Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-05T14:30:41.261Z Has data issue: false hasContentIssue false

10 - Thrombosis prophylaxis and risk factors for thrombosis in gynecologic oncology

Published online by Cambridge University Press:  01 February 2010

Georg-Friedrich von Tempelhoff M.D., F.A.C.T.H.
Affiliation:
Specialist in Gynecology and Obstetrics, Department of Obstetrics and Gynecology GP Rüsselsheim, Teaching Hospital of the Johannes Gutenberg-University Main 2, Rüsselsheim, Germany
Rodger L. Bick
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Eugene P. Frenkel
Affiliation:
University of Texas Southwestern Medical Center, Dallas
William F. Baker
Affiliation:
University of California, Los Angeles
Ravi Sarode
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Get access

Summary

Introduction

Malignancy is an independent risk factor for the development of venous thrombosis (VT) and the latter belongs to the most common and life-threatening complications in patients with gynecological malignancy. Most thrombotic complications are recognized while patients undergo cancer treatment. Breast cancer patients under observation were found to experience VT in 0 to 3% compared to an overall incidence per year of about 0.3% in women. Incidence of VT does not exceed 1.5% following surgery for breast cancer, irrespectively of whether patients had radical or breast conserving surgery. VT occurs in about 1 out of 5 patients after Wertheim – Meigs surgery for cervical and endometrial cancer despite receiving thrombosis prophylaxis and every 4th patient with ovarian malignancy is confronted with VT during the time of primary treatment (surgery and first-line chemotherapy). According to a statement by the Subcommittee Thrombosis and Haemostasis in Malignancy of the International Society on Thrombosis and Haemostasis (ISTH) a 5% incidence of VT can be expected in the course of adjuvant chemotherapy for breast cancer, which is of concern since most breast cancer patients will receive adjuvant chemotherapy. According to the American Cancer Society (ACS) estimates for 2004, 217,000 new cases of invasive breast cancer, 50,840 cases of uterine cancer and 25,580 cases of ovarian cancer will be diagnosed in the United States. Thus some 13,000 patients (6%) with breast cancer, 10,000 patients with uterine malignancy, and 6,300 women with ovarian cancer will develop thrombosis within the first year after diagnosis of cancer.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alikhan, R., Cohen, A. T., Combe, S., et al. Prevention of venous thromboembolism in medical patients with enoxaparin: a subgroup analysis of the MEDINOX study. Blood Coag. Fibrinolysis, 2003; 14: 341–6.CrossRefGoogle Scholar
Heilman, L., Tempelhoff, G.-F., Kirkpatrick, J. P., et al. Comparison of unfractionated versus low molecular weight heparin for deep vein thrombosis prophylaxis during breast and pelvic cancer surgery: Efficacy, safety and follow-up. Clin. Appl. Thromb. Hemost., 1998; 4: 268–73.CrossRefGoogle Scholar
Clahsen, P. C., Cornelis, J. H., Velde, J. P. J., et al. Thromboembolic complications after perioperative chemotherapy in women with early breast cancer: A European Organization for Research and Treatment of Cancer Breast Cooperative Group Study. J. Clin. Oncol., 1994; 12: 1266–71.CrossRefGoogle ScholarPubMed
Clarke-Pearson, D. L., Jelovsek, F. R., Creasman, W. T.Thromboembolism complicating surgery for cervical and uterine malignancy: Incidence, risk factors and prophylaxis. Obstet. Gyn., 1983; 61: 87–94.Google Scholar
Clarke-Pearson, D. L., Colemann, R. E., Synan, I. S., et al. Venous thromboembolism prophylaxis in gynecologic oncology: A prospective controlled trial of low dose heparin. Am. J. Obstet. Gynecol., 1983; 145: 606–13.CrossRefGoogle ScholarPubMed
Tempelhoff, G.-F., Dietrich, M., Niemann, F., et al. Blood coagulation and thrombosis in patients with ovarian malignancy. Thromb. Haemost., 1997; 77: 456–61.Google Scholar
Canney, P. A., Wilkinson, P. M.Pulmonary embolism in patients receiving chemotherapy for advanced ovarian cancer. Eur. J. Cancer. Clin. Oncol., 1985; 21: 585–7.CrossRefGoogle ScholarPubMed
Henderson, P. H. Jr.Multiple migratory thrombophlebitis associated with ovarian carcinoma. Am. J. Obstet. Gynecol., 1955; 70: 452–5.CrossRefGoogle ScholarPubMed
Levine, M. N.Prevention of thrombotic disorders in cancer patients undergoing chemotherapy. Thromb. Haemost., 1997; 78: 133–6.Google ScholarPubMed
American Cancer Society. Cancer Facts & Figures 2004. National Cancer Institute Surveillance, Epidemiology, and End Results program. American Cancer Society No. 5008.04.
Bergqvist, D., Agnelli, G., Cohen, A. T., et al. ENOXACAN II Investigators. Duration of prophylaxis against venous thromboembolism with enoxaparin after surgery for cancer. N. Engl. J. Med., 2002: 346: 975–80.CrossRefGoogle ScholarPubMed
Trimbos, J. B., Franchi, M., Zanaboni, F., et al. “State of the art” of radical hysterectomy; current practice in European oncology centres. Eur. J. Cancer, 2004; 40: 375–8.CrossRefGoogle ScholarPubMed
Heilmann, L., Tempelhoff, G.-F., Schneider, D.Prevention of thrombosis in gynecological malignancy. Clin. Appl. Thromb. Hemost., 1998; 4: 153–9.CrossRefGoogle Scholar
Saeger, W., Genzkow, M.Venous thromboses and pulmonary embolisms in post–mortem series: Probable causes by correlation of clinical data and basic diseases. Path. Res. Pract., 1994; 190: 394–9.CrossRefGoogle Scholar
Venous Thrombosis Experts meeting (VTE), Lisbon, November 2nd–4th 2003.
Silverstein, M. D., Heit, J. A., Mohr, D. N., et al. 3rd Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch. Intern. Med., 1998; 158: 585–93.CrossRefGoogle Scholar
Lowe, G. D.Venous and arterial thrombosis: epidemiology and risk factors at various ages. Maturitas, 2004; 47: 259–63.CrossRefGoogle ScholarPubMed
Fowkes, F. G. R., Pell, J. P., Donnan, P. T., et al. Sex differences in susceptibility to etiologic factors for peripheral athersiosclerosis. Arterioscler. Thromb., 1994; 14: 862–8.CrossRefGoogle Scholar
Heilmann L. Blutrheologie und Thrombose. In Gerinnungsstörung in Gynäkologie und Geburtshilfe. Thieme stuttgart, New York, NY: Rath, W. und Heilmann, L. Thieme, 1999, pp. 10–6.
European Consensus Statement on the prevention of venous thromboembolism. Int. Angiol., 1992; 11: 151–6.
Shackelford, D. P., Lalikos, J. F.Estrogen replacement therapy and the surgeon. Am. J. Surg., 2000; 179: 333–6.CrossRefGoogle ScholarPubMed
Franchi, M., Ghezzi, F., Riva, C., et al. Postoperative complications after pelvic lymphadenectomy for the surgical staging of endometrial cancer. J. Surg. Oncol., 2001; 78: 232–7.CrossRefGoogle ScholarPubMed
Bergqvist, D., Lindblad, B. Incidence of venous thromboembolism in medical and surgical patients. In BergqvistComerosa, A. J.. Nicolaides, A. N. (eds.), Prevention of Venous Thromboembolism. London, Med-Orion. 1994, pp. 175–80.Google Scholar
Rogers, J. S., Murgo, A. J., Fontana, J. A., et al. Chemotherapy for breast cancer decreases plasma protein C and protein S. J. Clin. Oncol., 1988; 6: 276–81.CrossRefGoogle ScholarPubMed
Tempelhoff, G.-F., Dietrich, M., Hommel, G., et al. Blood coagulation during adjuvant Epirubicin/Cyclophosphamide chemotherapy in patients with primary operable breast cancer. J. Clin. Oncol., 1996; 14: 2560–8.CrossRefGoogle Scholar
Nijziel, M. R., Oerle, R., Christella, M., et al. Acquired resistance to activated protein C in breast cancer patients. Br. J. Haematol., 2003; 120: 117–22.CrossRefGoogle ScholarPubMed
Haim, N., Lanir, N., Hoffman, R., et al. Acquired activated protein C resistance is common in cancer patients and is associated with venous thromboembolism. Am. J. Med., 2001; 110: 91–6.CrossRefGoogle ScholarPubMed
Ozguroglu, M., Arun, B., Erzin, Y., et al. Serum cardiolipin antibodies in cancer patients with thromboembolic events. Clin. Appl. Thromb. Hemost., 1999; 5: 181–4.CrossRefGoogle ScholarPubMed
Zuckerman, E., Toubi, E., Golan, T. D., et al. Increased thromboembolic incidence in anti-cardiolipin-positive patients with malignancy. Br. J. Cancer 1995; 72: 447–51.CrossRefGoogle ScholarPubMed
Stefano, V., Chiusolo, P., Paciaroni, K., et al. Epidemiology of factor V Leiden: clinical implications. Semin. Thromb. Hemost., 1998; 24: 367–79.CrossRefGoogle ScholarPubMed
Crowther, M. A., Kelton, G. K.Congenital thrombophilic states associated with venous thrombosis: A qualitative overview and proposed classification system. Ann. Intern. Med., 2003; 138: 128–4.CrossRefGoogle ScholarPubMed
Hillarp, A., Zoller, B., Svensson, P. J., et al. The 20210 A allele of the prothrombin gene is a common risk factor among Swedish outpatients with verified deep venous thrombosis. Thromb. Haemost., 1997; 78: 990–2.Google ScholarPubMed
Ramacciotti, E., Wolosker, N., Puech-Leao, P., et al. Prevalence of factor V Leiden, FII G20210A, FXIII Val34Leu and MTHFR C677T polymorphisms in cancer patients with and without venous thrombosis. Thromb. Res., 2003; 109: 171–4.CrossRefGoogle ScholarPubMed
Leebeek, F. W., Stadhouders, N. A., Stein, D., et al. Hypercoagulability states in upper-extremity deep venous thrombosis. Am. J. Hematol., 2001; 67: 15–19.CrossRefGoogle ScholarPubMed
Tempelhoff, G.-F., Pollow, K., Heilmann, L., et al. Impact of rheological variables in cancer. Seminars Thromb. Hemost, 2003; 29: 499–513.Google Scholar
Patterson, W. P., Caldwell, C. W., Doll, D. C.Hyperviscosity syndromes and coagulopathies. Sem. Oncol., 1990; 17: 210–6.Google ScholarPubMed
Humphreys, W. V., Walker, A., Charlesworth, D.Altered viscosity and yield stress in patients with abdominal malignancy: Relationship to deep venous thrombosis. Br. J. Surg., 1976; 63: 559–61.CrossRefGoogle Scholar
Tempelhoff, G.-F., Heilmann, L., Hommel, G., et al. Hyperviscosity Syndrome in ovarian malignancy. Cancer, 1998; 82: 1104–11.3.0.CO;2-A>CrossRefGoogle Scholar
Walsh, J. J., Bonnar, J., Wright, F. W.A study of pulmonary embolism and deep leg vein thrombosis after major gynecological surgery using labelled fibrinogen – phlebography and lung scanning. J. Obstet. Gynecol. Brit. Cwlth., 1974; 81: 311–16.CrossRefGoogle ScholarPubMed
Clarke-Pearson, D. L., deLong, E. R., Synan, J. S., et al. Variables associated with postoperative deep venous thrombosis. A prospective study of 411 gynecologic patients and creation of a prognostic model. Obstet. Gynecol., 1987; 69: 146–50.Google ScholarPubMed
Hohl, M. K., Lüscher, K. P., Tichy, J., et al. Prevention of postoperative thromboembolism by Dextran 70 or low dose heparin. Obstet. Gynecol., 1980; 55: 497–500.Google ScholarPubMed
Heilmann, L., Kruck, A., Schindler, E.Thromboseprophylaxe in der Gynäkologie: Doppelblindvergleich zwischen niedermolekularen (LMWH) und unfraktionierten (UFH) Heparin. Geburtsh Frauenheilk, 1989; 48: 803–7.CrossRefGoogle Scholar
Heilmann, L., Tempelhoff, G.-F., Herrle, B., et al. Low dose heparin versus niedermolekulares Heparin zur Thromboseprophylaxe in der operativen gynäkologischen Onkologie. Geburtsh Frauenheilk, 1997; 57: 1–6.CrossRefGoogle Scholar
White, R. H., Zhou, H., Romano, S.Incidence of symptomatic venous thromboembolism after different elective or urgent surgical procedures. Thromb. Haemost., 2003; 90: 446–55.Google ScholarPubMed
Kakkar, V. V., Murray, W. J. G.Efficacy and safety of low molecular weight heparin (CY216) in preventing postoperative venous thromboembolism: a co-operative study. Br. J. Surg., 1985; 72: 786–91.CrossRefGoogle ScholarPubMed
Clarke-Pearson, D. L., DeLong, E., Synan, I. S., et al. A controlled trial of two low-dose-heparin regimens for the prevention of postoperative deep vein thrombosis. Obstet. Gynecol., 1990; 75: 683–9.Google Scholar
Nurmohamed, M. T., Verhaeghe, R., Haas, S., et al. A comparative trial of a low molecular weight heparin (enoxaparin) versus standard heparin for the prophylaxis of postoperative deep vein thrombosis in general surgery. Am. J. Surg., 1995; 169: 567–71.CrossRefGoogle ScholarPubMed
Fricker, J-P., Vergnes, Y., Schach, R., et al. Low dose heparin versus low molecular weight heparin (Kabi 2165, Fragmin) in the prophylaxis of thromboembolic complications of abdominal oncological surgery. Eur. J. Clin. Invest., 1988; 18: 561–7.CrossRefGoogle ScholarPubMed
Kakkar, V. V., Cohen, A. T., Edmonson, R. A., et al. Low molecular weight versus standard heparin for prevention of venous thromboembolism after major abdominal surgery. Lancet, 1993; 341: 251–65.CrossRefGoogle ScholarPubMed
Kakkar, V. V.Effectiveness and safety of low molecular weight heparins (LMWH) in the prevention of venous thrombembolism (VTE). Thromb. Haemostas., 1995; 74: 364–8.Google Scholar
Morgan, M. M., Iyengar, T. D., Napiorkowski, B. E., et al. The clinical course of deep vein thrombosis in patients with gynecological cancer. Gynecol. Oncol., 2002; 84: 67–71.CrossRefGoogle Scholar
Ludwig, H.Klinisch – experimentelle Untersuchungen zur thromobotischen Diathese bei der gynäkologischen Radiumbehandlung. Geburtsh Frauenhlk, 1962; 22: 1121–3.Google Scholar
Graf, A. H., Graf, B., Brandis, M. G., et al. Oral anticoagulation in patients with gynecological cancer and radiotherapy: a retrospective analysis of 132 patients. Anticancer Res., 1998; 18: 2047–51.Google ScholarPubMed
Graf, A. H., Graf, B., Traun, H., et al. Risiko und Prophylaxe thromboembolischer Komplikationen bei gynäkologischen Malignomen. Gynäkol Geburtshilf Rundsch, 1996; 36: 37–45.CrossRefGoogle Scholar
Kemkes-Matthes, B., Münstedt, K., Matthes, K. J., et al. Blood coagulation activation markers during iridium HDR – AL therapy in patients with uterine cancer. Ann. Haemat., 1995; 70(Suppl.1): A 61 (Abstract).Google Scholar
Tempelhoff, G.-F., Heilmann, L., Pollow, K., et al. Monitoring of rheological variables during postoperative high-dose brachytherapy for uterine cancer. Clin. Appl. Thrombosis/Hemostasis, 2004; 10: 239–48.CrossRefGoogle Scholar
Tempelhoff, G.-F., Pollow, K., Schneider, D., et al. Chemotherapy and thrombosis in gynecological malignancy. Clin. Appl. Thrombosis/Hemostasis, 1999; 5: 92–104.CrossRefGoogle Scholar
Duggan, C., Marriott, K., Edwards, R., et al. Inherited and acquired risk factors for venous thromboembolic disease among women taking tamoxifen to prevent breast cancer. J. Clin. Oncol., 2003; 21: 3588–93.CrossRefGoogle ScholarPubMed
Rutqvist, E., A, Mattson for the Stockholm Breast Cancer Study Group. Cardiac and thromboembolic morbidity among postmenopausal women with early stage breast cancer in a randomized trial of adjuvant tamoxifen. J. Natl. Cancer Inst., 1993; 85: 1298–306.CrossRefGoogle Scholar
Soule, S. E., Miller, K. D., Porcu, P., et al. Combined anti-microtubule therapy: a phase II study of weekly docetaxel plus estramustine in patients with metastatic breast cancer. Ann. Oncol., 2002; 13: 1612–5.CrossRefGoogle ScholarPubMed
Tempelhoff, G.-F., Niemann, F., Schneider, D., et al. Blood rheology during chemotherapy in patients with ovarian cancer. Thromb. Res., 1998; 90: 73–82.CrossRefGoogle Scholar
Feffer, S. E., Carmasino, L. S., Fox, R. L.Acquired protein C deficiency in patients with breast cancer receiving cyclophosphamide, methotrexate and 5 floururacil. Cancer, 1989; 63: 1303–7.3.0.CO;2-F>CrossRefGoogle Scholar
Rella, C., Coviello, M., Giotta, F., et al. A prethrombotic state in breast cancer patients treated with adjuvant chemotherapy. Breast Cancer Res. Treat., 1996; 40: 151–9.CrossRefGoogle Scholar
Vasigara-Singh, W., Subramaniam, S., Shyama, S., et al. Changes in erythrocyte membrane lipids in breast cancer patients after radiotherapy and chemotherapy. Chemotherapy, 1996; 42: 65–70.CrossRefGoogle ScholarPubMed
Tempelhoff, G.-F., Niemann, F., Schneider, D., et al. Gerinnungsuntersuchungen und Thromboseinzidenz während der Cisplatin/Epirubicin/Cyclophosphamid Chemotherapy beim Ovarialkarzinom. Geburtsh Frauenhlk, 1997; 57: 595–601.CrossRefGoogle Scholar
Tempelhoff, G.-F., Heilmann, L.. Thrombosis and hemorheology in patients with breast cancer and adjuvant chemotherapy. Clin. Hemorheology, 1995; 15: 311–23.Google Scholar
Kuenen, B. C., Levi, M., Meijers, J. C. M., et al. Analysis of coagulation cascade and endothelial cell activation during inhibition of vascular endothelial growth factor/vascular endothelial growth factor receptor in cancer patients. Arterioscler. Thromb. Vasc. Biol., 2002; 22: 1500–5.CrossRefGoogle ScholarPubMed
Edwards, R. L., Klaus, M., Mathews, E., et al. Heparin abolishes the chemotherapy induced increase in plasma fibrinopeptid A levels. Am. J. Med., 1990; 89: 25–8.CrossRefGoogle Scholar
Levine, M., Hirsh, J., Gent, M., et al. Double-blind randomised trial of very-low-dose warfarin for prevention of thromboembolism in stage IV breast cancer. Lancet, 1994; 343: 886–9.CrossRefGoogle ScholarPubMed
Falanga, A., Levine, M. N., Consonni, R., et al. The effect of very-low-dose warfarin on markers of hypercoagulation in metastatic breast cancer: Results from a randomized trial. Thromb. Haemost., 1998; 79: 23–7.Google ScholarPubMed
Kakkar, A. K., Levine, M. N., Kadziola, Z., et al. Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J. Clin. Oncol., 2004; 22: 1944–8.CrossRefGoogle Scholar
Ray, S., Stacey, R., Imrie, M., et al. A review of 560 Hickman catheter insertions. Anaesthesia, 1996; 51: 981–5.CrossRefGoogle ScholarPubMed
Cicco, M., Balestieri, L.Central venous thrombosis: An early and frequent complication in cancer patients bearing a long term silastic catheter – A prospective study. Thromb. Res., 1997; 86: 101–13.CrossRefGoogle ScholarPubMed
Balestreri, L., Cicco, M., Matovic, M., et al. Central venous catheter-related thrombosis in clinically asymptomatic oncologic patients: a phlebographic study. Eur. J. Radiol., 1995; 20: 108–11.CrossRefGoogle ScholarPubMed
Smith, V. C., Hellett, J. W.Subclavian vein thrombosis during prolonged catheterisation for parenteral nutrition: Early management and long-term follow-up. South Med. J., 1983; 76: 606–13.CrossRefGoogle ScholarPubMed
Lokich, J. J., Becker, B.Subclavian vein thrombosis in patients treated with infusion chemotherapy for advanced malignancy. Cancer, 1983; 52: 1586–9.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Ladefoged, K., Jarnum, S.Long term parenteral nutrition. BMJ, 1978; 2: 262–78.CrossRefGoogle ScholarPubMed
Tolar, B., Gould, J. R.The timing and sequence of multiple device-related complications in patients with long-term indwelling Groshong catheters. Cancer, 1996; 78: 1308–13.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Luciani, A., Clement, O., Halimi, P., et al. Catheter-related upper extremity deep venous thrombosis in cancer patients: a prospective study based on Doppler US. Radiology, 2001; 220: 655–60.CrossRefGoogle ScholarPubMed
Ruesch, S., Walder, B., Trammer, M. R.Complications of central venous catheters: Internal jugular veins VS. subclavian vein access – A systematic review. Crit. Care Med., 2002; 30: 454–60.CrossRefGoogle ScholarPubMed
Grove, J. R., Pevec, W. C.Venous thrombosis related to peripherally inserted central catheters. J. Vasc. Interv. Radiol., 2000; 11: 837–40.CrossRefGoogle ScholarPubMed
Allen, A. W., Megargell, J. L., Brown, D. B., et al. Venous thrombosis associated with the placement of peripherally inserted central catheters. Vasc. Interv. Radiol., 2000; 11: 1309–14.CrossRefGoogle ScholarPubMed
Monreal, M., Raventos, A., Lerma, R., et al. Pulmonary embolism in patients with upper extremity DVT associated to venous central lines – a prospective study. Thromb. Haemost., 1994; 72: 548–50.Google ScholarPubMed
Monreal, M., Lafoz, E., Ruiz, J., et al. Upper-extremity deep venous thrombosis and pulmonary embolism. A prospective study. Chest, 1991; 99: 280–3.CrossRefGoogle ScholarPubMed
Kuter, D. J.Thrombotic complications of central venous catheters in cancer patients. Oncologist, 2004; 9: 207–16.CrossRefGoogle ScholarPubMed
Hoshal, V. L. Jr., Ause, R. G., Hoskins, P. A.Fibrin sleeve formation on indwelling subclavian central venous catheters. Arch. Surg., 1971; 102: 253–8.CrossRefGoogle ScholarPubMed
Raad, I., Costerton, W., Sabharwal, U., et al. Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J. Infect. Dis., 1993; 168: 400–7.CrossRefGoogle ScholarPubMed
Starkhammar, H., Bengtsson, M., Morales, O.Fibrin sleeve formation after long term brachial catheterisation with an implantable port device. A prospective venographic study. Eur. J. Surg., 1992; 158: 481–4.Google ScholarPubMed
Rooden, C. J., Rosendaal, F. R., Meinders, A. E., et al. The contribution of factor V Leiden and prothrombin G20210A mutation to the risk of central venous catheter-related thrombosis. Haematologica, 2004; 89: 201–6.Google ScholarPubMed
Mandala, M., Curigliano, G., Bucciarelli, P., et al. Factor V Leiden and G20210A prothrombin mutation and the risk of subclavian vein thrombosis in patients with breast cancer and a central venous catheter. Ann. Oncol., 2004; 15: 590–3.CrossRefGoogle Scholar
Cicco, M., Matovic, M., Balestreri, L., et al. Antithrombin III deficiency as a risk factor for catheter-related central vein thrombosis in cancer patients. Thromb. Res., 1995; 78: 127–37.CrossRefGoogle ScholarPubMed
Schwarz, R. E., Coit, D. G., Groeger, J. S.Transcutaneously tunneled central venous lines in cancer patients: an analysis of device-related morbidity factors based on prospective data collection. Ann. Surg. Oncol., 2000; 7: 441–9.CrossRefGoogle ScholarPubMed
Eastman, M. E., Khorsand, M., Maki, D. G., et al. Central venous device-related infection and thrombosis in patients treated with moderate dose continuous-infusion interleukin-2. Cancer, 2001; 91: 806–14.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Lagro, S. W., Verdonck, L. F., Rinkes, Borel I. H., et al. No effect of nadroparin prophylaxis in the prevention of central venous catheter (CVC)-associated thrombosis in bone marrow transplant recipients. Bone Marrow Transplant, 2000; 26: 1103–6.CrossRefGoogle ScholarPubMed
Tempelhoff, G.-F., Heilmann, L.Thrombosis – a clue of poor prognosis in primary non-metastatic breast cancer? Breast Cancer Res. Treat., 2002; 73: 275–7.CrossRefGoogle Scholar
Geerts, W. H., Heit, J. A., Clagett, G. P., et al. Prevention of venous thromboembolism. Chest, 2001; 119(1 Suppl.): 132–75S.CrossRefGoogle ScholarPubMed
Mismetti, P., Mille, D., Laporte, S., et al. CIP Study Group. Low-molecular-weight heparin (nadroparin) and very low doses of warfarin in the prevention of upper extremity thrombosis in cancer patients with indwelling long-term central venous catheters: a pilot randomized trial. Haematologica, 2003; 88: 67–73.Google Scholar
Bern, M. M., Lokich, J. J., Wallach, S. R.Very low doses of warfarin can prevent thrombosis in central vein catheters: a randomized prospective trial. Ann. Intern. Med., 1990; 112, 4428–32.CrossRefGoogle ScholarPubMed
Boraks, P., Seale, J., Price, J., et al. Prevention of central venous catheter associated thrombosis using minidose warfarin in patients with haematological malignancies. Br. J. Haematol., 1998; 101: 483–6.CrossRefGoogle ScholarPubMed
Nightingale, C. E., Norman, A., Cunningham, D., et al. A prospective analysis of 949 long-term central venous access catheters for ambulatory chemotherapy in patients with gastrointestinal malignancy. Eur. J. Cancer, 1997; 33: 398–403.CrossRefGoogle ScholarPubMed
Heaton, D. C., Han, D. Y., Inder, A.Minidose (1 mg) warfarin as prophylaxis for central vein catheter thrombosis. Intern. Med. J., 2002; 32: 84–8.CrossRefGoogle Scholar
Couban, S., Goodyear, M., Burnell, M.A randomized double-blind placebo-controlled study of low-dose warfarin for the prevention of symptomatic central venous catheter-associated thrombosis in patients with cancer. Blood, 2002; 100(suppl.): 703a [abstract].Google Scholar
Minassian, V. A., Sood, A. K., Lowe, P., et al. Longterm central venous access in gynecologic cancer patients. J. Am. Coll. Surg., 2000; 191: 403–9.CrossRefGoogle ScholarPubMed
Harter, C., Salwender, H. J., Bach, A., et al. Catheter-related infection and thrombosis of the internal jugular vein in hematologic-oncologic patients undergoing chemotherapy: a prospective comparison of silver-coated and uncoated catheters. Cancer, 2002; 94: 245–51.CrossRefGoogle ScholarPubMed
Cortelezzia, A., Fracchiolla, N. S., Maisonneuve, P., et al. Central venous catheter-related complications in patients with hematological malignancies: a retrospective analysis of risk factors and prophylactic measures. Leuk. Lymphoma, 2003; 44: 1495–501.CrossRefGoogle ScholarPubMed
Monreal, M., Alastrue, A., Rull, M., et al. Upper extremity deep venous thrombosis in cancer patients with venous access devices – prophylaxis with a low molecular weight heparin (Fragmin). Thromb. Haemost., 1996; 75: 251–3.Google Scholar
Pucheu, A., Leduc, B., Sillet-Bach, I., et al. Experimental prevention of deep venous thrombosis with low-molecular-weight heparin using implantable infusion devices. Ann. Cardiol. Angeiol. (Paris), 1996; 45: 59–63.Google ScholarPubMed
Reichardt, P., Kretzschmar, A., Biakhov, M.A phase III randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of daily low-molecular-weight heparin (dalteparin sodium, fragmin) in preventing catheter-related complications (CRCs) in cancer patients with central venous catheters (CVCs). Proc. Am. Soc. Clin. Oncol., 2002; 21: 369a.Google Scholar
Anderson, G. L., Judd, H. L., Kaunitz, A. M., et al. Women's Health Initiative Investigators. Effects of estrogen plus progestin on gynecologic cancers and associated diagnostic procedures: the Women's Health Initiative randomized trial. JAMA, 2003; 290: 1739–48.CrossRefGoogle ScholarPubMed
Herrington, D. M., Vittinghoff, E., Howard, T. D., Factor V Leiden, hormone replacement therapy, and risk of venous thromboembolic events in women with coronary disease. Arterioscler. Thromb. Vasc. Biol., 2002; 22: 1012–17.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×