Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T21:23:19.291Z Has data issue: false hasContentIssue false

19 - Synthesis of Transition Metal Dichalcogenides

from Part II

Published online by Cambridge University Press:  22 June 2017

Phaedon Avouris
Affiliation:
IBM T. J. Watson Research Center, New York
Tony F. Heinz
Affiliation:
Stanford University, California
Tony Low
Affiliation:
University of Minnesota
Get access
Type
Chapter
Information
2D Materials
Properties and Devices
, pp. 344 - 358
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

19.7 References

Shi, Y, Li, H, Li, L-J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chemical Society Reviews. 2015, 44(9): 2744–56.Google Scholar
Ji, Q, Zhang, Y, Zhang, Y, Liu, Z. Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chemical Society Reviews. 2015, 44(9): 2587–602.Google Scholar
Radisavljevic, B, Radenovic, A, Brivio, J, Giacometti, V, Kis, A. Single-layer MoS2 transistors. Nature Nanotechnology. 2011, 6(3): 147–50.Google Scholar
Lopez-Sanchez, O, Lembke, D, Kayci, M, Radenovic, A, Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology. 2013, 8(7): 497501.CrossRefGoogle ScholarPubMed
Radisavljevic, B, Radenovic, A, Brivio, J, Giacometti, V, Kis, A. Single-layer MoS2 transistors. Nature Nanotechnology. 2011, 6(3): 147–50.Google Scholar
Pu, J, Yomogida, Y, Liu, K-K, Li, L-J, Iwasa, Y, Takenobu, T. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Letters. 2012, 12(8): 4013–7.Google Scholar
Shi, Y, Huang, J-K, Jin, L, Hsu, Y-T, Yu, SF, Li, L-J, et al. Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Scientific Reports. 2013, 3: 1839.Google Scholar
Yin, Z, Li, H, Li, H, Jiang, L, Shi, Y, Sun, Y, et al. Single-layer MoS2 phototransistors. ACS Nano. 2011, 6(1): 7480.Google Scholar
Zhang, W, Huang, JK, Chen, CH, Chang, YH, Cheng, YJ, Li, LJ. High-gain phototransistors based on a CVD MoS2 monolayer. Advanced Materials. 2013, 25(25): 3456–61.Google Scholar
Tsai, D-S, Liu, K-K, Lien, D-H, Tsai, M-L, Kang, C-F, Lin, C-A, et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano. 2013, 7(5): 3905–11.Google Scholar
Tsai, M-L, Su, S-H, Chang, J-K, Tsai, D-S, Chen, C-H, Wu, C-I, et al. Monolayer MoS2 heterojunction solar cells. ACS Nano. 2014, 8(8): 8317–22.Google Scholar
Sundaram, R, Engel, M, Lombardo, A, Krupke, R, Ferrari, A, Avouris, P, et al. Electroluminescence in single layer MoS2. Nano Letters. 2013, 13(4): 1416–21.Google Scholar
Ross, JS, Klement, P, Jones, AM, Ghimire, NJ, Yan, J, Mandrus, D, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nature Nanotechnology. 2014, 9(4): 268–72.Google Scholar
Zhang, Y, Oka, T, Suzuki, R, Ye, J, Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science. 2014, 344(6185): 725–8.Google Scholar
Nicolosi, V, Chhowalla, M, Kanatzidis, MG, Strano, MS, Coleman, JN. Liquid exfoliation of layered materials. Science. 2013, 340(6139).Google Scholar
Coleman, JN, Lotya, M, O’Neill, A, Bergin, SD, King, PJ, Khan, U, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011, 331(6017): 568–71.Google Scholar
Jian, Z, Han, Z, Shaohua, D, Yanpeng, L, Chang Tai, N, Hyeon Suk, S, et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nature Communications. 2014, 5: 2995.Google Scholar
Zhou, K-G, Mao, N-N, Wang, H-X, Peng, Y, Zhang, H-L. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angewandte Chemie International Edition. 2011, 50(46): 10839–42.CrossRefGoogle ScholarPubMed
Smith, RJ, King, PJ, Lotya, M, Wirtz, C, Khan, U, De, S, et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Advanced Materials. 2011, 23(34): 3944–8.CrossRefGoogle ScholarPubMed
Shi, Y, Zhang, H, Chang, W-H, Shin, HS, Li, L-J. Synthesis and structure of two-dimensional transition-metal dichalcogenides. MRS Bulletin. 2015, 40(07): 566–76.Google Scholar
Liu, K-K, Zhang, W, Lee, Y-H, Lin, Y-C, Chang, M-T, Su, C-Y, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Letters. 2012, 12(3): 1538–44.CrossRefGoogle ScholarPubMed
Shi, Y, Zhou, W, Lu, A-Y, Fang, W, Lee, Y-H, Hsu, AL, et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Letters. 2012, 12(6): 2784–91.CrossRefGoogle Scholar
Lin, Y-C, Zhang, W, Huang, J-K, Liu, K-K, Lee, Y-H, Liang, C-T, et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale. 2012, 4(20): 6637–41.CrossRefGoogle ScholarPubMed
Clark, G, Wu, S, Rivera, P, Finney, J, Nguyen, P, Cobden, DH, et al. Vapor-transport growth of high optical quality WSe2 monolayers. APL Materials. 2014, 2(10): 101101.Google Scholar
Lee, Y-H, Zhang, X-Q, Zhang, W, Chang, M-T, Lin, C-T, Chang, K-D, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials. 2012, 24(17): 2320–5.Google ScholarPubMed
Chhowalla, M, Shin, HS, Eda, G, Li, L-J, Loh, KP, Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry. 2013, 5(4): 263–75.CrossRefGoogle ScholarPubMed
Wang, QH, Kalantar-Zadeh, K, Kis, A, Coleman, JN, Strano, MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology. 2012, 7(11): 699712.Google Scholar
Oura, KL, Saranin, A, Zotov, A, Katayama, M. Surface Science: An Introduction, Springer: Berlin, 2003.Google Scholar
Shi, Y, Li, H, Wong, JI, Zhang, X, Wang, Y, Song, H, et al. MoS2 surface structure tailoring via carbonaceous promoter. Scientific Reports. 2015, 5: 10378.CrossRefGoogle ScholarPubMed
Wu, S, Huang, C, Aivazian, G, Ross, JS, Cobden, DH, Xu, X. Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano. 2013, 7(3): 2768–72.Google Scholar
Li, M-Y, Shi, Y, Cheng, C-C, Lu, L-S, Lin, Y-C, Tang, H-L, et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral p–n junction with an atomically sharp interface. Science. 2015, 349(6247): 524–8.CrossRefGoogle ScholarPubMed
Kong, D, Wang, H, Cha, JJ, Pasta, M, Koski, KJ, Yao, J, et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Letters. 2013, 13(3): 1341–7.CrossRefGoogle ScholarPubMed
Peimyoo, N, Shang, J, Cong, C, Shen, X, Wu, X, Yeow, EKL, et al. Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles. ACS Nano. 2013, 7(12): 10985–94.Google Scholar
Okada, M, Sawazaki, T, Watanabe, K, Taniguch, T, Hibino, H, Shinohara, H, et al. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano. 2014, 8(8): 8273–7.Google Scholar
Wang, X, Gong, Y, Shi, G, Chow, WL, Keyshar, K, Ye, G, et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano. 2014, 8(5): 5125–31.Google Scholar
Huang, J-K, Pu, J, Hsu, C-L, Chiu, M-H, Juang, Z-Y, Chang, Y-H, et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano. 2014, 8(1): 923–30.Google Scholar
Ling, X, Lee, Y-H, Lin, Y, Fang, W, Yu, L, Dresselhaus, MS, et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Letters. 2014, 14(2): 464–72.Google Scholar
Najmaei, S, Liu, Z, Zhou, W, Zou, X, Shi, G, Lei, S, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Materials. 2013, 12(8): 754–9.Google Scholar
van der Zande, AM, Huang, PY, Chenet, DA, Berkelbach, TC, You, Y, Lee, G-H, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Materials. 2013, 12(6): 554–61.CrossRefGoogle ScholarPubMed
Gong, Y, Lin, Z, Ye, G, Shi, G, Feng, S, Lei, Y, et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano. 2015. DOI: 10.1021/acsnano.5b05594.CrossRefGoogle ScholarPubMed
Zhang, W, Li, X, Jiang, T, Song, J, Lin, Y, Zhu, L, et al. CVD synthesis of Mo(1–x)WxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale. 2015, 7(32): 13554–60.Google Scholar
Gong, Y, Liu, Z, Lupini, AR, Shi, G, Lin, J, Najmaei, S, et al. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Letters. 2014, 14(2): 442–9.Google Scholar
Li, H, Duan, X, Wu, X, Zhuang, X, Zhou, H, Zhang, Q, et al. Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties. Journal of the American Chemical Society. 2014, 136(10): 3756–9.Google Scholar
Su, S-H, Hsu, W-T, Hsu, C-L, Chen, C-H, Chiu, M-H, Lin, Y-C, et al. Controllable synthesis of band gap-tunable and monolayer transition metal dichalcogenide alloys. Frontiers in Energy Research. 2014, 2: 27.Google Scholar
Yu, L, Lee, Y-H, Ling, X, Santos, EJG, Shin, YC, Lin, Y, et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Letters. 2014, 14(6): 3055–63.CrossRefGoogle ScholarPubMed
Zhang, W, Chuu, C-P, Huang, J-K, Chen, C-H, Tsai, M-L, Chang, Y-H, et al. Ultrahigh-gain photodetectors based on atomically thin graphene–MoS2 heterostructures. Scientific Reports. 2014, 4: 3826.Google Scholar
Loan, PTK, Zhang, W, Lin, C-T, Wei, K-H, Li, L-J, Chen, C-H. Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation. Advanced Materials. 2014, 26(28): 4838–44.Google Scholar
Ionescu, R, Ruiz, I, Favors, Z, Campbell, B, Neupane, MR, Wickramaratne, D, et al. Two step growth phenomena of molybdenum disulfide–tungsten disulfide heterostructures. Chemical Communications. 2015, 51(56): 11213–6.Google Scholar
Gong, Y, Lin, J, Wang, X, Shi, G, Lei, S, Lin, Z, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials. 2014, 13(12): 1135–42.Google Scholar
Gong, Y, Lei, S, Ye, G, Li, B, He, Y, Keyshar, K, et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Letters. 2015, 15(9): 6135–41.Google Scholar
Cao, X, Shi, Y, Shi, W, Rui, X, Yan, Q, Kong, J, et al. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small. 2013, 9(20): 3433–8.CrossRefGoogle ScholarPubMed
Shi, Y, Hamsen, C, Jia, X, Kim, KK, Reina, A, Hofmann, M, et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Letters. 2010, 10(10): 4134–9.CrossRefGoogle ScholarPubMed
Ji, Q, Zhang, Y, Gao, T, Zhang, Y, Ma, D, Liu, M, et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Letters. 2013, 13(8): 3870–7.CrossRefGoogle ScholarPubMed
Rivera, P, Schaibley, JR, Jones, AM, Ross, JS, Wu, S, Aivazian, G, et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nature Communications. 2015, 6: 6242.Google Scholar
Zhang, X-Q, Lin, C-H, Tseng, Y-W, Huang, K-H, Lee, Y-H. Synthesis of lateral heterostructures of semiconducting atomic layers. Nano Letters. 2014, 15(1): 410–15.Google Scholar
Duan, X, Wang, C, Shaw, JC, Cheng, R, Chen, Y, Li, H, et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nature Nanotechnology. 2014, 9(12): 1024–30.CrossRefGoogle ScholarPubMed
Kang, K, Xie, S, Huang, L, Han, Y, Huang, PY, Mak, KF, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature. 2015, 520(7549): 656–60.CrossRefGoogle ScholarPubMed
Eichfeld, SM, Hossain, L, Lin, Y-C, Piasecki, AF, Kupp, B, Birdwell, AG, et al. Highly scalable, atomically thin WSe2 grown via metal–organic chemical vapor deposition. ACS Nano. 2015, 9(2): 2080–7.Google Scholar
Mann, J, Ma, Q, Odenthal, PM, Isarraraz, M, Le, D, Preciado, E, et al. 2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers. Advanced Materials. 2014, 26(9): 1399–404.CrossRefGoogle Scholar
Feng, Q, Mao, N, Wu, J, Xu, H, Wang, C, Zhang, J, et al. Growth of MoS2(1−x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano. 2015, 9(7): 7450–5.Google Scholar
Huang, C, Wu, S, Sanchez, AM, Peters, JJP, Beanland, R, Ross, JS, et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nature Materials. 2014, 13(12): 1096–101.Google Scholar
Ge, W, Kawahara, K, Tsuji, M, Ago, H. Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD. Nanoscale. 2013, 5(13): 5773–8.CrossRefGoogle ScholarPubMed
Zhou, L, Xu, K, Zubair, A, Liao, AD, Fang, W, Ouyang, F, et al. Large-area synthesis of high-quality uniform few-layer MoTe2. Journal of the American Chemical Society. 2015, 137(37): 11892–5.CrossRefGoogle ScholarPubMed
Zhang, W, Huang, Z, Zhang, W, Li, Y. Two-dimensional semiconductors with possible high room temperature mobility. Nano Research. 2014, 7(12): 1731–7.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×