Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T23:06:49.082Z Has data issue: false hasContentIssue false

4 - Hemolytic disease of the fetus and newborn caused by ABO, Rhesus, and other blood group alloantibodies

Published online by Cambridge University Press:  01 February 2010

Katharine A. Downes M.D.
Affiliation:
Assistant Professor Department of Pathology, University Hospitals of Cleveland, Cleveland, Ohio, USA
Ravindra Sarode M.D.
Affiliation:
Professor of Pathology, University of Texas Southwestern Medical Center Director: Transfusion Medicine and Hemostasis, Dallas, Texas, USA
Rodger L. Bick
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Eugene P. Frenkel
Affiliation:
University of Texas Southwestern Medical Center, Dallas
William F. Baker
Affiliation:
University of California, Los Angeles
Ravi Sarode
Affiliation:
University of Texas Southwestern Medical Center, Dallas
Get access

Summary

Introduction

This chapter presents an overview of immune mediated hemolytic disease of the fetus and newborn (HDFN) due to ABO, Rh(D) and other red cell alloantibodies. Section I reviews the pathophysiology of immune mediated HDFN. Section II describes HDFN due to different antigen incompatibilities (ABO, Rh, and other antigens). Section III focuses on the management of the non-sensitized Rh(D) negative female, the alloimmunized mother, the fetus, and the neonate.

Section I: Pathophysiology of hemolytic disease of the fetus and neonate (HDFN)

The cause of hemolytic disease of the fetus and neonate (HDFN) is immune mediated destruction of fetal and/or newborn erythrocytes by maternal antibodies directed against fetal erythrocyte antigens inherited from the father. HDFN occurs as the result of five distinct events:

(1) Fetal inheritance of a paternal erythrocyte antigen

The gene for red cell antigen is inherited from the father. If the father is homozygous for the gene that the mother lacks, 100% of his offspring carry that gene and will be at the greatest risk for HDFN. The offspring of a heterozygous father will have 50% chance of carrying that gene and therefore will be at a lesser risk.

Passage of fetal erythrocytes into the maternal circulation exposes the pregnant female to the “foreign” paternal erythrocyte antigen

Any clinical situation that introduces the possibility of fetomaternal hemorrhage (FMH) may introduce fetal RBCs into maternal circulation and, thus, the possibility of maternal alloimmunization.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bowman, J. M., Pollock, J. M. and Penston, L. E.Fetomaternal transplacental hemorrhage during pregnancy and after delivery. Vox Sang, 1986; 51(2): 117–21.CrossRefGoogle ScholarPubMed
Biankin, S. A., Arbuckle, S. M. and Graf, N. S.Autopsy findings in a series of five cases of fetomaternal haemorrhages. Pathology, 2003; 35(4): 319–24.CrossRefGoogle Scholar
Pourbabak, S., Rund, C. R. and Crookston, K. P.Three cases of massive fetomaternal hemorrhage presenting without clinical suspicion. Arch. Pathol. Lab. Med., 2004; 128(4): 463–5.Google ScholarPubMed
Lele, A. S., Carmody, P. J., Hurd, M. E., et al. Fetomaternal bleeding following diagnostic amniocentesis. Obstet. Gynecol., 1982; 60(1): 60–4.Google ScholarPubMed
Shah, A. J. and Kilcline, B. A.Trauma in pregnancy. Emerg. Med. Clin. North Am., 2003; 21(3): 615–29.CrossRefGoogle ScholarPubMed
Nicolini, U., Kochenour, N. K., Greco, P., et al. Consequences of fetomaternal haemorrhage after intrauterine transfusion. BMJ, 1988; 297(6660): 1379–81.CrossRefGoogle ScholarPubMed
Zipursky, A. and Israels, L. G.The pathogenesis and prevention of Rh immunization. Can. Med. Assoc. J., 1967; 97(21): 1245–57.Google ScholarPubMed
Banerjee, K., Kriplani, A., Kumar, V., et al. Detecting fetomaternal hemorrhage after first-trimester abortion with the Kleihauer-Betke test and rise in maternal serum alpha-fetoprotein. J. Reprod. Med., 2004; 49(3): 205–9.Google ScholarPubMed
Hadley, A. G.Laboratory assays for predicting the severity of haemolytic disease of the fetus and newborn. Transpl. Immunol., 2002; 10(2–3): 191–8.CrossRefGoogle ScholarPubMed
Pollock, J. M. and Bowman, J. M.Placental transfer of Rh antibody (anti-D IgG) during pregnancy. Vox Sang, 1982; 43(6): 327–34.CrossRefGoogle ScholarPubMed
Lubenko, A., Contreras, M., Rodeck, C. H., et al. Transplacental IgG subclass concentrations in pregnancies at risk of haemolytic disease of the newborn. Vox Sang, 1994; 67(3): 291–8.CrossRefGoogle ScholarPubMed
Ukita, M., Takahashi, A., Nunotani, T., et al. IgG subclasses of anti-A and anti-B antibodies bound to the cord red cells in ABO incompatible pregnancies. Vox Sang, 1989; 56(3): 181–6.CrossRefGoogle ScholarPubMed
Toivanen, P. and Hirvonen, T.Antigens Duffy, Kell, Kidd, Lutheran and Xg a on fetal red cells. Vox Sang, 1973; 24(4): 372–6.Google ScholarPubMed
Abhyankar, S., Silfen, S., Rao, S. P., et al. Positive cord blood “DAT” due to anti-Le(a): absence of hemolytic disease of the newborn. Am. J. Pediatr. Hematol. Oncol., 1989; 11(2): 184–5.Google ScholarPubMed
Bowman, J. M. and Pollock, J. M.Amniotic fluid spectrophotometry and early delivery in the management of erythroblastosis fetalis. Pediatrics, 1965; 35: 815–35.Google ScholarPubMed
Stevenson, D. K., Wong, R. J., Vreman, H. J., et al. NICHD Conference on kernicterus: Research on prevention of bilirubin-induced brain injury and kernicterus – bench-to-bedside diagnostic methods and prevention and treatment strategies. J. Perinatol., 2004; 24(8): 521–5.CrossRefGoogle ScholarPubMed
Bhutani, V. K. and Johnson, L. H.Urgent clinical need for accurate and precise bilirubin measurements in the United States to prevent kernicterus. Clin. Chem., 2004; 50(3): 477–80.CrossRefGoogle ScholarPubMed
Ross, G.Hyperbilirubinemia in the 2000s: what should we do next?Am. J. Perinatol., 2003; 20(8): 415–24.Google ScholarPubMed
Diamond, L., Blackfan, K. and Baty, J.Erythroblastosis fetalis and its association with universal edema of the fetus, icterus gravis neonatorum and anemia of the newborn. J. Pediatr., 1932; 1: 269.CrossRefGoogle Scholar
Vengelen-Tyler, V. The serological investigation of hemolytic disease of the newborn caused by antibodies other than anti-D. In Garratty, G., ed. Hemolytic Disease of the Newborn, Arlington, VA: American Association of Blood Banks; 1984. p. 145.Google Scholar
Springer, G. F. and Horton, R. E.Blood-group isoantibody stimulation in man by feeding blood-group-active bacteria. J. Clin. Invest., 1969; 48(7): 1280–91.CrossRefGoogle Scholar
Ferguson-Smith, M. A., Aitken, D. A., Turleau, C., et al. Localisation of the human ABO: Np-1: AK-1 linkage group by regional assignment of AK-1 to 9q34. Hum. Genet., 1976; 34(1): 35–43.CrossRefGoogle ScholarPubMed
Yamamoto, F., Clausen, H., White, T., et al. Molecular genetic basis of the histo-blood group ABO system. Nature, 1990; 345(6272): 229–33.CrossRefGoogle ScholarPubMed
Yamamoto, F. and Hakomori, S.Sugar-nucleotide donor specificity of histo-blood group A and B transferases is based on amino acid substitutions. J. Biol. Chem., 1990; 265(31): 19257–62.Google Scholar
Curtis, B. R., Edwards, J. T., Hessner, M. J., et al. Blood group A and B antigens are strongly expressed on platelets of some individuals. Blood, 2000; 96(4): 1574–81.Google Scholar
Ravn, V. and Dabelsteen, E.Tissue distribution of histo-blood group antigens. APMIS, 2000; 108(1): 1–28.CrossRefGoogle ScholarPubMed
Kelly, R. J., Rouquier, S., Giorgi, D., et al. Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J. Biol. Chem., 1995; 270(9): 4640–9.CrossRefGoogle ScholarPubMed
Bucher, K. A., Patterson, A. M. Jr., Elston, R. C., et al. Racial difference in incidence of ABO hemolytic disease. Am. J. Public Health, 1976; 66(9): 854–8.CrossRefGoogle ScholarPubMed
Levine, D. H. and Meyer, H. B.Newborn screening for ABO hemolytic disease. Clin. Pediatr. (Phila), 1985; 24(7): 391–4.CrossRefGoogle ScholarPubMed
Shanwell, A., Sallander, S., Bremme, K., et al. Clinical evaluation of a solid-phase test for red cell antibody screening of pregnant women. Transfusion, 1999; 39(1): 26–31.CrossRefGoogle ScholarPubMed
Peevy, K. J. and Wiseman, H. J.ABO hemolytic disease of the newborn: evaluation of management and identification of racial and antigenic factors. Pediatrics, 1978; 61(3): 475–8.CrossRefGoogle ScholarPubMed
Cariani, L., Romano, E. L., Martinez, N., et al. ABO-haemolytic disease of the newborn (ABO-HDN): factors influencing its severity and incidence in Venezuela. J. Trop. Pediatr., 1995; 41(1): 14–21.CrossRefGoogle ScholarPubMed
Desjardins, L., Blajchman, M. A., Chintu, C., et al. The spectrum of ABO hemolytic disease of the newborn infant. J. Pediatr., 1979; 95(3): 447–9.CrossRefGoogle ScholarPubMed
Grundbacher, F. J.The etiology of ABO hemolytic disease of the newborn. Transfusion, 1980; 20(5): 563–8.CrossRefGoogle ScholarPubMed
Waldron, P. and Alarcon, P.ABO hemolytic disease of the newborn: a unique constellation of findings in siblings and review of protective mechanisms in the fetal-maternal system. Am. J. Perinatol., 1999; 16(8): 391–8.CrossRefGoogle ScholarPubMed
Dufour, D. R. and Monoghan, W. P.ABO hemolytic disease of the newborn. A retrospective analysis of 254 cases. Am. J. Clin. Pathol., 1980; 73(3): 369–73.CrossRefGoogle ScholarPubMed
Sivan, Y., Merlob, P., Nutman, J., et al. Direct hyperbilirubinemia complicating ABO hemolytic disease of the newborn. Clin. Pediatr. (Phila), 1983; 22(8): 537–8.CrossRefGoogle ScholarPubMed
Goraya, J., Basu, S., Sodhi, P., et al. Unusually severe ABO hemolytic disease of newborn. Indian J. Pediatr., 2001; 68(3): 285–6.CrossRefGoogle ScholarPubMed
McDonnell, M., Hannam, S. and Devane, S. P.Hydrops fetalis due to ABO incompatibility. Arch. Dis. Child Fetal Neonatal Ed., 1998; 78(3): F220–1.CrossRefGoogle ScholarPubMed
Contreras, M.Antenatal tests in the diagnosis and assessment of severity of haemolytic disease (Hd) of the fetus and newborn (hdn). Vox Sang, 1994; 67 (Suppl 3): 207–10.Google Scholar
Chuansumrit, A., Siripoonya, P., Nathalang, O., et al. The benefit of the direct antiglobulin test using gel technique in ABO hemolytic disease of the newborn. Southeast Asian J. Trop. Med. Public Health, 1997; 28(2): 428–31.Google ScholarPubMed
Feng, C. S., Kirkley, K. C., Eicher, C. A., et al. The Lui elution technique. A simple and efficient method for eluting ABO antibodies. Transfusion, 1985; 25(5): 433–4.CrossRefGoogle ScholarPubMed
Haberman, S., Krafft, C. J., Luecke, P. E. Jr.et al. ABO isoimmunization: the use of the specific Coombs and heat elution tests in the detection of hemolytic disease. J. Pediatr., 1960; 56: 471–7.CrossRefGoogle ScholarPubMed
Brouwers, H. A., Overbeeke, M. A., Ouwehand, W. H., et al. Maternal antibodies against fetal blood group antigens A or B: lytic activity of IgG subclasses in monocyte-driven cytotoxicity and correlation with ABO haemolytic disease of the newborn. Br. J. Haematol., 1988; 70(4): 465–9.CrossRefGoogle ScholarPubMed
Brouwers, H. A., Overbeeke, M. A., Ertbruggen, I., et al. What is the best predictor of the severity of ABO-haemolytic disease of the newborn?Lancet, 1988; 2(8612): 641–4.CrossRefGoogle ScholarPubMed
Katz, M. A., Kanto, W. P. Jr. and Korotkin, J. H.Recurrence rate of ABO hemolytic disease of the newborn. Obstet. Gynecol., 1982; 59(5): 611–14.Google ScholarPubMed
Avent, N. D.Molecular biology of the Rh blood group system. J. Pediatr. Hematol. Oncol., 2001; 23(6): 394–402.CrossRefGoogle ScholarPubMed
Avent, N. D. and Reid, M. E.The Rh blood group system: a review. Blood, 2000; 95(2): 375–87.Google ScholarPubMed
Levine, P. and Stetson, R.An unusual case of intragroup agglutination. JAMA, 1939; 113: 126.CrossRefGoogle Scholar
Chavez, G. F., Mulinare, J. and Edmonds, L. D.Epidemiology of Rh hemolytic disease of the newborn in the United States. JAMA, 1991; 265(24): 3270–4.CrossRefGoogle ScholarPubMed
Howard, H., Martlew, V., McFadyen, I., et al. Consequences for fetus and neonate of maternal red cell allo-immunisation. Arch. Dis. Child Fetal Neonatal Ed., 1998; 78(1): F62–6.CrossRefGoogle ScholarPubMed
Bloy, C., Blanchard, D., Dahr, W., et al. Determination of the N-terminal sequence of human red cell Rh(D) polypeptide and demonstration that the Rh(D), (C), and (E) antigens are carried by distinct polypeptide chains. Blood, 1988; 72(2): 661–6.Google Scholar
Wagner, F. F., Eicher, N. I., Jorgensen, J. R., et al. DNB: a partial D with anti-D frequent in Central Europe. Blood, 2002; 100(6): 2253–6.CrossRefGoogle ScholarPubMed
Lacey, P. A., Caskey, C. R., Werner, D. J., et al. Fatal hemolytic disease of a newborn due to anti-D in an Rh-positive Du variant mother. Transfusion, 1983; 23(2): 91–4.CrossRefGoogle Scholar
White, C. A., Stedman, C. M. and Frank, S.Anti-D antibodies in D- and Du-positive women: a cause of hemolytic disease of the newborn. Am. J. Obstet. Gynecol., 1983; 145(8): 1069–75.CrossRefGoogle Scholar
Mayne, K. M., Allen, D. L. and Bowell, P. J.‘Partial D’ women with anti-D alloimmunization in pregnancy. Clin. Lab. Haematol., 1991; 13(3): 239–44.CrossRefGoogle ScholarPubMed
Mayne, K., Bowell, P., Woodward, T., et al. Rh immunization by the partial D antigen of category DVa. Br. J. Haematol., 1990; 76(4): 537–9.CrossRefGoogle ScholarPubMed
Cannon, M., Pierce, R., Taber, E. B., et al. Fatal hydrops fetalis caused by anti-D in a mother with partial D. Obstet. Gynecol., 2003; 102(5 Pt 2): 1143–5.Google Scholar
Hadley, A. G. and Kumpel, B. M.The role of Rh antibodies in haemolytic disease of the newborn. Baillieres Clin. Haematol., 1993; 6(2): 423–44.CrossRefGoogle ScholarPubMed
Nakamura, Y., Sada, I., Tanaka, S., et al. Significance of positive direct anti-globulin test for cord blood in administration of anti-d immunoglobulin for postpartum immunoprophylaxis. Nippon Sanka Fujinka Gakkai Zasshi, 1984; 36(4): 623–5.Google ScholarPubMed
Geifman-Holtzman, O., Wojtowycz, M., Kosmas, E., et al. Female alloimmunization with antibodies known to cause hemolytic disease. Obstet. Gynecol., 1997; 89(2): 272–5.CrossRefGoogle ScholarPubMed
Weiner, C. P. and Widness, J. A.Decreased fetal erythropoiesis and hemolysis in Kell hemolytic anemia. Am. J. Obstet. Gynecol., 1996; 174(2): 547–51.CrossRefGoogle ScholarPubMed
Mayne, K. M., Bowell, P. J. and Pratt, G. A.The significance of anti-Kell sensitization in pregnancy. Clin. Lab. Haematol., 1990; 12(4): 379–85.CrossRefGoogle ScholarPubMed
McKenna, D. S., Nagaraja, H. N. and O'Shaughnessy, R.Management of pregnancies complicated by anti-Kell isoimmunization. Obstet. Gynecol., 1999; 93(5 Pt 1): 667–73.Google ScholarPubMed
Moise, K. J. Jr.Non-anti-D antibodies in red-cell alloimmunization. Eur. J. Obstet. Gynecol. Reprod. Biol., 2000; 92(1): 75–81.CrossRefGoogle ScholarPubMed
Babinszki, A., Lapinski, R. H. and Berkowitz, R. L.Prognostic factors and management in pregnancies complicated with severe kell alloimmunization: experiences of the last 13 years. Am. J. Perinatol., 1998; 15(12): 695–701.CrossRefGoogle ScholarPubMed
Lee, S., Wu, X., Reid, M., et al. Molecular basis of the K:6,-7 [Js(a + b−)] phenotype in the Kell blood group system. Transfusion, 1995; 35(10): 822–5.CrossRefGoogle Scholar
Lipitz, S., Many, A., Mitrani-Rosenbaum, S., et al. Obstetric outcome after RhD and Kell testing. Hum. Reprod., 1998; 13(6): 1472–5.CrossRefGoogle ScholarPubMed
Malde, R., Stanworth, S., Patel, S., et al. Haemolytic disease of the newborn due to anti-Ce. Transfus. Med., 2000; 10(4): 305–6.CrossRefGoogle ScholarPubMed
To, W. W., Ho, S. N. and Mok, K. M.Anti-E alloimmunization in pregnancy: management dilemmas. J. Obstet. Gynaecol. Res., 2003; 29(1): 45–8.CrossRefGoogle ScholarPubMed
Lee, C. K., Ma, E. S., Tang, M., et al. Prevalence and specificity of clinically significant red cell alloantibodies in Chinese women during pregnancy – a review of cases from 1997 to 2001. Transfus. Med., 2003; 13(4): 227–31.CrossRefGoogle ScholarPubMed
Wu, K. H., Chu, S. L., Chang, J. G., et al. Haemolytic disease of the newborn due to maternal irregular antibodies in the Chinese population in Taiwan. Transfus. Med., 2003; 13(5): 311–14.CrossRefGoogle ScholarPubMed
Hackney, D. N., Knudtson, E. J., Rossi, K. Q., et al. Management of pregnancies complicated by anti-c isoimmunization. Obstet. Gynecol., 2004; 103(1): 24–30.CrossRefGoogle ScholarPubMed
Moise, K. J. Jr. and Brecher, M. E.Package insert for rhesus immune globulin. Obstet. Gynecol., 2004; 103(5): 998–9.CrossRefGoogle ScholarPubMed
Bowman, J. M.Antenatal suppression of Rh alloimmunization. Clin. Obstet. Gynecol., 1991; 34(2): 296–303.CrossRefGoogle ScholarPubMed
Greenough, A.The role of immunoglobulins in neonatal Rhesus haemolytic disease. BioDrugs, 2001; 15(8): 533–41.CrossRefGoogle ScholarPubMed
Ghosh, S. and Murphy, W.Implementation of the Rhesus prevention programme: A prospective study. Obstet. Gynecol. Surv., 1995; 50: 432–3.CrossRefGoogle Scholar
Tovey, L. A.Haemolytic disease of the newborn – the changing scene. Br. J. Obstet. Gynaecol., 1986; 93(9): 960–6.CrossRefGoogle ScholarPubMed
Moncharmont, P., Juron, Dupraz F., Vignal, M., et al. Haemolytic disease of the newborn infant. Long term efficiency of the screening and the prevention of alloimmunization in the mother: thirty years of experience. Arch. Gynecol. Obstet., 1991; 248(4): 175–80.CrossRefGoogle Scholar
Narang, A. and Jain, N.Haemolytic disease of newborn. Indian J. Pediatr., 2001; 68(2): 167–72.CrossRefGoogle ScholarPubMed
ACOG practice bulletin. Prevention of Rh D alloimmunization. Number 4, May 1999 (replaces educational bulletin Number 147, October 1990). Clinical management guidelines for obstetrician-gynecologists. American College of Obstetrics and Gynecology. Int. J. Gynaecol. Obstet., 1999; 66(1): 63–70.
Kleihauer, E., Braun, H. and Betke, K.[Demonstration of fetal hemoglobin in erythrocytes of a blood smear]. Klin. Wochenschr., 1957; 35(12): 637–8.CrossRefGoogle Scholar
Bohra, U., Regan, C., O'Connell, M. P., et al. The role of investigations for term stillbirths. J. Obstet. Gynaecol., 2004; 24(2): 133–4.CrossRefGoogle ScholarPubMed
Kennedy, G. A., Shaw, R., Just, S., et al. Quantification of feto-maternal haemorrhage (FMH) by flow cytometry: anti-fetal haemoglobin labelling potentially underestimates massive FMH in comparison to labelling with anti-D. Transfus. Med., 2003; 13(1): 25–33.CrossRefGoogle ScholarPubMed
Ochsenbein-Imhof, N., Ochsenbein, A. F., Seifert, B., et al. Quantification of fetomaternal hemorrhage by fluorescence microscopy is equivalent to flow cytometry. Transfusion, 2002; 42(7): 947–53.CrossRefGoogle ScholarPubMed
Pelikan, D. M., Mesker, W. E., Scherjon, S. A., et al. Improvement of the Kleihauer-Betke test by automated detection of fetal erythrocytes in maternal blood. Cytometry, 2003; 54B(1): 1–9.CrossRefGoogle Scholar
Janssen, W. C. and Hoffmann, J. J.Evaluation of flow cytometric enumeration of foetal erythrocytes in maternal blood. Clin. Lab. Haematol., 2002; 24(2): 89–92.CrossRefGoogle ScholarPubMed
Mundee, Y., Bigelow, N. C., Davis, B. H., et al. Flow cytometric method for simultaneous assay of foetal haemoglobin containing red cells, reticulocytes and foetal haemoglobin containing reticulocytes. Clin. Lab. Haematol., 2001; 23(3): 149–54.CrossRefGoogle ScholarPubMed
Davis, B. H., Olsen, S., Bigelow, N. C., et al. Detection of fetal red cells in fetomaternal hemorrhage using a fetal hemoglobin monoclonal antibody by flow cytometry. Transfusion, 1998; 38(8): 749–56.CrossRefGoogle ScholarPubMed
Detti, L., Akiyama, M. and Mari, G.Doppler blood flow in obstetrics. Curr. Opin. Obstet. Gynecol., 2002; 14(6): 587–93.CrossRefGoogle Scholar
Segata, M. and Mari, G.Fetal anemia: new technologies. Curr. Opin. Obstet. Gynecol., 2004; 16(2): 153–8.CrossRefGoogle ScholarPubMed
Mari, G., Deter, R. L., Carpenter, R. L., et al. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic Fetuses. N. Engl. J. Med., 2000; 342(1): 9–14.CrossRefGoogle Scholar
Bahado-Singh, R., Oz, U., Deren, O., et al. Splenic artery Doppler peak systolic velocity predicts severe fetal anemia in rhesus disease. Am. J. Obstet. Gynecol., 2000; 182(5): 1222–6.CrossRefGoogle ScholarPubMed
Detti, L. and Mari, G.Noninvasive diagnosis of fetal anemia. Clin. Obstet. Gynecol., 2003; 46(4): 923–30.CrossRefGoogle ScholarPubMed
Moise, K. J. Jr.Management of rhesus alloimmunization in pregnancy. Obstet. Gynecol., 2002; 100(3): 600–11.Google ScholarPubMed
Urbaniak, S. J. and Greiss, M. A.RhD haemolytic disease of the fetus and the newborn. Blood Rev., 2000; 14(1): 44–61.CrossRefGoogle ScholarPubMed
Bowman, J.The management of hemolytic disease in the fetus and newborn. Semin. Perinatol., 1997; 21(1): 39–44.CrossRefGoogle Scholar
Liley, A. W.Liquor amnil analysis in the management of the pregnancy complicated by rhesus sensitization. Am. J. Obstet. Gynecol., 1961; 82: 1359–70.CrossRefGoogle Scholar
Queenan, J. T., Tomai, T. P., Ural, S. H., et al. Deviation in amniotic fluid optical density at a wavelength of 450 nm in Rh-immunized pregnancies from 14 to 40 weeks' gestation: a proposal for clinical management. Am. J. Obstet. Gynecol., 1993; 168(5): 1370–6.CrossRefGoogle Scholar
Liley, A. W.Intrauterine Transfusion of Foetus in Haemolytic Disease. Br. Med. J., 1963; 5365: 1107–9.CrossRefGoogle Scholar
Schumacher, B. and Moise, K. J. Jr.Fetal transfusion for red blood cell alloimmunization in pregnancy. Obstet. Gynecol., 1996; 88(1): 137–50.CrossRefGoogle ScholarPubMed
Ghi, T., Brondelli, L., Simonazzi, G., et al. Sonographic demonstration of brain injury in fetuses with severe red blood cell alloimmunization undergoing intrauterine transfusions. Ultrasound Obstet. Gynecol., 2004; 23(5): 428–31.CrossRefGoogle ScholarPubMed
Cheong, Y. C., Goodrick, J., Kyle, P. M., et al. Management of anti-Rhesus-D antibodies in pregnancy: a review from 1994 to 1998. Fetal Diagn. Ther., 2001; 16(5): 294–8.CrossRefGoogle ScholarPubMed
Mari, G., Detti, L., Oz, U., et al. Accurate prediction of fetal hemoglobin by Doppler ultrasonography. Obstet. Gynecol., 2002; 99(4): 589–93.Google ScholarPubMed
Whitecar, P. W. and Moise, K. J. Jr.Sonographic methods to detect fetal anemia in red blood cell alloimmunization. Obstet. Gynecol. Surv., 2000; 55(4): 240–50.CrossRefGoogle ScholarPubMed
Hillyer, C. D., Emmens, R. K., Zago-Novaretti, M., et al. Methods for the reduction of transfusion-transmitted cytomegalovirus infection: filtration versus the use of seronegative donor units. Transfusion, 1994; 34(10): 929–34.CrossRefGoogle ScholarPubMed
Eisenfeld, L., Silver, H., McLaughlin, J., et al. Prevention of transfusion-associated cytomegalovirus infection in neonatal patients by the removal of white cells from blood. Transfusion, 1992; 32(3): 205–9.CrossRefGoogle ScholarPubMed
Adler, S. P.Transfusion-associated cytomegalovirus infections. Rev. Infect. Dis., 1983; 5(6): 977–93.CrossRefGoogle ScholarPubMed
Nichols, W. G., Price, T. H., Gooley, T., et al. Transfusion-transmitted cytomegalovirus infection after receipt of leukoreduced blood products. Blood, 2003; 101(10): 4195–200.CrossRefGoogle ScholarPubMed
Triulzi, D.Blood Transfusion Therapy, 7th edn. Bethesda, MD: American Association of Blood Banks; 2002.Google Scholar
Schwoebel, A. and Sakraida, S.Hyperbilirubinemia: new approaches to an old problem. J. Perinat. Neonatal Nurs., 1997; 11(3): 78–97.CrossRefGoogle Scholar
Dennery, P. A., Rhine, W. D. and Stevenson, D. K.Neonatal jaundice – what now?Clin. Pediatr. (Phila), 1995; 34(2): 103–7.CrossRefGoogle ScholarPubMed
Toy, P. T., Reid, M. E., Papenfus, L., et al. Prevalence of ABO maternal–infant incompatibility in Asians, Blacks, Hispanics and Caucasians. Vox Sang, 1988; 54(3): 181–3.CrossRefGoogle ScholarPubMed
Panagopoulos, G., Valaes, T. and Doxiadis, S. A.Morbidity and mortality related to exchange transfusions. J. Pediatr., 1969; 74(2): 247–54.CrossRefGoogle ScholarPubMed
Dikshit, S. K. and Gupta, P. K.Exchange transfusion in neonatal hyperbilirubinemia. Indian Pediatr., 1989; 26(11): 1139–45.Google ScholarPubMed
Visconti, M. R., Pennington, J., Garner, S. F., et al. Assessment of removal of human cytomegalovirus from blood components by leukocyte depletion filters using real-time quantitative PCR. Blood, 2004; 103(3): 1137–9.CrossRefGoogle ScholarPubMed
Strauss, R. G.Leukocyte-reduction to prevent transfusion-transmitted cytomegalovirus infections. Pediatr. Transplant., 1999; 3 (Suppl 1): 19–22.CrossRefGoogle ScholarPubMed
Yeager, A. S., Grumet, F. C., Hafleigh, E. B., et al. Prevention of transfusion-acquired cytomegalovirus infections in newborn infants. J. Pediatr., 1981; 98(2): 281–7.CrossRefGoogle ScholarPubMed
Pamphilon, D. H., Rider, J. R., Barbara, J. A., et al. Prevention of transfusion-transmitted cytomegalovirus infection. Transfus. Med., 1999; 9(2): 115–23.CrossRefGoogle ScholarPubMed
Hume, H. A. and Preiksaitis, J. B.Transfusion associated graft-versus-host disease, cytomegalovirus infection and HLA alloimmunization in neonatal and pediatric patients. Transfus. Sci., 1999; 21(1): 73–95.CrossRefGoogle ScholarPubMed
Guidelines on gamma irradiation of blood components for the prevention of transfusion-associated graft-versus-host disease. BCSH Blood Transfusion Task Force. Transfus. Med., 1996; 6(3): 261–71.
Hansen, T. W.Therapeutic approaches to neonatal jaundice: an international survey. Clin. Pediatr. (Phila), 1996; 35(6): 309–16.CrossRefGoogle Scholar
Patra, K., Storfer-Isser, A., Siner, B., et al. Adverse events associated with neonatal exchange transfusion in the 1990s. J. Pediatr., 2004; 144(5): 626–31.CrossRefGoogle ScholarPubMed
Jackson, J. C.Adverse events associated with exchange transfusion in healthy and ill newborns. Pediatrics, 1997; 99(5): E7.CrossRefGoogle ScholarPubMed
Tan, K. L., Phua, K. B. and Ang, P. L.The mortality of exchange transfusions. Med. J. Aust., 1976; 1(14): 473–6.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×