Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T12:22:33.646Z Has data issue: false hasContentIssue false

8 - Phenology and habitat specificity of tropical ferns

Published online by Cambridge University Press:  11 August 2009

Klaus Mehltreter
Affiliation:
Departamento de Sistemática Vegetal, Instituto de Ecología, A. C., Xalapa, Veracruz 91000, México
Tom A. Ranker
Affiliation:
University of Colorado, Boulder
Christopher H. Haufler
Affiliation:
University of Kansas
Get access

Summary

Introduction

The focus of this chapter is two aspects of fern sporophyte ecology: phenology and habitat specificity. I define phenology as the study of the periodicity of biological processes caused by intrinsic factors (hormones, circadian clock) or triggered by extrinsic, environmental factors, mainly rainfall, temperature, and photoperiod, or some combination of those elements. Habitat specificity is defined as the biotic and abiotic conditions that favor the development and, consequently, the presence and abundance of fern species on a spatial scale.

Historical summary

Descriptive treatments considering ecological aspects of ferns and lycophytes have been organized geographically (Christ, 1910) and by vegetation types and/or growth forms (Holttum, 1938; Tryon, 1964; Page, 1979a). The latter organization is followed for the two ecological issues treated within this chapter, starting with terrestrial species, followed by rheophytes (fluvial plants), lithophytes (rock plants), epiphytes, and climbers. All other growth forms (e.g., hemi-epiphytes, mangrove ferns) are either treated marginally within the nearest group (e.g., tree ferns within terrestrial ferns, mangrove ferns within rheophytes) or omitted because of lack of information.

Holttum (1938) observed that ferns and lycophytes are rarely dominant in any plant community. His statement that most vegetation types would not be greatly modified if all ferns were removed reflects the low importance he accorded ferns in a functional context within tropical forest ecosystems. In fact, we simply do not understand the ecological importance of ferns, because few studies have addressed this issue. Page (1979a) presented an opposite point of view.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aide, T. M. (1993). Patterns of leaf development and herbivory in a tropical understorey community. Ecology, 74, 455–466.CrossRefGoogle Scholar
Ash, J. (1986). Demography and production of Leptopteris wilkesiana (Osmundaceae), a tropical tree fern from Fiji. Australian Journal of Botany, 34, 207–215.CrossRefGoogle Scholar
Ash, J. (1987). Demography of Cyathea hornei (Cyatheaceae), a tropical tree-fern from Fiji. Australian Journal of Botany, 35, 331–342.CrossRefGoogle Scholar
Barger, T. W., Durham, T. J., Andrews, H. T., and Wilson, M. S. (2007). Gametophytic and sporophytic responses of Pteris spp. to arsenic. American Fern Journal, 97, 30–45.CrossRefGoogle Scholar
Barrington, D. S. (1993). Ecological and historical factors in fern biogeography. Journal of Biogeography, 20, 275–280.CrossRefGoogle Scholar
Beever, J. E. (1984). Moss epiphytes of tree-ferns in a warm-temperate forest, New Zealand. Journal of the Hattori Botanical Laboratory, 56, 89–95.Google Scholar
Bennicelli, R., Stepniewska, Z., Banach, A., Szajnocha, K., and Ostrowski, J. (2004). The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere, 55, 141–146.CrossRefGoogle ScholarPubMed
Benzing, D. H. (1990). Vascular Epiphytes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Benzing, D. H. (1995). Vascular epiphytes. In Forest Canopies, ed. Lowman, M. D. and Nadkarni, N. M.. San Diego, CA: Academic Press, pp. 225–254.Google Scholar
Bittner, J. and Breckle, S. W. (1995). The growth rate and age of tree fern trunks in relation to habitats. American Fern Journal, 85, 37–42.CrossRefGoogle Scholar
Brokaw, N. V. L. (1996). Treefalls: frequency, timing and consequences. In The Ecology of a Tropical Forest: Seasonal Rhythms and Long-term Changes, ed. Leigh, E. G., Rand, A. S., and Windsor, D. M., 2nd edn., Washington, DC: Smithsonian Institution Press, pp. 101–108.Google Scholar
Bullock, S. H. and Solis-Magallanes, J. A. (1990). Phenology of canopy trees of a tropical deciduous forest in Mexico. Biotropica, 22, 22–35.CrossRefGoogle Scholar
Callaway, R. M., Reinhart, K. O., Moore, G. W., Moore, D. J., and Pennings, S. C. (2002). Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia, 132, 221–230.CrossRefGoogle ScholarPubMed
Chiou, W.-L., Lin, J. C., and Wang, J. Y. (2001). Phenology of Cibotium taiwanense (Dicksoniaceae). Taiwan Journal of Forestry Science, 16, 209–215.Google Scholar
Christ, H. (1910). Die Geographie der Farne. Jena: Fischer.Google Scholar
Copeland, E. B. (1947). Genera Filicum. Waltham, MA: Chronica Botanica.Google Scholar
Cortez, L. (2001). Pteridofitas epífitas encontradas en Cyatheaceae y Dicksoniaceae de los bosques nublados de Venezuela. Gayana Botánica 58, 13–23.CrossRefGoogle Scholar
Dassler, C. L. and Farrar, D. R. (2001). Significance of gametophyte form in long distance colonization by tropical, epiphytic ferns. Brittonia, 53, 352–369.CrossRefGoogle Scholar
Durand, L. Z. and Goldstein, G. (2001). Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii. Oecologia, 126, 345–354.CrossRefGoogle ScholarPubMed
Ebihara, A., Dubuisson, J.-Y., Iwatsuki, K., Hennequin, S., and Ito, M. (2006). A taxonomic revision of Hymenophyllaceae. Blumea, 51, 221–280.CrossRefGoogle Scholar
Ewers, F. W., Cochard, H., and Tyree, M. T. (1997). A survey of root pressures in vines of a tropical lowland forest. Oecologia, 110, 191–196.CrossRefGoogle ScholarPubMed
Farrar, D. R. (1990). Species and evolution in asexually reproducing independent fern gametophytes. Systematic Botany, 15, 98–111.CrossRefGoogle Scholar
Francesconi, K., Visoottiviseth, P., Sridokchan, W., and Goessler, W. (2002). Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Science of the Total Environment, 284, 27–35.CrossRefGoogle Scholar
Frei, J. K. and Dodson, C. H. (1972). The chemical effect of certain bark substrates on the germination and early growth of epiphytic orchids. Bulletin of the Torrey Botanical Club, 99, 301–307.CrossRefGoogle Scholar
Gay, H. (1991). Ant-houses in the fern genus Lecanopteris: the rhizome morphology and architecture of L. sarcopus and L. darnaedii. Botanical Journal of the Linnean Society, 106, 199–208.CrossRefGoogle Scholar
Gemma, J. N., Koske, R. E., and Flynn, T. (1992). Mycorrhizae in Hawaiian Pteridophytes: occurence and evolutionary significance. American Journal of Botany, 79, 843–852.CrossRefGoogle Scholar
Gentry, A. H. and Dodson, C. H. (1987). Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden, 74, 205–233.CrossRefGoogle Scholar
Gómez, L. D. (1974). Biology of the potato-fern, Solanopteris brunei. Brenesia, 4, 37–61.Google Scholar
Heatwole, H. (1993). Distribution of epiphytes on trunks of the arborescent fern Blechnum palmiforme, at Gough Island, South Atlantic. Selbyana, 14, 46–58.Google Scholar
Hernández, A. C. (2006). Fenología foliar de helechos terrestres en un fragmento de bosque mesófilo de montaña en Xalapa, Veracruz, México. Tesis de Licenciatura en Biología, Universidad Veracruzana, Xalapa.
Holttum, R. E. (1938). The ecology of tropical pteridophytes. In Manual of Pteridology, ed. Verdoorn, F.. The Hague: M. Nijhoff, pp. 420–450.CrossRefGoogle Scholar
Johansson, D. (1974). Ecology of vascular epiphytes in West African rain forest. Acta Phytogeographica Suecica, 59, 1–130.Google Scholar
Kelly, D. L. (1985). Epiphytes and climbers of a Jamaican rain forest: vertical distribution, life forms and life histories. Journal of Biogeography, 12, 223–241.CrossRefGoogle Scholar
Kornás, J. (1977). Life-forms and seasonal patterns in the pteridophytes of Zambia. Acta Societatis Botanicorum Poloniae, 46, 668–690.Google Scholar
Kramer, K. U., Schneller, J. J., and Wollenweber, E. (1995). Farne und Farnverwandte. Stuttgart: Thieme.Google Scholar
Lieberman, D. and Lieberman, M. (1984). The causes and consequences of synchronous flushing in a tropical dry forest. Biotropica, 16, 193–201.CrossRefGoogle Scholar
Lloyd, R. M. and Buckley, D. P. (1986). Effects of salinity on gametophyte growth of Acrostichum aureum and Acrostichum danaeifolium. Fern Gazette, 13, 97–102.Google Scholar
Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., and Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409, 579.CrossRefGoogle ScholarPubMed
Medeiros, A. C., Loope, L. L., and Anderson, S. J. (1993). Differential colonization by epiphytes on native (Cibotium spp.) and alien (Cyathea cooperi) tree ferns in a Hawaiian rain forest. Selbyana, 14, 71–74.Google Scholar
Mehltreter, K. (2006). Leaf phenology of the climbing fern Lygodium venustum in a semi-deciduous lowland forest on the Gulf of Mexico. American Fern Journal, 96, 21–30.CrossRefGoogle Scholar
Mehltreter, K. and García-Franco, J. G. (in press). Leaf phenology and trunk growth of the deciduous tree fern Alsophila firma in a Mexican lower montane forest. American Fern Journal.
Mehltreter, K. and Palacios-Rios, M. (2003). Phenological studies of Acrostichum danaeifolium (Pteridaceae, Pteridophyta) at a mangrove site on the Gulf of Mexico. Journal of Tropical Ecology, 19, 155–162.CrossRefGoogle Scholar
Mehltreter, K., Flores-Palacios, A., and García-Franco, J. G. (2005). Host preferences of vascular trunk epiphytes in a cloud forest of Veracruz, México. Journal of Tropical Ecology, 21, 651–660.CrossRefGoogle Scholar
Mehltreter, K., Hülber, K., and Hietz, P. (2006). Herbivory on epiphytic ferns of a Mexican cloud forest. Fern Gazette, 17, 303–309.Google Scholar
Mickel, J. T. and Beitel, J. M. (1988). Pteridophyte Flora of Oaxaca, Mexico. New York: New York Botanical Garden.Google Scholar
Mickel, J. T. and Smith, A. R. (2004). The Pteridophytes of Mexico. New York: New York Botanical Garden.Google Scholar
Moran, R. C., Klimas, S., and Carlsen, M. (2003). Low-trunk epiphytic ferns on tree ferns versus angiosperms in Costa Rica. Biotropica, 35, 48–56.Google Scholar
Nishizono, H., Suzuki, S., and Ish, F. ii (1987). Accumulation of heavy metals in the metal-tolerant fern Athyrium yokoscense, growing on various environments. Plant and Soil, 102, 65–70.CrossRefGoogle Scholar
Oliver, W. R. B. (1930). New Zealand epiphytes. Journal of Ecology, 18, 1–50.CrossRefGoogle Scholar
Page, C. N. (1979a). The diversity of ferns. An ecological perspective. In The Experimental Biology of Ferns, ed. Dyer, A. F.. London: Academic Press, pp. 10–56.Google Scholar
Page, C. N. (1979b). Experimental aspects of fern ecology. In The Experimental Biology of Ferns, ed. Dyer, A. F.. London: Academic Press, pp. 552–589.Google Scholar
Page, C. N. and Brownsey, P. J. (1986). Tree-fern skirts: a defense against climbers and large epiphytes. Journal of Ecology, 74, 787–796.CrossRefGoogle Scholar
Pócs, T. (1982). Tropical forest bryophytes. In Bryophyte Ecology, ed. Smith, A. J. E.. London: Chapman and Hall, pp. 59–104.CrossRefGoogle Scholar
Poulsen, A. D., Tuomisto, H., and Balslev, H. (2006). Edaphic and floristic variation within a 1-ha plot of lowland Amazonian rain forest. Biotropica, 38, 468–478.CrossRefGoogle Scholar
Rivera, G., Elliott, S., Caldas, L. S., Nicolossi, G., Coradin, V. T. R., and Borchert, R. (2002). Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees, 16, 445–456.CrossRefGoogle Scholar
Rothwell, G. W. (1991). Botryopteris forensis (Botryopteridaceae), a trunk epiphyte of the tree fern Psaronius. American Journal of Botany, 78, 782–788.CrossRefGoogle Scholar
Schmitt, J. L. and Windisch, P. G. (2005). Aspectos ecológicos de Alsophila setosa Kaulf. (Cyatheaceae, Pteridophyta) no Rio Grande do Sul, Brasil. Acta Botanica Brasilica, 19, 859–865.CrossRefGoogle Scholar
Schmitt, J. L. and Windisch, P. G. (2006). Phenological aspects of frond production in Alsophila setosa (Cyatheaceae, Pteridophyta) in Southern Brazil. Fern Gazette, 17, 263–270.Google Scholar
Schneider, H., Schuettpelz, E., Pryer, K. M., Cranfill, R., Magallón, S., and Lupia, R. (2004). Ferns diversified in the shadow of angiosperms. Nature, 428, 553–557.CrossRefGoogle ScholarPubMed
Seiler, R. L. (1981). Leaf turnover rates and natural history of the Central American tree fern Alsophila salvinii. American Fern Journal, 71, 75–81.CrossRefGoogle Scholar
Sela, M., Garty, J., and Tel-Or, E. (1989). The accumulation and the effect of heavy metals on the water fern Azolla filiculoides. New Phytologist, 112, 7–12.CrossRefGoogle Scholar
Sharpe, J. M. (1993). Plant growth and demography of the neotropical herbaceous fern Danaea wendlandii (Marattiaceae) in a Costa Rican rain forest. Biotropica, 25, 85–94.CrossRefGoogle Scholar
Sharpe, J. M. (1997). Leaf growth and demography of the rheophytic fern Thelypteris angustifolia (Willdenow) Proctor in a Puerto Rican rainforest. Plant Ecology, 130, 203–212.CrossRefGoogle Scholar
Sharpe, J. M. and Jernstedt, J. A. (1990). Leaf growth and phenology of the dimorphic herbaceous layer fern Danaea wendlandii (Marattiaceae) in a Costa Rican rain forest. American Journal of Botany, 77, 1040–1049.CrossRefGoogle Scholar
Sharpe, J. M. and Jernstedt, J. A. (1991). Stipular bud development in Danaea wendlandii (Marattiaceae). American Fern Journal, 81, 119–127.CrossRefGoogle Scholar
Tanner, E. V. J. (1983). Leaf demography and growth of the tree-fern Cyathea pubescens Mett. ex Kuhn in Jamaica. Botanical Journal of the Linnaean Society, 87, 213–227.CrossRefGoogle Scholar
Tuomisto, H. (2006). Edaphic niche differentiation among Polybotrya ferns in western Amazonia: implications for coexistence and speciation. Ecography, 29, 273–284.CrossRefGoogle Scholar
Tryon, R. M. (1960). The ecology of Peruvian ferns. American Fern Journal, 50, 46–55.CrossRefGoogle Scholar
Tryon, R. M. (1964). Evolution in the leaf of living ferns. Bulletin of the Torrey Botanical Club, 21, 73–85.Google Scholar
Steenis, C. G. G. J. (1981). Rheophytes of the World. Alpen an den Rijn: Sijthoff and Noordhoff.CrossRefGoogle Scholar
Steenis, C. G. G. J. (1987). Rheophytes of the world: supplement. Allertonia, 4, 267–330.Google Scholar
Wagner, W. H. (1972). Solanopteris brunei, a little known fern epiphyte with dimorphic stems. American Fern Journal, 62, 33–43.CrossRefGoogle Scholar
Wagner, W. H., Jr. and Wagner, F. S. (1977). Fertile-sterile leaf dimorphy in ferns. Gardens Bulletin Singapore, 30, 251–267.Google Scholar
Walker, T. G. (1986). The ant-fern Lecanopteris mirabilis. Kew Bulletin, 41, 533–545.CrossRefGoogle Scholar
Westoby, M., Warton, D., and Reich, P. B. (2000). The time value of leaf area. American Naturalist, 155, 649–656.CrossRefGoogle ScholarPubMed
Williams-Linera, G. (1997). Phenology of deciduous and broadleaved-evergreen tree species in a Mexican tropical lower montane forest. Global Ecology and Biogeography Letters, 6, 115–127.CrossRefGoogle Scholar
Zotz, G. and Büche, M. (2000). The epiphytic filmy ferns of a tropical lowland forest – species occurrence and habitat preferences. Ecotropica, 6, 203–206.Google Scholar
Zotz, G. and Vollrath, B. (2003). The epiphyte vegetation of the palm Socratea exorrhiza – correlations with tree size, tree age and bryophyte cover. Journal of Tropical Ecology, 19, 81–90.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×