilson's disease. In: Beal, MF, Lang, AE, Ludolph, A (eds.), Neurodegenerative Diseases: Neurobiology, Pathogenesis and Therapeutics. Cambridge: Cambridge University Press, 2005: 890–908.CrossRefGoogle Scholar
Littman, E, Medalia, A, Senior, G, Scheinberg, IH.Rate of information processing in patients with Wilson's disease. J Neuropsychiatry Clin Neurosci 1995; 7: 68–71.Google ScholarPubMed
Medalia, A, Glaberman, Isaacs K, Scheinberg, IH.Neuropsychological impairment in Wilson's disease. Arch Neurol 1988; 45: 502–4.CrossRefGoogle ScholarPubMed
Polson, RJ, Rolles, K, Calne, RY, Williams, R, Marsden, D.Reversal of severe neurological manifestations of Wilson's disease following orthotopic liver transplantation. Q J Med 1987; 64: 685–91.Google ScholarPubMed
Rathbun, JK.Neuropsychological aspects of Wilson's disease. Int J Neurosci 1996; 85: 221–9.CrossRefGoogle ScholarPubMed
Rosselli, M, Lorenzana, P, Rosselli, A, Vergara, I.Wilson's disease, a reversible dementia: case report. J Clin Exp Neuropsychol 1987; 9: 399–406.CrossRefGoogle ScholarPubMed
Seniów, J, Bak, T, Gajda, J, Poniatowska, R, Czlonkowska, A.Cognitive functioning in neurologically symptomatic and asymptomatic forms of Wilson's disease. Mov Disord 2002; 17: 1077–83.CrossRefGoogle ScholarPubMed
Wilson, SAK.Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver. Brain 1912; 34: 295–509.CrossRefGoogle Scholar
Halliday, W.The nosology of Hallervorden–Spatz disease. J Neurol Sci 1995; 134 (suppl): 84–91.CrossRefGoogle ScholarPubMed
Hayflick, SJ, Westaway, SK, Levinson, B, et al. Genetic, clinical, and radiographic delineation of Hallervorden–Spatz syndrome. N Engl J Med 2003; 348: 33–40.CrossRefGoogle ScholarPubMed
Hickman, SJ, Ward, NS, Surtees, RA, Stevens, JM, Farmer, SF.How broad is the phenotype of Hallervorden–Spatz disease?Acta Neurol Scand 2001; 103: 201–3.CrossRefGoogle ScholarPubMed
Marelli, C, Piacentini, S, Garavaglia, B, Girotti, F, Albanese, A.Clinical and neuropsychological correlates in two brothers with pantothenate kinase-associated neurodegeneration. Mov Disord 2005; 20: 208–12.CrossRefGoogle ScholarPubMed
Pearce, JMS.Neurodegeneration with brain iron accumulation: a cautionary tale. Eur Neurol 2006; 56: 66–8.CrossRefGoogle ScholarPubMed
Zhou, B, Westaway, SK, Levinson, B, et al. A novel pantothenate kinase gene is defective in Hallervorden–Spatz syndrome. Nature Genet 2001; 28: 345–9.CrossRefGoogle ScholarPubMed
Danek, A (ed.). Neuroacanthocytosis Syndromes. Dordrecht: Springer, 2004.Google Scholar
Danek, A, Jung, HH, Melone, MAB, et al. Neuroacanthocytosis: new developments in a neglected group of dementing disorders. J Neurol Sci 2005; 229–30: 171–86.CrossRefGoogle Scholar
Doran, M, Harvie, AK, Larner, AJ.Antisocial behaviour orders: the need to consider underlying neuropsychiatric disease. Int J Clin Pract 2006; 60: 861–2.CrossRefGoogle ScholarPubMed
Hardie, RJ, Pullon, HW, Harding, AE, et al. Neuroacanthocytosis: a clinical, haematological and pathological study of 19 cases. Brain 1991; 114: 13–49.Google ScholarPubMed
Kartsounis, LD, Hardie, RJ.The pattern of cognitive impairments in neuroacanthocytosis. Arch Neurol 1996; 53: 77–80.CrossRefGoogle ScholarPubMed
Storch, A, Kornhass, M, Schwarz, J.Testing for acanthocytosis: a prospective reader-blinded study in movement disorder patients. J Neurol 2005; 252: 84–90.CrossRefGoogle ScholarPubMed
Chinnery, PF, Crompton, , Birchall, D, et al. Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutation. Brain 2007; 130: 110–19.CrossRefGoogle ScholarPubMed
Chinnery, P, Curtis, A, Fey, C, et al. Neuroferritinopathy in a French family with late onset dominant dystonia. J Med Genet 2003; 40: e69.CrossRefGoogle Scholar
Curtis, AR, Fey, C, Morris, CM, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 2001; 28: 350–4.CrossRefGoogle ScholarPubMed
Maciel, P, Cruz, VT, Constante, M, et al. Neuroferritinopathy: missense mutation in FTL causing early-onset bilateral pallidal involvement. Neurology 2005; 65: 603–5.CrossRefGoogle ScholarPubMed
Vidal, R, Ghetti, B, Takao, M, et al. Intracellular ferritin accumulation in neural and extraneural tissue characterizes a neurodegenerative disease associated with a mutation in the Ferritin Light Polypeptide gene. J Neuropath Exp Neurol 2004; 63: 363–80.CrossRefGoogle ScholarPubMed
Wills, AJ, Sawle, GV, Guilbert, PR, Curtis, ARJ.Palatal tremor and cognitive decline in neuroferritinopathy. J Neurol Neurosurg Psychiatry 2002; 73: 91–2.CrossRefGoogle ScholarPubMed
Harris, ZL, Migas, MC, Hughes, AE, Logan, JI, Gitlin, JD.Familial dementia due to a frameshift mutation in the caeruloplasmin gene. Q J Med 1996; 89: 355–9.CrossRefGoogle Scholar
Logan, JI, Harveyson, KB, Wisdom, GB, Hughes, AE, Archbold, GPR.Hereditary caeruloplasmin deficiency, dementia and diabetes mellitus. Q J Med 1994; 87: 663–70.Google ScholarPubMed
Morita, H, Inoue, A, Yanagisawa, N.A case of caeruloplasmin deficiency which showed dementia, ataxia and iron deposition in the brain [in Japanese]. Rinsho Shinkeigaku 1992; 32: 483–7.Google Scholar
Bain, PG, Findley, LJ, Thompson, PD, et al. A study of hereditary essential tremor. Brain 1994; 117: 805–24.CrossRefGoogle ScholarPubMed
Duane, DD, Vermilion, KJ.Cognitive deficits in patients with essential tremor. Neurology 2002; 58: 1706.CrossRefGoogle ScholarPubMed
Gasparini, M, Bonifati, V, Fabrizio, E, et al. Frontal lobe dysfunction in essential tremor: a preliminary study. J Neurol 2001; 248: 399–402.CrossRefGoogle ScholarPubMed
Lacritz, LH, Dewey, R Jr, Giller, C, Cullum, CM.Cognitive functioning in individuals with benign essential tremor. J Int Neuropsychol Soc 2002; 8: 125–9.CrossRefGoogle ScholarPubMed
Larner, AJ, Allen, CMC.Hereditary essential tremor and restless legs syndrome. Postgrad Med J 1997; 73: 254.CrossRefGoogle ScholarPubMed
Lombardi, WJ, Woolston, DJ, Roberts, JW, Gross, RE.Cognitive deficits in patients with essential tremor. Neurology 2001; 57: 785–90.CrossRefGoogle ScholarPubMed
Louis, ED.Essential tremor. Lancet Neurol 2005; 4: 100–10.CrossRefGoogle ScholarPubMed
Plumb, M, Bain, P. Essential Tremor: the Facts. Oxford: Oxford University Press, 2007.Google Scholar
Schrag, A, Münchau, A, Bhatia, KP, Quinn, NP, Marsden, CD.Essential tremor: an overdiagnosed condition?J Neurol 2000; 247: 955–9.CrossRefGoogle Scholar
Durmer, JS, Dinges, DF.Neurocognitive consequences of sleep deprivation. Semin Neurol 2005; 25: 117–29.CrossRefGoogle ScholarPubMed
Larner, AJ.Migraine with aura and restless legs syndrome. J Headache Pain 2007; 8: 141–2.CrossRefGoogle ScholarPubMed
Larner, AJ, Allen, CMC.Hereditary essential tremor and restless legs syndrome. Postgrad Med J 1997; 73: 254.CrossRefGoogle ScholarPubMed
Pearson, VE, Allen, RP, Dean, T, et al. Cognitive deficits associated with restless legs syndrome (RLS). Sleep Med 2006; 7: 25–30.CrossRefGoogle Scholar
Bornstein, RA.Neuropsychological correlates of obsessive characteristics in Tourette syndrome. J Neuropsychiatry Clin Neurosci 1991; 3: 157–62.Google ScholarPubMed
Chamberlain, SR, Blackwell, AD, Fineberg, NA, Robbins, TW, Sahakian, BJ.The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neurosci Biobehav Rev 2005; 29: 399–419.CrossRefGoogle ScholarPubMed
Jankovic, J.Tourette's syndrome. N Engl J Med 2001; 345: 1184–92.CrossRefGoogle ScholarPubMed
Maruff P, Purcell R, Pantelis C. Obsessive-compulsive disorder. In: Harrison, JE, Owen, AM (eds.), Cognitive Deficits in Brain Disorders. London: Martin Dunitz, 2002: 249–72.Google Scholar
Robertson, MM.Tourette syndrome, associated conditions and the complexities of treatment. Brain 2000; 123: 425–62.CrossRefGoogle Scholar
Stewart, JT, Williams, LS.Tourette's-like syndrome and dementia. Am J Psychiatry 2003; 160: 1356–7.CrossRefGoogle ScholarPubMed
Finsterer, J.Central nervous system manifestations of mitochondrial disorders. Acta Neurol Scand 2006; 114: 217–38.CrossRefGoogle ScholarPubMed
Haferkamp, O, Rosenau, W, Scheuerle, A, et al. Disseminated neocortical and subcortical encephalopathy (DNSE) with widespread activation of macrophages: a new dementia disorder? Autopsy report of two postmenopausal women from families with mitochondrial DNA mutations. Clin Neuropathol 1998; 17: 85–94.Google Scholar
Kartsounis, LD, Truong, DD, Hughes, Morgan JA, Harding, AE.The neuropsychological features of mitochondrial myopathies and encephalomyopathies. Arch Neurol 1992; 49: 158–60.CrossRefGoogle ScholarPubMed
Kornblum, C, Bosbach, S, Wagner, M, et al. Neuropsychological testing of patients with PEO and Kearns–Sayre syndrome reveals distinct frontal and parieto-occipital deficits. J Neurol 2000; 247 (suppl 3): III/73 (abstract P266).Google Scholar
Montagna, P, Gallassi, R, Medori, R, et al. MELAS syndrome: characteristic migrainous and epileptic features and maternal transmission. Neurology 1988; 38: 751–4.CrossRefGoogle ScholarPubMed
Schapira, AHV, DiMauro, S (eds.). Mitochondrial Disorders in Neurology (2nd edition). Boston: Butterworth-Heinemann, 2002.Google Scholar
Turconi, AC, Benti, R, Castelli, E, et al. Focal cognitive impairment in mitochondrial encephalomyopathies: a neuropsychological and neuroimaging study. J Neurol Sci 1999; 170: 57–63.CrossRefGoogle ScholarPubMed
Adab, N, Larner, AJ.Adult-onset seizure disorder in 18q deletion syndrome. J Neurol 2006; 253: 527–8.CrossRefGoogle ScholarPubMed
Angus, B, Silva, R, Davidson, R, Bone, I.A family with adult-onset cerebral adrenoleucodystrophy. J Neurol 1994; 241: 497–9.CrossRefGoogle ScholarPubMed
Baumann, N, Turpin, JC.Adult-onset leukodystrophies. J Neurol 2000; 247: 751–9.CrossRefGoogle ScholarPubMed
Brenner, M, Johnson, AB, Boespflug-Tanguy, O, et al. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 2001; 27: 117–20.CrossRefGoogle ScholarPubMed
Bruyn, GW, Weenink, HR, Bots, GT, Teepen, JL, Wolferen, WJ.Pelizaeus–Merzbacher disease: the Löwenberg–Hill type. Acta Neuropathol (Berl) 1985; 67: 177–89.CrossRefGoogle ScholarPubMed
Cox, CS, Dubey, P, Raymond, GV, et al. Cognitive evaluation of neurologically asymptomatic boys with X-linked adrenoleukodystrophy. Arch Neurol 2005; 63: 69–73.CrossRefGoogle Scholar
Grouchy, J, Royer, P, Salmon, C, Lamy, M.Délétion partielle des bras longs du chromosome 18. Pathol Biol 1964; 12: 579–82.Google Scholar
Esiri, MM, Hyman, NM, Horton, WL, Lindenbaum, RH.Adrenoleukodystrophy: clinical, pathological and biochemical findings in two brothers with the onset of cerebral disease in adult life. Neuropath Appl Neurobiol 1984; 10: 429–45.CrossRefGoogle ScholarPubMed
Fukutani, Y, Noriki, Y, Sasaki, K, et al. Adult-type metachromatic leukodystrophy with a compound heterozygote mutation showing character change and dementia. Psychiatry Clin Neurosci 1999; 53: 425–8.CrossRefGoogle ScholarPubMed
Garbern, J, Cambi, F, Shy, M, Kamholz, J.The molecular pathogenesis of Pelizaeus–Merzbacher disease. Arch Neurol 1999; 56: 1210–14.CrossRefGoogle ScholarPubMed
Garside, S, Rosebush, PI, Levinson, AJ, Mazurek, MF.Late-onset adrenoleukodystrophy associated with long-standing psychiatric symptoms. J Clin Psychiatry 1999; 60: 460–8.CrossRefGoogle ScholarPubMed
Jacob, J, Robertson, NJ, Hilton, DA.The clinicopathological spectrum of Rosenthal fibre encephalopathy and Alexander's disease: a case report and review of the literature. J Neurol Neurosurg Psychiatry 2003; 74: 807–10.CrossRefGoogle ScholarPubMed
Jardim, LB, Giugliani, R, Pires, RF, et al. Protracted course of Krabbe disease in an adult patient bearing a novel mutation. Arch Neurol 1999; 56: 1014–17.CrossRefGoogle Scholar
Johannsen, P, Ehlers, L, Hansen, HJ.Dementia with impaired temporal glucose metabolism in late-onset metachromatic leukodystrophy. Dement Geriatr Cogn Disord 2001; 12: 85–8.CrossRefGoogle ScholarPubMed
Larner, AJ.Adult-onset dementia with prominent frontal lobe dysfunction in X-linked adrenoleukodystrophy with R152C mutation in ABCD1 gene. J Neurol 2003; 250: 1253–4.CrossRefGoogle ScholarPubMed
Marcão, AM, Wiest, R, Schindler, K, et al. Adult onset metachromatic leukodystrophy without electroclinical peripheral nervous system involvement: a new mutation in the ARSA gene. Arch Neurol 2005; 62: 309–13.CrossRefGoogle ScholarPubMed
Moser, HW, Raymond, GV, Dubey, P.Adrenoleukodystrophy: new approaches to a neurodegenerative disease. JAMA 2005; 294: 3131–4.CrossRefGoogle ScholarPubMed
Namekawa, M, Takiyama, Y, Aoki, Y, et al. Identification of GFAP gene mutation in hereditary adult-onset Alexander's disease. Ann Neurol 2002; 52: 779–85.CrossRefGoogle ScholarPubMed
Nance, MA, Boyadjiev, S, Pratt, VM, et al. Adult-onset neurodegenerative disorder due to proteolipid protein gene mutation in the mother of a man with Pelizaeus–Merzbacher disease. Neurology 1996; 47: 1333–5.CrossRefGoogle Scholar
Panegyres, PK, Goldswain, P, Kakulas, BA.Adult-onset adrenoleukodystrophy manifesting as dementia. Am J Med 1989; 87: 481–3.CrossRefGoogle ScholarPubMed
Powers, JM, Schaumburg, HH, Gaffney, CL.Kluver–Bucy syndrome caused by adreno-leukodystrophy. Neurology 1980; 30: 1231–2.CrossRefGoogle ScholarPubMed
Saito, Y, Ando, T, Doyu, M, Takahashi, A, Hashizume, Y.An adult case of classical Pelizaeus–Merzbacher disease: magnetic resonance images and neuropathological findings [in Japanese]. Rinsho Shinkeigaku 1993; 33: 187–93.Google Scholar
Salmon, E, Linden, M, Maerfens-Noordhout, A, et al. Early thalamic and cortical hypometabolism in adult-onset dementia due to metachromatic leukodystrophy. Acta Neurol Belg 1999; 99: 185–8.Google ScholarPubMed
Sasaki, A, Miyanaga, K, Ototsuji, M, et al. Two autopsy cases with Pelizaeus–Merzbacher disease phenotype of adult onset, without mutation of proteolipid protein gene. Acta Neuropathol (Berl) 2000; 99: 7–13.CrossRefGoogle ScholarPubMed
Clikeman, Semrud M, Thompson, NM, Schaub, BL, et al. Cognitive ability predicts degree of genetic abnormality in participants with 18q deletions. J Int Neuropsychol Soc 2005; 11: 584–90.Google Scholar
Sereni, C, Ruel, M, Iba-Zizen, T, et al. Adult adrenoleukodystrophy: a sporadic case?J Neurol Sci 1987; 80: 121–8.CrossRefGoogle ScholarPubMed
Shapiro, EG, Lockman, , Balthazor, M, Krivit, W.Neuropsychological outcomes of several storage diseases with and without bone marrow transplantation. J Inherit Metab Dis 1995; 18: 413–29.CrossRefGoogle ScholarPubMed
Uyama, E, Iwagoe, H, Maeda, J, et al. Presenile onset cerebral adrenoleukodystrophy presenting as Balint's syndrome and dementia. Neurology 1993; 43: 1249–51.CrossRefGoogle ScholarPubMed
Walls, TJ, Jones, RA, Cartlidge, NEF, Saunders, M.Alexander's disease with Rosenthal fibre formation in an adult. J Neurol Neurosurg Psychiatry 1984; 47: 399–403.CrossRefGoogle Scholar
Wilson, SP, Al-Sarraj, S, Bridges, LR.Rosenthal fiber encephalopathy presenting with demyelination and Rosenthal fibers in a solvent abuser: adult Alexander's disease?Clin Neuropathol 1996; 15: 13–16.Google Scholar
Battisti, C, Tarugi, P, Dotti, MT, et al. Adult onset Niemann–Pick type C disease: a clinical, neuroimaging and molecular genetic study. Mov Disord 2003; 18: 1405–9.CrossRefGoogle ScholarPubMed
Berkovic, SF, Carpenter, S, Andermann, F, et al. Kufs' disease: a critical reappraisal. Brain 1988; 111: 27–62.CrossRefGoogle ScholarPubMed
Coker, SB.The diagnosis of childhood neurodegenerative disorders presenting as dementia in adults. Neurology 1991; 41: 794–8.CrossRefGoogle Scholar
Frey, LC, Ringel, SP, Filley, CM.The natural history of cognitive dysfunction in late-onset GM2 gangliosidosis. Arch Neurol 2005; 62: 989–94.CrossRefGoogle ScholarPubMed
Guimarães, J, Amaral, O, Sá Miranda, MC.Adult-onset neuronopathic form of Gaucher's disease: a case report. Parkinsonism Relat Disord 2003; 9: 261–4.CrossRefGoogle ScholarPubMed
Hruska, KS, Goker-Alpan, O, Sidransky, E.Gaucher disease and the synucleinopathies. J Biomed Biotechnol 2006; 2006: 78549 [sic].CrossRefGoogle ScholarPubMed
Josephson, SA, Schmidt, RE, Millsap, P, McManus, DQ, Morris, JC.Autosomal dominant Kufs' disease: a cause of early onset dementia. J Neurol Sci 2001; 188: 51–60.CrossRefGoogle ScholarPubMed
Klünemann, HH, Elleder, M, Kaminski, WE, et al. Frontal lobe atrophy due to a mutation in the cholesterol binding protein HE1/NPC2. Ann Neurol 2002; 52: 743–9.CrossRefGoogle ScholarPubMed
Larner, AJ.Alzheimer's disease, Kuf's disease, tellurium, and selenium. Med Hypotheses 1996; 47: 73–5.CrossRefGoogle ScholarPubMed
MacDermott, KD, Holmes, A, Miners, AH.Anderson–Fabry disease: clinical manifestations and impact of disease in a cohort of 98 hemizygous males. J Med Genet 2001; 38: 750–60.CrossRefGoogle Scholar
Mehta, A.New developments in the management of Anderson–Fabry disease. Q J Med 2002; 95: 647–53.CrossRefGoogle ScholarPubMed
Mendez, MF, Stanley, TM, Medel, NM, Li, Z, Tedesco, DT.The vascular dementia of Fabry's disease. Dement Geriatr Cogn Disord 1997; 8: 252–7.CrossRefGoogle ScholarPubMed
Mole, SE, Williams, RE, Goebel, HH.Correlations between genotype, ultrastructural morphology and clinical phenotype in the neuronal ceroid lipofuscinoses. Neurogenetics 2005; 6: 107–26.CrossRefGoogle ScholarPubMed
Platt, FM, Walkley, SU (eds.). Lysosomal Disorders of the Brain: Recent Advances in Molecular and Cellular Pathogenesis and Treatment. Oxford: Oxford University Press, 2004.CrossRefGoogle Scholar
Prevett, M, Enevoldson, TP, Duncan, JS.Adult onset acid maltase deficiency associated with epilepsy and dementia: a case report. J Neurol Neurosurg Psychiatry 1992; 55: 509.CrossRefGoogle ScholarPubMed
Shapiro, EG, Lockman, , Balthazor, M, Krivit, W.Neuropsychological outcomes of several storage diseases with and without bone marrow transplantation. J Inherit Metab Dis 1995; 18: 413–29.CrossRefGoogle ScholarPubMed
Trend, PStJ, Wiles, CM, Spencer, GT, et al. Acid maltase deficiency in adults. Brain 1985; 108: 845–60.CrossRefGoogle ScholarPubMed
Uc, EY, Wenger, DA, Jankovic, J.Niemann–Pick disease type C: two cases and an update. Mov Disord 2000; 15: 1199–203.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Valk, Schrojenstein-de HMJ, Kamp, JJP.Follow-up on seven adult patients with mild Sanfilippo B disease. Am J Med Genet 1987; 28: 125–30.CrossRefGoogle Scholar
Wisniewski, K, Jervis, GA, Moretz, RC, Wisniewski, HM.Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia. Ann Neurol 1979; 5: 288–94.CrossRefGoogle ScholarPubMed
Wisniewski, KE, Kida, E, Golabek, AA, et al. Neuronal ceroid lipofuscinoses: classification and diagnosis. Adv Genet 2001a; 45: 1–34.Google Scholar
Wisniewski, KE, Zhong, N, Philippart, M.Pheno/genotypic correlations in neuronal ceroid lipofuscinoses. Neurology 2001b; 57: 576–81.CrossRefGoogle Scholar
Zaroff, CM, Neudorfer, O, Morrison, C, et al. Neuropsychological assessment of patients with late onset GM2 gangliosidosis. Neurology 2004; 62: 2283–6.CrossRefGoogle ScholarPubMed
Verrips, A, Hoefsloot, LH, Steenbergen, GCH, et al. Clinical and molecular genetic characteristics of patients with cerebrotendinous xanthomatosis. Brain 2000a; 123: 908–19.CrossRefGoogle Scholar
Verrips, A, Engelen, BGM, Wevers, RA, et al. Presence of diarrhea and absence of tendon xanthomas in patients with cerebrotendinous xanthomatosis. Arch Neurol 2000b; 57: 520–4.CrossRefGoogle Scholar
Harvey, RJ, Summerfield, JA, Fox, NC, Warrington, EK, Rossor, MN.Dementia associated with haemochromatosis: a report of two cases. Eur J Neurol 1997; 4: 318–22.CrossRefGoogle Scholar
Jones, HR, Hedley-Whyte, ET.Idiopathic hemochromatosis (IHC): dementia and ataxia as presenting signs. Neurology 1983; 33: 1479–83.CrossRefGoogle ScholarPubMed
Russo, N, Edwards, M, Andrews, T, O'Brien, M, Bhatia, KP.Hereditary haemochromatosis is unlikely to cause movement disorders. A critical review. J Neurol 2004; 251: 849–52.CrossRefGoogle ScholarPubMed
Baykan, B, Striano, P, Gianotti, S, et al. Late-onset and slow-progressing Lafora disease in four siblings with EPM2B mutation. Epilepsia 2005; 46: 1695–7.CrossRefGoogle ScholarPubMed
Chan, EM, Young, EJ, Ianzano, L, et al. Mutations in NHLRC1 cause progressive myoclonus epilepsy. Nat Genet 2003; 35: 125–7.CrossRefGoogle ScholarPubMed
Ganesh, S, Delgado-Escueta, AV, Suzuki, T, et al. Genotype–phenotype correlations for EPM2A mutations in Lafora's progressive myoclonus epilepsy: exon 1 mutations associate with an early-onset cognitive deficit subphenotype. Hum Mol Genet 2002; 11: 1263–71.CrossRefGoogle ScholarPubMed
Messouak, O, Yahyaoui, M, Benabdeljalil, M, et al. La maladie de Lafora à révélation tardive. Rev Neurol Paris 2002; 158: 74–6.Google Scholar
Minassian, BA, Lee, JR, Herbrick, JA, et al. Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat Genet 1998; 20: 171–4.CrossRefGoogle Scholar
Berkhoff, M, Weis, J, Schroth, G, Sturzenegger, M.Extensive white-matter changes in case of adult polyglucosan body disease. Neuroradiology 2001; 43: 234–6.CrossRefGoogle ScholarPubMed
Bigio, EH, Weiner, MF, Bonte, FJ, White, CL.Familial dementia due to adult polyglucosan body disease. Clin Neuropathol 1997; 16: 227–34.Google ScholarPubMed
Predseil, Boulan P, Vital, A, Brochet, B, et al. Dementia of frontal lobe type due to adult polyglucosan body disease. J Neurol 1995; 242: 512–16.CrossRefGoogle Scholar
Moses, SW, Parvari, R.The variable presentations of glycogen storage disease type IV: a review of clinical, enzymatic and molecular studies. Curr Mol Med 2002; 2: 177–88.CrossRefGoogle ScholarPubMed
Robertson, NP, Wharton, S, Anderson, J, Scolding, NJ.Adult polyglucosan body disease associated with extrapyramidal syndrome. J Neurol Neurosurg Psychiatry 1998; 65: 788–90.CrossRefGoogle ScholarPubMed
Ubogu, EE, Hong, STK, Akman, HO, et al. Adult polyglucosan body disease: a case report of a manifesting heterozygote. Muscle Nerve 2005; 32: 675–81.CrossRefGoogle ScholarPubMed
Crimlisk, HL.The little imitator – porphyria: a neuropsychiatric disorder. J Neurol Neurosurg Psychiatry 1997; 62: 319–28.CrossRefGoogle ScholarPubMed
Peters, TJ, Sarkany, R.Porphyria for the general physician. Clin Med 2005; 5: 275–81.CrossRefGoogle ScholarPubMed
Mazarib, A, Xiong, L, Neufeld, MY, et al. Unverricht–Lundborg disease in a five-generation Arab family: instability of dodecamer repeats. Neurology 2001; 57: 1050–4.CrossRefGoogle Scholar
Ferner, RE, Hughes, RAC, Weinman, J.Intellectual impairment in neurofibromatosis 1. J Neurol Sci 1996; 138: 125–33.CrossRefGoogle ScholarPubMed
Huson, SM, Hughes, RAC (eds.). The Neurofibromatoses: a Pathogenetic and Clinical Overview. London: Chapman & Hall, 1994.Google Scholar
Korf, BR, Rubenstein, AE.Neurofibromatosis: a Handbook for Patients, Families, and Health Care Professionals (2nd edition). New York: Thieme, 2005.Google Scholar
Larner, AJ.Monogenic Mendelian disorders in general neurological practice. Int J Clin Pract 2008; 62: in press.Google ScholarPubMed
Harrison JE, Bolton PF. Cognitive dysfunction in tuberous sclerosis and other neuronal migration disorders. In: Harrison, JE, Owen, AM (eds.), Cognitive Deficits in Brain Disorders. London: Martin Dunitz, 2002: 325–39.Google Scholar
Winterkorn, EB, Pulsifer, MB, Thiele, EA.Cognitive prognosis of patients with tuberous sclerosis complex. Neurology 2007; 68: 62–4.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×