Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-22T19:13:17.683Z Has data issue: false hasContentIssue false

Part II

Published online by Cambridge University Press:  22 June 2017

Phaedon Avouris
Affiliation:
IBM T. J. Watson Research Center, New York
Tony F. Heinz
Affiliation:
Stanford University, California
Tony Low
Affiliation:
University of Minnesota
Get access
Type
Chapter
Information
2D Materials
Properties and Devices
, pp. 257 - 378
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

14.7 References

Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., and Geim, A. K., Proceedings of the National Academy of Sciences of the United States of America 111, 6198; 102, 10451 (2005).Google Scholar
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., and Strano, M. S., Nature Nanotechnology 7, 699 (2012).CrossRefGoogle Scholar
Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J., and Hersam, M. C., ACS Nano 8, 1102 (2014).Google Scholar
Ganatra, R. and Zhang, Q., ACS Nano 8, 4074 (2014).CrossRefGoogle Scholar
Cappelluti, E., Roldán, R., Silva-Guillén, J. A., Ordejón, P., and Guinea, F., Physical Review B 88, 075409 (2013).Google Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F., Physical Review Letters 105, 136805 (2010).Google Scholar
Zhao, W., Ribeiro, R. M., Toh, M., Carvalho, A., Kloc, C., Castro Neto, A. H., and Eda, G., Nano Letters 13, 5627 (2013).CrossRefGoogle Scholar
Jin, W., Yeh, P.-C., Zaki, N., Zhang, D., Sadowski, J. T., Al-Mahboob, A., van der Zande, A. M., Chenet, D. A., Dadap, J. I., Herman, I. P., et al., Physical Review Letters 111, 106801 (2013).CrossRefGoogle Scholar
Zhang, Y., Chang, T.-R., Zhou, B., Cui, Y.-T., Yan, H., Liu, Z., Schmitt, F., Lee, J., Moore, R., Chen, Y., et al., Nature Nanotechnology 9, 111 (2014).CrossRefGoogle Scholar
Castellanos-Gomez, A., Cappelluti, E., Roldán, R., Agraït, N., Guinea, F., and Rubio-Bollinger, G., Advanced Materials 25, 899 (2013).CrossRefGoogle Scholar
Feng, J., Qian, X., Huang, C.-W., and Li, J., Nature Photonics 6, 866 (2012).CrossRefGoogle Scholar
Lu, P., Wu, X., Guo, W., and Zeng, X. C., Physical Chemistry Chemical Physics 14, 13035 (2012).CrossRefGoogle Scholar
Pan, H. and Zhang, Y.-W., The Journal of Physical Chemistry C 116, 11752 (2012).Google Scholar
Peelaers, H. and Van de Walle, C. G., Physical Review B 86, 241401 (2012).Google Scholar
Scalise, E., Houssa, M., Pourtois, G., Afanas’ev, V., and Stesmans, A., Physica E: Low-dimensional Systems and Nanostructures 56, 416 (2014).CrossRefGoogle Scholar
Scalise, E., Houssa, M., Pourtois, G., Afanas’ev, V., and Stesmans, A., Nano Research 5, 43 (2012).CrossRefGoogle Scholar
Yun, W. S., Han, S., Hong, S. C., Kim, I. G., and Lee, J., Physical Review B 85, 033305 (2012).Google Scholar
Li, Y., Li, Y.-L., Araujo, C. M., Luo, W., and Ahuja, R., Catalysis Science and Technology 3, 2214 (2013).Google Scholar
Ghorbani-Asl, M., Borini, S., Kuc, A., and Heine, T., Physical Review B 87, 235434 (2013).Google Scholar
Shi, H., Pan, H., Zhang, Y.-W., and Yakobson, B. I., Physical Review B 87, 155304 (2013).Google Scholar
Hromadová, L., Martoňák, R., and Tosatti, E., Physical Review B 87, 144105 (2013).Google Scholar
Horzum, S., Sahin, H., Cahangirov, S., Cudazzo, P., Rubio, A., Serin, T., and Peeters, F. M., Physical Review B 87, 125415 (2013).Google Scholar
Castellanos-Gomez, A., Roldán, R., Cappelluti, E., Buscema, M., Guinea, F., van der Zant, H. S. J., and Steele, G. A., Nano Letters 13, 5361 (2013).Google Scholar
Zhu, Z. Y., Cheng, Y. C., and Schwingenschlögl, U., Physical Review B 84, 153402 (2011).Google Scholar
Xiao, D., Liu, G.-B., Feng, W., Xu, X., and Yao, W., Physical Review Letters 108, 196802 (2012).Google Scholar
Xu, X., Yao, W., Xiao, D., and Heinz, T. F., Nature Physics 10, 343 (2014).Google Scholar
Roldán, R., López-Sancho, M., Guinea, F., Cappelluti, E., Silva-Guillén, J., and Ordejón, P., 2D Materials 1, 034003 (2014).Google Scholar
Cao, T., Wang, G., Han, W., Ye, H., Zhu, C., Shi, J., Niu, Q., Tan, P., Wang, E., Liu, B., et al., Nature Communications 3, 887 (2012).Google Scholar
Zeng, H., Dai, J., Yao, W., Xiao, D., and Cui, X., Nature Nanotechnology 7, 490 (2012).Google Scholar
Mak, K. F., He, K., Sahn, J., and Heinz, T. F., Nature Nanotechnology 7, 494 (2012).CrossRefGoogle Scholar
Wu, S., Ross, J. S., Liu, G.-B., Aivazian, G., Jones, A., Fei, Z., Zhu, W., Xiao, D., Yao, W., Cobden, D., et al., Nature Physics 9, 149 (2013).Google Scholar
Wang, Q., Ge, S., Li, X., Qiu, J., Ji, Y., Feng, J., and Sun, D., ACS Nano 7, 11087 (2013).CrossRefGoogle Scholar
Zeng, H., Liu, G.-B., Dai, J., Yan, Y., Zhu, B., He, R., Xie, L., Xu, S., Chen, X., Yao, W., et al., Scientific Reports 3, 1608 (2013).Google Scholar
Mak, K. F., He, K., Lee, C., Lee, G. H., Hone, J., Heinz, T. F., and Shan, J., Nature Mat. 12, 207 (2013).Google Scholar
Sallen, G., Bouet, L., Marie, X., Wang, G., Zhu, C. R., Han, W. P., Lu, Y., Tan, P. H., Amand, T., Liu, B. L., et al., Physical Review B 86, 081301 (2012).Google Scholar
Ochoa, H. and Roldán, R., Physical Review B 87, 245421 (2013).CrossRefGoogle Scholar
Roldán, R., Castellanos-Gomez, A., Cappelluti, E., and Guinea, F., Journal of Physics: Condensed Matter 27, 313201 (2015).Google Scholar
Wu, W., Wang, L., Li, Y., Zhang, F., Lin, L., Niu, S., Chenet, D., Zhang, X., Hao, Y., Heinz, T. F., et al., Nature 514, 470 (2014).Google Scholar
Roldán, R., Silva-Guillén, J. A., López-Sancho, M. P., Guinea, F., Cappelluti, E., and Ordejón, P., Annalen der Physik 526, 347 (2014).Google Scholar
Liu, G.-B., Shan, W.-Y., Yao, Y., Yao, W., and Xiao, D., Physical Review B 88, 085433 (2013).Google Scholar
Kośmider, K., González, J. W., and Fernández-Rossier, J., Physical Review B 88, 245436 (2013).CrossRefGoogle Scholar
Kumar, A. and Ahluwalia, P., The European Physical Journal B 85, 1 (2012).Google Scholar
Ye, J. T., Zhang, Y. J., Akashi, R., Bahramy, M. S., Arita, R., and Iwasa, Y., Science 338, 1193 (2012).Google Scholar
Taniguchi, K., Matsumoto, A., Shimotani, H., and Takagi, H., Applied Physics Letters 101, 042603 (2012).Google Scholar
Lu, J. M., Zheliuk, O., Leermakers, I., Yuan, N. F. Q., Zeitler, U., Law, K. T., and Ye, J. T., Science 350, 1353 (2015).Google Scholar
Saito, Y., Nakamura, Y., Bahramy, M. S., Kohama, Y., Ye, J., Kasahara, Y., Nakagawa, Y., Onga, M., Tokunaga, M., Nojima, T., et al., Nature Physics 12, 144 (2016).Google Scholar
Roldán, R., Cappelluti, E., and Guinea, F., Physical Review B 88, 054515 (2013).CrossRefGoogle Scholar
Yuan, J. and Honerkamp, C., ArXiv e-prints (2015), 1504.04536.Google Scholar
Rösner, M., Haas, S., and Wehling, T. O., Physical Review B 90, 245105 (2014).Google Scholar
Yuan, N. F. Q., Mak, K. F., and Law, K. T., Physical Review Letters 113, 097001 (2014).CrossRefGoogle Scholar
Rostami, H., Moghaddam, A. G., and Asgari, R., Physical Review B 88, 085440 (2013).Google Scholar
Kormányos, A., Zólyomi, V., Drummond, N. D., Rakyta, P., Burkard, G., and Fal’ko, V. I., Physical Review B 88, 045416 (2013).Google Scholar
Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., and Wang, F., Nano Letters 10, 1271 (2010).Google Scholar
Slater, J. C. and Koster, G. F., Physical Review 94, 1498 (1954).Google Scholar
Rostami, H., Roldán, R., Cappelluti, E., Asgari, R., and Guinea, F., Physical Review B 92, 195402 (2015).CrossRefGoogle Scholar
Yuan, S., Roldán, R., Katsnelson, M. I., and Guinea, F., Physical Review B 90, 041402 (2014).Google Scholar
de Juan, F., Mañes, J. L., and Vozmediano, M. A. H., Physical Review B 87, 165131 (2013).CrossRefGoogle Scholar
Kitt, A. L., Pereira, V. M., Swan, A. K., and Goldberg, B. B., Physical Review B 85, 115432 (2012).Google Scholar
Suzuura, H. and Ando, T., Physical Review B 65, 235412 (2002).Google Scholar
Pereira, V. M., Castro Neto, A. H., and Peres, N. M. R., Physical Review B 80, 045401 (2009).CrossRefGoogle Scholar
Cappelluti, E. and Profeta, G., Physical Review B 85, 205436 (2012).Google Scholar
Harrison, W. A., Elementary Electronic Structure (World Scientific, 1999).Google Scholar
Winkler, R., Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems, 191 (Springer Science & Business Media, 2003).Google Scholar
Amorim, B., Cortijo, A., de Juan, F., Grushin, A. G., Guinea, F., Gutiérrez-Rubio, A., Ochoa, H., Parente, V., Roldán, R., San-José, P., et al., Physics Reports 617, 1 (2016).Google Scholar
Griffith, A. A., Philosophical Transactions of the Royal Society of London 221, 63 (1921).Google Scholar
Munguía, J., Bremond, G., Bluet, J. M., Hartmann, J. M., and Mermoux, M., Applied Physics Letters 93, 102101 (2008).Google Scholar
Li, H., Contryman, A. W., Qian, X., Ardakani, S. M., Gong, Y., Wang, X., Weisse, J. M., Lee, C. H., Zhao, J., Ajayan, P. M., et al., Nature Communications 6, 7381 (2015).Google Scholar
Molina-Sánchez, A. and Wirtz, L., Physical Review B 84, 155413 (2011).Google Scholar
Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J., and Ryu, S., ACS Nano 4, 2695 (2010).Google Scholar
Conley, H. J., Wang, B., Ziegler, J. I., Haglund, R. F., Pantelides, S. T., and Bolotin, K. I., Nano Letters 13, 3626 (2013).CrossRefGoogle Scholar
Hui, Y. Y., Liu, X., Jie, W., Chan, N. Y., Hao, J., Hsu, Y.-T., Li, L.-J., Guo, W., and Lau, S. P., ACS Nano 7, 7126 (2013).Google Scholar
Rice, C., Young, R. J., Zan, R., Bangert, U., Wolverson, D., Georgiou, T., Jalil, R., and Novoselov, K. S., Physical Review B 87, 081307 (2013).Google Scholar

15.5 References

Liu, G.-B., Xiao, D., Yao, Y., Xu, X., and Yao, W., Chem. Soc. Rev. 44, 2643 (2015).CrossRefGoogle Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F., Phys. Rev. Lett. 105, 136805 (2010).Google Scholar
Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., and Wang, F., Nano Lett. 10, 1271 (2010).Google Scholar
Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., and Geim, A. K., Proc. Natl. Acad. Sci. USA 102, 10451 (2005).Google Scholar
Liu, K.-K. et al., Nano Lett. 12, 1538 (2012).Google Scholar
Zhang, Y. et al., Nature Nanotech. 9, 111 (2014).Google Scholar
Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M., and Lou, J., Small 8, 966 (2012).Google Scholar
Zande, A. M. v. d. et al., Nature Mater. 12, 554 (2013).Google Scholar
Najmaei, S. et al., Nature Mater. 12, 754 (2013).Google Scholar
Liu, H. et al., Phys. Rev. Lett. 113, 066105 (2014).Google Scholar
Jin, W. et al., Phys. Rev. Lett. 111, 106801 (2013).Google Scholar
Zeng, H. et al., Sci. Rep. 3, 1608 (2013).Google Scholar
Gunawan, O., Shkolnikov, Y. P., Vakili, K., Gokmen, T., Poortere, E. P. D., and Shayegan, M., Phys. Rev. Lett. 97, 186404 (2006).Google Scholar
Rycerz, A., Tworzydlo, J., and Beenakker, C. W. J., Nature Phys. 3, 172 (2007).Google Scholar
Xiao, D., Yao, W., and Niu, Q., Phys. Rev. Lett. 99, 236809 (2007).Google Scholar
Yao, W., Xiao, D., and Niu, Q., Phys. Rev. B 77, 235406 (2008).Google Scholar
Bishop, N. C., Padmanabhan, M., Vakili, K., Shkolnikov, Y. P., Poortere, E. P. D., and Shayegan, M., Phys. Rev. Lett. 98, 266404 (2007).Google Scholar
Shkolnikov, Y. P., Poortere, E. P. D., Tutuc, E., and Shayegan, M., Phys. Rev. Lett. 89, 226805 (2002).Google Scholar
Takashina, K., Ono, Y., Fujiwara, A., Takahashi, Y., and Hirayama, Y., Phys. Rev. Lett. 96, 236801 (2006).Google Scholar
Karch, J., Tarasenko, S. A., Ivchenko, E. L., Kamann, J., Olbrich, P., Utz, M., Kvon, Z. D., and Ganichev, S. D., Phys. Rev. B 83, 121312 (2011).Google Scholar
Isberg, J., Gabrysch, M., Hammersberg, J., Majdi, S., Kovi, K. K., and Twitchen, D. J., Nature Mater. 12, 760 (2013).Google Scholar
Zhu, Z., Collaudin, A., Fauqué, B., Kang, W., and Behnia, K., Nature Phys. 8, 89 (2012).Google Scholar
Mattheiss, L. F., Phys. Rev. B 8, 3719 (1973).Google Scholar
Kormányos, A., Burkard, G., Gmitra, M., Fabian, J., Zólyomi, V., Drummond, N. D., and Fal’ko, V., 2D Mater. 2, 022001 (2015).Google Scholar
Liu, G.-B., Shan, W.-Y., Yao, Y., Yao, W., and Xiao, D., Phys. Rev. B 88, 085433 (2013).CrossRefGoogle Scholar
Xiao, D., Liu, G.-B., Feng, W., Xu, X., and Yao, W., Phys. Rev. Lett. 108, 196802 (2012).CrossRefGoogle Scholar
Zhu, Z. Y., Cheng, Y. C., and Schwingenschlögl, U., Phys. Rev. B 84, 153402 (2011).Google Scholar
Ramasubramaniam, A., Phys. Rev. B 86, 115409 (2012).Google Scholar
Kormányos, A., Zólyomi, V., Drummond, N. D., Rakyta, P., Burkard, G., and Fal’ko, V. I., Phys. Rev. B 88, 045416 (2013).Google Scholar
Kormányos, A., Zólyomi, V., Drummond, N. D., and Burkard, G., Phys. Rev. X 4, 011034 (2014).Google Scholar
Kośmider, K., González, J. W., and Fernández-Rossier, J., Phys. Rev. B 88, 245436 (2013).Google Scholar
Kadantsev, E. S. and Hawrylak, P., Solid State Commun. 152, 909 (2012).Google Scholar
Cheiwchanchamnangij, T. and Lambrecht, W. R. L., Phys. Rev. B 85, 205302 (2012).Google Scholar
Kośmider, K. and Fernández-Rossier, J., Phys. Rev. B 87, 075451 (2013).Google Scholar
Roldán, R., López-Sancho, M. P., Guinea, F., Cappelluti, E., Silva-Guillén, J. A., and Ordejón, P., 2D Mater. 1, 034003 (2014).Google Scholar
Cheiwchanchamnangij, T., Lambrecht, W. R. L., Song, Y., and Dery, H., Phys. Rev. B 88, 155404 (2013).Google Scholar
Ochoa, H. and Roldán, R., Phys. Rev. B 87, 245421 (2013).Google Scholar
Chu, R.-L., Liu, G.-B., Yao, W., Xu, X., Xiao, D., and Zhang, C., Phys. Rev. B 89, 155317 (2014).Google Scholar
Liu, G.-B., Pang, H., Yao, Y., and Yao, W., New J. Phys. 16, 105011 (2014).Google Scholar
Srivastava, A., Sidler, M., Allain, A. V., Lembke, D. S., Kis, A., and Imamoğlu, A., Nature Phys. 11, 141 (2015).Google Scholar
Aivazian, G. et al., Nature Phys. 11, 148 (2015).CrossRefGoogle Scholar
Ho, Y.-H., Wang, Y.-H., and Chen, H.-Y., Phys. Rev. B 89, 155316 (2014).Google Scholar
Chu, R.-L., Li, X., Wu, S., Niu, Q., Yao, W., Xu, X., and Zhang, C., Phys. Rev. B 90, 045427 (2014).Google Scholar
Rostami, H., Moghaddam, A. G., and Asgari, R., Phys. Rev. B 88, 085440 (2013).Google Scholar
Rostami, H. and Asgari, R., Phys. Rev. B 89, 115413 (2014).Google Scholar
Rose, F., Goerbig, M. O., and Piéchon, F., Phys. Rev. B 88, 125438 (2013).Google Scholar
Scholz, A., Stauber, T., and Schliemann, J., Phys. Rev. B 88, 035135 (2013).Google Scholar
Wang, L. and Wu, M. W., Phys. Rev. B 89, 115302 (2014).Google Scholar
Cao, T. et al., Nat. Commun. 3, 887 (2012).Google Scholar
Yu, H., Cui, X., Xu, X., and Yao, W., Natl. Sci. Rev. 2, 57 (2015).Google Scholar
Jones, A. M. et al., Nature Nanotech. 8, 634 (2013).Google Scholar
Ross, J. S. et al., Nat. Commun. 4, 1474 (2012).Google Scholar
Mak, K. F., He, K., Lee, C., Lee, G. H., Hone, J., Heinz, T. F., and Shan, J., Nature Mater. 12, 207 (2012).Google Scholar
Mitioglu, A. A., Plochocka, P., Jadczak, J. N., Escoffier, W., Rikken, G. L. J. A., Kulyuk, L., and Maude, D. K., Phys. Rev. B 88, 245403 (2013).Google Scholar
Feng, J., Qian, X., Huang, C.-W., and Li, J., Nature Photon. 6, 866 (2012).Google Scholar
Qiu, D. Y., Jornada, F. H. d., and Louie, S. G., Phys. Rev. Lett. 111, 216805 (2013).Google Scholar
Komsa, H.-P. and Krasheninnikov, A. V., Phys. Rev. B 86, 241201 (2012).Google Scholar
Shi, H., Pan, H., Zhang, Y.-W., and Yakobson, B. I., Phys. Rev. B 87, 155304 (2013).Google Scholar
Chernikov, A., Berkelbach, T. C., Hill, H. M., Rigosi, A., Li, Y., Aslan, O. B., Reichman, D. R., Hybertsen, M. S., and Heinz, T. F., Phys. Rev. Lett. 113, 076802 (2014).Google Scholar
He, K., Kumar, N., Zhao, L., Wang, Z., Mak, K. F., Zhao, H., and Shan, J., Phys. Rev. Lett. 113, 026803 (2014).Google Scholar
Ye, Z., Cao, T., O'Brien, K., Zhu, H., Yin, X., Wang, Y., Louie, S. G., and Zhang, X., Nature 513, 214 (2014).Google Scholar
Zhu, B., Chen, X., and Cui, X., Sci. Rep. 5, 9218 (2015).Google Scholar
Wang, G., Marie, X., Gerber, I., Amand, T., Lagarde, D., Bouet, L., Vidal, M., Balocchi, A., and Urbaszek, B., Phys. Rev. Lett. 114, 097403 (2015).Google Scholar
Zhang, C., Johnson, A., Hsu, C.-L., Li, L.-J., and Shih, C.-K., Nano Lett. 14, 2443 (2014).Google Scholar
Ugeda, M. M. et al., Nature Mater. 13, 1091 (2014).Google Scholar
Chiu, M.-H. et al., Nat. Commun. 6, 7666 (2015).Google Scholar
Berkelbach, T. C., Hybertsen, M. S., and Reichman, D. R., Phys. Rev. B 88, 045318 (2013).Google Scholar
Zeng, H., Dai, J., Yao, W., Xiao, D., and Cui, X., Nature Nanotech. 7, 490 (2012).Google Scholar
Mak, K. F., He, K., Shan, J., and Heinz, T. F., Nature Nanotech. 7, 494 (2012).Google Scholar
Wang, G., Glazov, M. M., Robert, C., Amand, T., Marie, X., and Urbaszek, B., Phys. Rev. Lett. 115, 117401 (2015).Google Scholar
Sallen, G. et al., Phys. Rev. B 86, 081301(R) (2012).Google Scholar
Wang, G., Bouet, L., Lagarde, D., Vidal, M., Balocchi, A., Amand, T., Marie, X., and Urbaszek, B., Phys. Rev. B 90, 075413 (2014).Google Scholar
Mai, C., Barrette, A., Yu, Y., Semenov, Y. G., Kim, K. W., Cao, L., and Gundogdu, K., Nano Lett. 14, 202 (2014).Google Scholar
Wang, Q., Ge, S., Li, X., Qiu, J., Ji, Y., Feng, J., and Sun, D., ACS Nano 7, 11087 (2013).CrossRefGoogle Scholar
Schaibley, J. R. et al., Phys. Rev. Lett. 114, 137402 (2015).Google Scholar
Mai, C., Semenov, Y. G., Barrette, A., Yu, Y., Jin, Z., Cao, L., Kim, K. W., and Gundogdu, K., Phys. Rev. B 90, 041414 (2014).Google Scholar
Kumar, N., He, J., He, D., Wang, Y., and Zhao, H., Nanoscale 6, 12690 (2014).Google Scholar
Sie, E. J., McIver, J. W., Lee, Y.-H., Fu, L., Kong, J., and Gedik, N., Nature Mater. 15, 711 (2014).Google Scholar
Kim, J., Hong, X., Jin, C., Shi, S.-F., Chang, C.-Y. S., Chiu, M.-H., Li, L.-J., and Wang, F., Science 346, 1205 (2014).Google Scholar
Li, Y. et al., Phys. Rev. Lett. 113, 266804 (2014).Google Scholar
MacNeill, D., Heikes, C., Mak, K. F., Anderson, Z., Kormányos, A., Zólyomi, V., Park, J., and Ralph, D. C., Phys. Rev. Lett. 114, 037401 (2015).Google Scholar
Xiao, D., Chang, M.-C., and Niu, Q., Rev. Mod. Phys. 82, 1959 (2010).CrossRefGoogle Scholar
Xu, X., Yao, W., Xiao, D., and Heinz, T. F., Nature Phys. 10, 343 (2014).Google Scholar
Yu, H., Liu, G.-B., Gong, P., Xu, X., and Yao, W., Nat. Commun. 5, 3876 (2014).Google Scholar
Zhang, F., Jung, J., Fiete, G. A., Niu, Q., and MacDonald, A. H., Phys. Rev. Lett. 106, 156801 (2011).Google Scholar
Jung, J., Zhang, F., Qiao, Z., and MacDonald, A. H., Phys. Rev. B 84, 075418 (2011).Google Scholar
Ezawa, M., Phys. Rev. B 88, 161406 (2013).Google Scholar
Lee, J., Mak, K. F., and Shan, J., arXiv:1508.03068 (2015).Google Scholar
Mak, K. F., McGill, K. L., Park, J., and McEuen, P. L., Science 344, 1489 (2014).Google Scholar
Morpurgo, A. F., private communications.Google Scholar
Yu, H., Wu, Y., Liu, G.-B., Xu, X., and Yao, W., Phys. Rev. Lett. 113, 156603 (2014).Google Scholar
Baugher, B. W. H., Churchill, H. O. H., Yang, Y., and Jarillo-Herrero, P., Nano Lett. 13, 4212 (2013).Google Scholar
Cui, X. et al., Nature Nanotech. 10, 534 (2015).CrossRefGoogle Scholar
Jiang, T., Liu, H., Huang, D., Zhang, S., Li, Y., Gong, X., Shen, Y.-R., Liu, W.-T., and Wu, S., Nature Nanotech. 9, 825 (2014).Google Scholar
Suzuki, R. et al., Nature Nanotech. 9, 611 (2014).Google Scholar
Gong, Z., Liu, G.-B., Yu, H., Xiao, D., Cui, X., Xu, X., and Yao, W., Nat. Commun. 4, 2053 (2013).Google Scholar
Jones, A. M., Yu, H., Ross, J. S., Klement, P., Ghimire, N. J., Yan, J., Mandrus, D. G., Yao, W., and Xu, X., Nature Phys. 10, 130 (2014).Google Scholar
Zhu, B., Zeng, H., Dai, J., Gong, Z., and Cui, X., Proc. Natl. Acad. Sci. USA 111, 11606 (2014).CrossRefGoogle Scholar
Wu, S. et al., Nature Phys. 9, 149 (2013).Google Scholar

16.5 References

Wilson, JA, Yoffe, AD. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys. 1969 May; 18(73): 193335.Google Scholar
Ye, JT, Zhang, YJ, Akashi, R, Bahramy, MS, Arita, R, Iwasa, Y. Superconducting dome in a gate-tuned band insulator. Science. 2012 November 30; 338(6111): 1193–6.Google Scholar
Radisavljevic, B, Radenovic, A, Brivio, J, Giacometti, V, Kis, A. Single-layer MoS2 transistors. Nat Nanotechnol. 2011; 6(3): 147–50.Google Scholar
Kaasbjerg, K, Thygesen, KS, Jacobsen, KW. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys Rev B. 2012 March 23; 85(11): 115317.Google Scholar
Kaasbjerg, K, Thygesen, KS, Jauho, A-P. Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys Rev B. 2013; 87(23): 235312.Google Scholar
Ong, Z-Y, Fischetti, MV. Mobility enhancement and temperature dependence in top-gated single-layer MoS2. Phys Rev B. 2013; 88(16): 165316.Google Scholar
Jariwala, D, Sangwan, VK, Late, DJ, Johns, JE, Dravid, VP, Marks, TJ, et al. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl Phys Lett. 2013; 102(17): 173107.Google Scholar
Baugher, B, Churchill, HOH, Yang, Y, Jarillo-Herrero, P. Intrinsic electronic transport properties of high quality monolayer and bilayer MoS2. Nano Lett. 2013; 13(9): 4212–16.Google Scholar
Cui, X, Lee, G-H, Kim, YD, Arefe, G, Huang, PY, Lee, C-H, et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat Nanotechnol. 2015 April 27; 10: 534–40.Google Scholar
Fivaz, R, Mooser, E. Mobility of charge carriers in semiconducting layer structures. Phys Rev. 1967; 163(3): 743–55.Google Scholar
Radisavljevic, B, Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat Mater. 2013; 12: 815–20.Google Scholar
Rahman, A, Guo, J, Datta, S, Lundstrom, MS. Theory of ballistic nanotransistors. IEEE Trans Electron Devices. 2003 September; 50(9): 1853–64.Google Scholar
Liu, L, Kumar, SB, Ouyang, Y, Guo, J. Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans Electron Devices. 2011; 58(9): 3042–7.Google Scholar
Yoon, Y, Ganapathi, K, Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett. 2011; 11: 3768–73.Google Scholar
Alam, K, Lake, RK. Monolayer transistors beyond the technology road map. IEEE Trans Electron Devices. 2012 December; 59(12): 3250–4.Google Scholar
Chang, J, Register, LF, Banerjee, SK. Atomistic full-band simulations of monolayer MoS2 transistors. Appl Phys Lett. 2013 November 25; 103(22): 223509.Google Scholar
Chang, JW, Register, LF, Banerjee, SK. Ballistic performance comparison of monolayer transition metal dichalcogenide MX2 (M = Mo, W; X = S, Se, Te) metal–oxide–semiconductor field effect transistors. J Appl Phys. 2014 February; 115(8).Google Scholar
Liu, L, Lu, Y, Guo, J. On monolayer MoS2 field-effect transistors at the scaling limit. IEEE Trans Electron Devices. 2013; 60(12): 4133–9.Google Scholar
Ma, N, Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys Rev X. 2014; 4(1): 011043.Google Scholar
Kadantsev, ES, Hawrylak, P. Electronic structure of a single MoS2 monolayer. Solid State Commun. 2012; 152(10): 909–13.Google Scholar
Li, X, Mullen, JT, Jin, Z, Borysenko, KM, Buongiorno Nardelli, M, Kim, KW. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys Rev B. 2013; 87(11): 115418.Google Scholar
Zhou, W, Zou, X, Najmaei, S, Liu, Z, Shi, Y, Kong, J, et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013; 13: 2615Google Scholar
Hong, J, Hu, Z, Probert, M, Li, K, Lv, D, Yang, X, et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat Commun. 2015 February 19; 6: 6293.Google Scholar
Komsa, H-P, Krasheninnikov, AV. Native defects in bulk and monolayer MoS2 from first principles. Phys Rev B. 2015 March 12; 91(12): 125304.Google Scholar
Earnshaw, A, Greenwood, N. Chemistry of the Elements, 2nd edn. (Elsevier, Amsterdam, 1997).Google Scholar
Lin, Y-C, Dumcenco, DO, Komsa, H-P, Niimi, Y, Krasheninnikov, AV, Huang, Y-S, et al. Properties of individual dopant atoms in single-layer MoS2: atomic structure, migration, and enhanced reactivity. Adv Mater. 2014 May 1; 26(18): 2857–61.Google Scholar
Zhu, W, Low, T, Lee, Y-H, Wang, H, Farmer, DB, Kong, J, et al. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat Commun. 2014; 5: 3087.Google Scholar
Yu, Z, Pan, Y, Shen, Y, Wang, Z, Ong, Z-Y, Xu, T, et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat Commun. 2014 October 20; 5. http://www.nature.com/ncomms/2014/141020/ncomms6290/full/ncomms6290.htmlGoogle Scholar
Amani, M, Lien, D-H, Kiriya, D, Xiao, J, Azcatl, A, Noh, J, et al. Near-unity photoluminescence quantum yield in MoS2. Science. 2015 November 27; 350(6264): 1065–8.Google Scholar

17.5 References

Geim, A. K. and Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419425 (2013).Google Scholar
Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 13111314 (2013).Google Scholar
Novoselov, K. S. and Castro Neto, A. H. Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta T146, 014006 (2012).Google Scholar
Amin, B., Singh, N. and Schwingenschlögl, U. Heterostructures of transition metal dichalcogenides. Physical Review B 92, 075439 (2015).Google Scholar
Chiu, M. H. et al. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nature Communications 6, 7666 (2015).Google Scholar
Constantinescu, G. C. and Hine, N. D. M. Energy landscape and band-structure tuning in realistic MoS2/MoSe2 heterostructures. Physical Review B 91, 195416 (2015).Google Scholar
Gong, C. et al. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Applied Physics Letters 103, 053513 (2013).Google Scholar
Kang, J., Tongay, S., Zhou, J., Li, J., and Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Applied Physics Letters 102, 012111012114 (2013).Google Scholar
Komsa, H.-P. and Krasheninnikov, A. V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Physical Review B 88, 085315 (2013).Google Scholar
Kośmider, K. and Fernández-Rossier, J. Electronic properties of the MoS2–WS2 heterojunction. Physical Review B 87, 075451 (2013).Google Scholar
Terrones, H., Lopez-Urias, F., and Terrones, M. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Scientific Reports 3, 1549 (2013).Google Scholar
Debbichi, L., Eriksson, O., and Lebègue, S. Electronic structure of two-dimensional transition metal dichalcogenide bilayers from ab initio theory. Physical Review B 89, 205311 (2014).Google Scholar
Yu, H., Wang, Y., Tong, Q., Xu, X., and Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Physical Review Letters 115, 187002 (2015).Google Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters 105, 136805 (2010).Google Scholar
Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Letters 10, 12711275 (2010).Google Scholar
Liu, G. B., Xiao, D., Yao, Y., Xu, X., and Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chemical Society Reviews 44, 26432663 (2015).Google Scholar
Mattheiss, L. F. Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. Physical Review B 8, 37193740 (1973).Google Scholar
Xiao, D., Liu, G. B., Feng, W., Xu, X., and Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters 108, 196802 (2012).Google Scholar
Wilson, N. R. et al. Band parameters and hybridization in 2D semiconductor heterostructures from photoemission spectroscopy. arXiv:1601.05865 (2016).Google Scholar
Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614617 (2013).Google Scholar
Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N., and van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Applied Physics Letters 105, 013101 (2014).Google Scholar
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., and Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology 7, 699712 (2012).Google Scholar
Kumar, N. et al. Second harmonic microscopy of monolayer MoS2. Physical Review B 87 (2013).Google Scholar
Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Letters 13, 33293333 (2013).Google Scholar
Malard, L. M., Alencar, T. V., Barboza, A. P. M., Mak, K. F., and de Paula, A. M. Observation of intense second harmonic generation from MoS2 atomic crystals. Physical Review B 87 (2013).Google Scholar
Lin, Y. C. et al. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nature Communications 6, 7311 (2015).Google Scholar
Yu, Y. et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Letters 15, 486491 (2015).Google Scholar
Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials 13, 11351142 (2014).Google Scholar
Ceballos, F., Bellus, M. Z., Chiu, H. Y., and Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2–MoSe2 van der Waals heterostructure. ACS Nano 8, 1271712724 (2014).Google Scholar
Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotechnology 9, 682686 (2014).Google Scholar
Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nature Communications 6, 6242 (2015).Google Scholar
Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proceedings of the National Academy of Sciences of the United States of America 111, 61986202 (2014).Google Scholar
Chiu, M. H. et al. Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking. ACS Nano 8, 96499656 (2014).Google Scholar
Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotechnology 9, 676681 (2014).Google Scholar
Furchi, M. M., Pospischil, A., Libisch, F., Burgdorfer, J., and Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Letters 14, 47854791 (2014).Google Scholar
Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Letters 14, 55905597 (2014).Google Scholar
Heo, H. et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nature Communications 6, 7372 (2015).Google Scholar
Ceballos, F., Bellus, M. Z., Chiu, H. Y., and Zhao, H. Probing charge transfer excitons in a MoSe2–WS2 van der Waals heterostructure. Nanoscale 7, 1752317528 (2015).Google Scholar
Butov, L. V., Gossard, A. C., and Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751754 (2002).Google Scholar
Snoke, D., Denev, S., Liu, Y., Pfeiffer, L., and West, K. Long-range transport in excitonic dark states in coupled quantum wells. Nature 418, 754757 (2002).Google Scholar
Leonard, J. R. et al. Spin transport of excitons. Nano Letters 9, 42044208 (2009).Google Scholar
Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nature Nanotechnology 8, 271276 (2013).Google Scholar
Xu, X., Yao, W., Xiao, D., and Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Physics 10, 343350 (2014).Google Scholar
Rivera, P. R. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351 (6274), 688691 (2015).Google Scholar
Dufferwiel, S. et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities. Nature Communications 6 (2015).Google Scholar
Palummo, M., Bernardi, M., and Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Letters 15, 27942800 (2015).Google Scholar
Moody, G. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nature Communications 6 (2015).Google Scholar
Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J., and Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Applied Physics Letters 99, 102109 (2011).Google Scholar
Fogler, M. M., Butov, L. V., and Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nature Communications 5, 4555 (2014).Google Scholar

18.6 References

Mak, K.F., Lee, C., Hone, J., Shan, J., and Heinz, T.F., Phys. Rev. Lett. 105, 136805 (2010).Google Scholar
Splendiani, A., Nano Lett. 10, 1271 (2010).Google Scholar
Tonndorf, P. et al., Opt. Express 21, 4908 (2013).Google Scholar
Zhao, W. et al., ACS Nano 7, 791 (2013).Google Scholar
Klots, A.R. et al., Sci. Rep. 4, 6608 (2014).Google Scholar
Chernikov, A. et al., Phys. Rev. Lett. 113, 076802 (2014).Google Scholar
Ugeda, M.M. et al., Nat. Mater. 13, 1091 (2014).Google Scholar
He, K. et al., Phys. Rev. Lett. 113, 026803 (2014).Google Scholar
Ramasubramaniam, A., Phys. Rev B. 86, 115409 (2012).Google Scholar
Berkelbach, T.C., Hybertsen, M.S., and Reichman, D.R., Phys. Rev. B 88, 045318 (2013).Google Scholar
Qiu, D.Y., da Jornada, F.H., and Louie, S.G., Phys. Rev. Lett. 111, 216805 (2013).Google Scholar
Mak, K.F., He, K., Shan, J., and Heinz, T.F., Nat. Nanotechnol. 7, 494 (2012).Google Scholar
Jones, A.M. et al., Nat. Nanotechnol. 8, 634 (2013).Google Scholar
Li, et al., Nat. Commun. 6, 7509 (2015).Google Scholar
Zhang, Y.J., Oka, T., Suzuki, R., Ye, J.T., and Iwasa, Y., Science 344, 725 (2014).Google Scholar
Sundaram, R.S et al., Nano Lett. 13, 1416 (2013).Google Scholar
Chen, J. et al., Science 310, 1171 (2005).Google Scholar
Doh, Y.-J. et al., Nano Lett. 12, 4552 (2008).Google Scholar
Pospischil, A., Furchi, M.M., and Mueller, T., Nat. Nanotechnol. 9, 257 (2014).Google Scholar
Baugher, B.W.H., Churchill, H.O.H., Yang, Y., and Jarillo-Herrero, P., Nat. Nanotechnol. 9, 262 (2014).Google Scholar
Ross, J.S. et al., Nat. Nanotechnol. 9, 268 (2014).Google Scholar
Zhang, Y., Ye, J., Matsuhashi, Y., and Iwasa, Y., Nano Lett. 12, 1136 (2012).Google Scholar
Jo, S., Ubrig, N., Berger, H., Kuzmenko, A.B., and Morpurgo, A.F., Nano Lett. 14, 2019 (2014).Google Scholar
Ye, Y. et al., Appl. Phys. Lett. 104, 193508 (2014).Google Scholar
Lopez-Sanchez, O. et al., ACS Nano 8, 3042 (2014).Google Scholar
Sun, D. et al., Nano Lett. 14, 5625 (2014).Google Scholar
Withers, F. et al., Nat. Mater. 14, 301 (2015).Google Scholar
Schwarz, S. et al., Nano Lett. 14, 7003 (2014).Google Scholar
Wu, S. et al., 2D Mater. 1, 011001 (2014).Google Scholar
Wu, S. et al., Nature 520, 69 (2015).Google Scholar
Salehzadeh, O., Djavid, M., Tran, N.H., Shih, I., and Mi, Z., Nano Lett. 15, 5302 (2015).Google Scholar
Ye, Y. et al., Nat. Photon. 9, 733 (2015).Google Scholar
Späh, R., Elrod, U., LuxSteiner, M., Bucher, E., and Wagner, S., Appl. Phys. Lett. 43, 79 (1983).Google Scholar
Bernardi, M., Palummo, M., and Grossman, J.C., Nano Lett. 13, 3664 (2013).Google Scholar
Gan, L.Y., Zhang, Q., Cheng, Y., and Schwingenschlögl, U., J. Phys. Chem. Lett. 5, 1445 (2014).Google Scholar
Memaran, S. et al., Nano Lett. 11, 7532 (2015).Google Scholar
Buscema, M., Groenendijk, D.J., Steele, G.A., van der Zant, H.S.J., and Castellanos-Gomez, A., Nat. Commun. 5, 4651 (2014).Google Scholar
Fontana, M. et al., Sci. Rep. 3, 1634 (2012).Google Scholar
Furchi, M.M., Pospischil, A., Libisch, F., Burgdörfer, J., and Mueller, T., Nano Lett. 14, 4785 (2014).Google Scholar
Lee, C.-H. et al., Nat. Nanotechnol. 9, 676 (2014).Google Scholar
Cheng, R. et al., Nano Lett. 14, 5590 (2014).Google Scholar
Rivera, P. et al., Nat. Commun. 6, 6242 (2015).Google Scholar
Hong, X. et al., Nat. Nanotechnol. 9, 682 (2014).Google Scholar
Yu, Y. et al., Nano Lett. 15, 486 (2015).Google Scholar
Deng, Y. et al. ACS Nano 8, 8292 (2014).Google Scholar
Flöry, N. et al., Appl. Phys. Lett. 107, 123106 (2015).Google Scholar
Wi, S. et al., ACS Nano 8, 5270 (2014).Google Scholar
Tsai, M.-L. et al., ACS Nano 8, 8317 (2014).Google Scholar
Yin, Z. et al., ACS Nano 6, 74 (2012).Google Scholar
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., and Kis, A., Nat. Nanotechnol. 8, 497 (2013).Google Scholar
Zhang, W. et al., Adv. Mater. 25, 3456 (2013).Google Scholar
Lee, H.S. et al., Nano Lett. 12, 3695 (2012).Google Scholar
Choi, W. et al., Adv. Mater. 24, 5832 (2012).Google Scholar
Tsai, D.-S. et al., ACS Nano 7, 3905 (2013).Google Scholar
Wu, C.-C. et al., J. Phys. Chem. Lett. 4, 2508 (2013).Google Scholar
Furchi, M.M., Polyushkin, D.K., Pospischil, A., and Mueller, T., Nano Lett. 14, 6165 (2014).Google Scholar
Perea-López, N. et al., Adv. Funct. Mater. 23, 5511 (2013).Google Scholar
Buscema, M. et al., Nano Lett. 14, 3347 (2014).Google Scholar
Liu, F. et al., ACS Nano 8, 752 (2014).Google Scholar
Hu, P., Wen, Z., Wang, L., Tan, P., and Xiao, K., ACS Nano 6, 5988 (2012).Google Scholar
Hu, P. et al., Nano Lett. 13, 1649 (2013).Google Scholar
Jacobs-Gedrim, R.B. et al., ACS Nano 8, 514 (2014).Google Scholar
Buscema, M. et al., Nano Lett. 13, 358 (2013).Google Scholar
Konstantatos, G. et al., Nat. Nanotechnol. 7, 363 (2012).Google Scholar
Roy, K. et al., Nat. Nanotechnol. 8, 826 (2013).Google Scholar
Kufer, D. et al., Adv. Mater. 27, 176 (2015).Google Scholar
Geim, A.K. and Grigorieva, I.V., Nature 499, 419 (2013).Google Scholar
Britnell, L. et al., Science 340, 1311 (2013).Google Scholar
Yu, W.J. et al., Nat. Nanotechnol. 8, 952 (2013).Google Scholar
Yang, et al., Appl. Phys. Lett. 96, 121107 (2010).Google Scholar
Yuan, et al., Appl. Phys. Lett. 94, 013102 (2009).Google Scholar
Xu, X., Yao, W., Xiao, D., and Heinz, T.F., Nat. Phys. 10, 343 (2014).Google Scholar
Mak, K.F., McGill, K.L., Park, J., and McEuen, P.L., Science 344, 1489 (2014).Google Scholar
Yuan, H. et al., Nat. Nanotechnol. 9, 851 (2014).Google Scholar
Eginligil, M. et al., Nat. Commun. 6, 7636 (2015).Google Scholar

19.7 References

Shi, Y, Li, H, Li, L-J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chemical Society Reviews. 2015, 44(9): 2744–56.Google Scholar
Ji, Q, Zhang, Y, Zhang, Y, Liu, Z. Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chemical Society Reviews. 2015, 44(9): 2587–602.Google Scholar
Radisavljevic, B, Radenovic, A, Brivio, J, Giacometti, V, Kis, A. Single-layer MoS2 transistors. Nature Nanotechnology. 2011, 6(3): 147–50.Google Scholar
Lopez-Sanchez, O, Lembke, D, Kayci, M, Radenovic, A, Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nature Nanotechnology. 2013, 8(7): 497501.Google Scholar
Radisavljevic, B, Radenovic, A, Brivio, J, Giacometti, V, Kis, A. Single-layer MoS2 transistors. Nature Nanotechnology. 2011, 6(3): 147–50.Google Scholar
Pu, J, Yomogida, Y, Liu, K-K, Li, L-J, Iwasa, Y, Takenobu, T. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Letters. 2012, 12(8): 4013–7.Google Scholar
Shi, Y, Huang, J-K, Jin, L, Hsu, Y-T, Yu, SF, Li, L-J, et al. Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. Scientific Reports. 2013, 3: 1839.Google Scholar
Yin, Z, Li, H, Li, H, Jiang, L, Shi, Y, Sun, Y, et al. Single-layer MoS2 phototransistors. ACS Nano. 2011, 6(1): 7480.Google Scholar
Zhang, W, Huang, JK, Chen, CH, Chang, YH, Cheng, YJ, Li, LJ. High-gain phototransistors based on a CVD MoS2 monolayer. Advanced Materials. 2013, 25(25): 3456–61.Google Scholar
Tsai, D-S, Liu, K-K, Lien, D-H, Tsai, M-L, Kang, C-F, Lin, C-A, et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano. 2013, 7(5): 3905–11.Google Scholar
Tsai, M-L, Su, S-H, Chang, J-K, Tsai, D-S, Chen, C-H, Wu, C-I, et al. Monolayer MoS2 heterojunction solar cells. ACS Nano. 2014, 8(8): 8317–22.Google Scholar
Sundaram, R, Engel, M, Lombardo, A, Krupke, R, Ferrari, A, Avouris, P, et al. Electroluminescence in single layer MoS2. Nano Letters. 2013, 13(4): 1416–21.Google Scholar
Ross, JS, Klement, P, Jones, AM, Ghimire, NJ, Yan, J, Mandrus, D, et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nature Nanotechnology. 2014, 9(4): 268–72.Google Scholar
Zhang, Y, Oka, T, Suzuki, R, Ye, J, Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science. 2014, 344(6185): 725–8.Google Scholar
Nicolosi, V, Chhowalla, M, Kanatzidis, MG, Strano, MS, Coleman, JN. Liquid exfoliation of layered materials. Science. 2013, 340(6139).CrossRefGoogle Scholar
Coleman, JN, Lotya, M, O’Neill, A, Bergin, SD, King, PJ, Khan, U, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011, 331(6017): 568–71.Google Scholar
Jian, Z, Han, Z, Shaohua, D, Yanpeng, L, Chang Tai, N, Hyeon Suk, S, et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nature Communications. 2014, 5: 2995.Google Scholar
Zhou, K-G, Mao, N-N, Wang, H-X, Peng, Y, Zhang, H-L. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angewandte Chemie International Edition. 2011, 50(46): 10839–42.Google Scholar
Smith, RJ, King, PJ, Lotya, M, Wirtz, C, Khan, U, De, S, et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Advanced Materials. 2011, 23(34): 3944–8.Google Scholar
Shi, Y, Zhang, H, Chang, W-H, Shin, HS, Li, L-J. Synthesis and structure of two-dimensional transition-metal dichalcogenides. MRS Bulletin. 2015, 40(07): 566–76.Google Scholar
Liu, K-K, Zhang, W, Lee, Y-H, Lin, Y-C, Chang, M-T, Su, C-Y, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Letters. 2012, 12(3): 1538–44.Google Scholar
Shi, Y, Zhou, W, Lu, A-Y, Fang, W, Lee, Y-H, Hsu, AL, et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Letters. 2012, 12(6): 2784–91.Google Scholar
Lin, Y-C, Zhang, W, Huang, J-K, Liu, K-K, Lee, Y-H, Liang, C-T, et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale. 2012, 4(20): 6637–41.Google Scholar
Clark, G, Wu, S, Rivera, P, Finney, J, Nguyen, P, Cobden, DH, et al. Vapor-transport growth of high optical quality WSe2 monolayers. APL Materials. 2014, 2(10): 101101.Google Scholar
Lee, Y-H, Zhang, X-Q, Zhang, W, Chang, M-T, Lin, C-T, Chang, K-D, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials. 2012, 24(17): 2320–5.Google Scholar
Chhowalla, M, Shin, HS, Eda, G, Li, L-J, Loh, KP, Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry. 2013, 5(4): 263–75.Google Scholar
Wang, QH, Kalantar-Zadeh, K, Kis, A, Coleman, JN, Strano, MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology. 2012, 7(11): 699712.Google Scholar
Oura, KL, Saranin, A, Zotov, A, Katayama, M. Surface Science: An Introduction, Springer: Berlin, 2003.Google Scholar
Shi, Y, Li, H, Wong, JI, Zhang, X, Wang, Y, Song, H, et al. MoS2 surface structure tailoring via carbonaceous promoter. Scientific Reports. 2015, 5: 10378.Google Scholar
Wu, S, Huang, C, Aivazian, G, Ross, JS, Cobden, DH, Xu, X. Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano. 2013, 7(3): 2768–72.Google Scholar
Li, M-Y, Shi, Y, Cheng, C-C, Lu, L-S, Lin, Y-C, Tang, H-L, et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral p–n junction with an atomically sharp interface. Science. 2015, 349(6247): 524–8.Google Scholar
Kong, D, Wang, H, Cha, JJ, Pasta, M, Koski, KJ, Yao, J, et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Letters. 2013, 13(3): 1341–7.Google Scholar
Peimyoo, N, Shang, J, Cong, C, Shen, X, Wu, X, Yeow, EKL, et al. Nonblinking, intense two-dimensional light emitter: monolayer WS2 triangles. ACS Nano. 2013, 7(12): 10985–94.Google Scholar
Okada, M, Sawazaki, T, Watanabe, K, Taniguch, T, Hibino, H, Shinohara, H, et al. Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. ACS Nano. 2014, 8(8): 8273–7.Google Scholar
Wang, X, Gong, Y, Shi, G, Chow, WL, Keyshar, K, Ye, G, et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano. 2014, 8(5): 5125–31.Google Scholar
Huang, J-K, Pu, J, Hsu, C-L, Chiu, M-H, Juang, Z-Y, Chang, Y-H, et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano. 2014, 8(1): 923–30.Google Scholar
Ling, X, Lee, Y-H, Lin, Y, Fang, W, Yu, L, Dresselhaus, MS, et al. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Letters. 2014, 14(2): 464–72.Google Scholar
Najmaei, S, Liu, Z, Zhou, W, Zou, X, Shi, G, Lei, S, et al. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nature Materials. 2013, 12(8): 754–9.Google Scholar
van der Zande, AM, Huang, PY, Chenet, DA, Berkelbach, TC, You, Y, Lee, G-H, et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Materials. 2013, 12(6): 554–61.Google Scholar
Gong, Y, Lin, Z, Ye, G, Shi, G, Feng, S, Lei, Y, et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano. 2015. DOI: 10.1021/acsnano.5b05594.Google Scholar
Zhang, W, Li, X, Jiang, T, Song, J, Lin, Y, Zhu, L, et al. CVD synthesis of Mo(1–x)WxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale. 2015, 7(32): 13554–60.Google Scholar
Gong, Y, Liu, Z, Lupini, AR, Shi, G, Lin, J, Najmaei, S, et al. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Letters. 2014, 14(2): 442–9.Google Scholar
Li, H, Duan, X, Wu, X, Zhuang, X, Zhou, H, Zhang, Q, et al. Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties. Journal of the American Chemical Society. 2014, 136(10): 3756–9.Google Scholar
Su, S-H, Hsu, W-T, Hsu, C-L, Chen, C-H, Chiu, M-H, Lin, Y-C, et al. Controllable synthesis of band gap-tunable and monolayer transition metal dichalcogenide alloys. Frontiers in Energy Research. 2014, 2: 27.Google Scholar
Yu, L, Lee, Y-H, Ling, X, Santos, EJG, Shin, YC, Lin, Y, et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Letters. 2014, 14(6): 3055–63.Google Scholar
Zhang, W, Chuu, C-P, Huang, J-K, Chen, C-H, Tsai, M-L, Chang, Y-H, et al. Ultrahigh-gain photodetectors based on atomically thin graphene–MoS2 heterostructures. Scientific Reports. 2014, 4: 3826.Google Scholar
Loan, PTK, Zhang, W, Lin, C-T, Wei, K-H, Li, L-J, Chen, C-H. Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation. Advanced Materials. 2014, 26(28): 4838–44.Google Scholar
Ionescu, R, Ruiz, I, Favors, Z, Campbell, B, Neupane, MR, Wickramaratne, D, et al. Two step growth phenomena of molybdenum disulfide–tungsten disulfide heterostructures. Chemical Communications. 2015, 51(56): 11213–6.Google Scholar
Gong, Y, Lin, J, Wang, X, Shi, G, Lei, S, Lin, Z, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials. 2014, 13(12): 1135–42.Google Scholar
Gong, Y, Lei, S, Ye, G, Li, B, He, Y, Keyshar, K, et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Letters. 2015, 15(9): 6135–41.Google Scholar
Cao, X, Shi, Y, Shi, W, Rui, X, Yan, Q, Kong, J, et al. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small. 2013, 9(20): 3433–8.Google Scholar
Shi, Y, Hamsen, C, Jia, X, Kim, KK, Reina, A, Hofmann, M, et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Letters. 2010, 10(10): 4134–9.Google Scholar
Ji, Q, Zhang, Y, Gao, T, Zhang, Y, Ma, D, Liu, M, et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Letters. 2013, 13(8): 3870–7.Google Scholar
Rivera, P, Schaibley, JR, Jones, AM, Ross, JS, Wu, S, Aivazian, G, et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nature Communications. 2015, 6: 6242.Google Scholar
Zhang, X-Q, Lin, C-H, Tseng, Y-W, Huang, K-H, Lee, Y-H. Synthesis of lateral heterostructures of semiconducting atomic layers. Nano Letters. 2014, 15(1): 410–15.Google Scholar
Duan, X, Wang, C, Shaw, JC, Cheng, R, Chen, Y, Li, H, et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nature Nanotechnology. 2014, 9(12): 1024–30.Google Scholar
Kang, K, Xie, S, Huang, L, Han, Y, Huang, PY, Mak, KF, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature. 2015, 520(7549): 656–60.Google Scholar
Eichfeld, SM, Hossain, L, Lin, Y-C, Piasecki, AF, Kupp, B, Birdwell, AG, et al. Highly scalable, atomically thin WSe2 grown via metal–organic chemical vapor deposition. ACS Nano. 2015, 9(2): 2080–7.Google Scholar
Mann, J, Ma, Q, Odenthal, PM, Isarraraz, M, Le, D, Preciado, E, et al. 2-dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers. Advanced Materials. 2014, 26(9): 1399–404.Google Scholar
Feng, Q, Mao, N, Wu, J, Xu, H, Wang, C, Zhang, J, et al. Growth of MoS2(1−x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano. 2015, 9(7): 7450–5.Google Scholar
Huang, C, Wu, S, Sanchez, AM, Peters, JJP, Beanland, R, Ross, JS, et al. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nature Materials. 2014, 13(12): 1096–101.Google Scholar
Ge, W, Kawahara, K, Tsuji, M, Ago, H. Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD. Nanoscale. 2013, 5(13): 5773–8.Google Scholar
Zhou, L, Xu, K, Zubair, A, Liao, AD, Fang, W, Ouyang, F, et al. Large-area synthesis of high-quality uniform few-layer MoTe2. Journal of the American Chemical Society. 2015, 137(37): 11892–5.Google Scholar
Zhang, W, Huang, Z, Zhang, W, Li, Y. Two-dimensional semiconductors with possible high room temperature mobility. Nano Research. 2014, 7(12): 1731–7.Google Scholar

20.7 References

Zhou, W., Zou, X. L., Najmaei, S., Liu, Z., Shi, Y. M., Kong, J., Lou, J., Ajayan, P. M., Yakobson, B. I., Idrobo, J. C., Nano Lett. 2013, 13, 2615.Google Scholar
Komsa, H. P., Krasheninnikov, A. V., Phys. Rev. B 2015, 91, 125304.Google Scholar
Noh, J. Y., Kim, H., Kim, Y. S., Phys. Rev. B 2014, 89, 205417.Google Scholar
Hong, J. H., Hu, Z. X., Probert, M., Li, K., Lv, D. H., Yang, X. N., Gu, L., Mao, N. N., Feng, Q. L., Xie, L. M., Zhang, J., Wu, D. Z., Zhang, Z. Y., Jin, C. H., Ji, W., Zhang, X. X., Yuan, J., Zhang, Z., Nat. Commun. 2015, 6, 6293.Google Scholar
Qiu, H., Xu, T., Wang, Z. L., Ren, W., Nan, H. Y., Ni, Z. H., Chen, Q., Yuan, S. J., Miao, F., Song, F. Q., Long, G., Shi, Y., Sun, L. T., Wang, J. L., Wang, X. R., Nat. Commun. 2013, 4, 2642.Google Scholar
Ugeda, M. M., Bradley, A. J., Shi, S. F., da Jornada, F. H., Zhang, Y., Qiu, D. Y., Ruan, W., Mo, S. K., Hussain, Z., Shen, Z. X., Wang, F., Louie, S. G., Crommie, M. F., Nature Mater. 2014, 13, 1091.Google Scholar
McDonnell, S., Addou, R., Buie, C., Wallace, R. M., Hinkle, C. L., ACS Nano 2014, 8, 2880.Google Scholar
Mann, J., Sun, D. Z., Ma, Q., Chen, J. R., Preciado, E., Ohta, T., Diaconescu, B., Yamaguchi, K., Tran, T., Wurch, M., Magnone, K., Heinz, T. F., Kellogg, G. L., Kawakami, R., Bartels, L., Eur. Phys. J. B 2013, 86, 226.Google Scholar
Yu, Z. H., Pan, Y. M., Shen, Y. T., Wang, Z. L., Ong, Z. Y., Xu, T., Xin, R., Pan, L. J., Wang, B. G., Sun, L. T., Wang, J. L., Zhang, G., Zhang, Y. W., Shi, Y., Wang, X. R., Nat. Commun. 2014, 5, 5290.Google Scholar
Lu, J., Carvalho, A., Chan, X. K., Liu, H., Liu, B., Tok, E. S., Loh, K. P., Castro Neto, A. H., Sow, C. H., Nano Lett. 2015, 15, 3524.Google Scholar
Dolui, K., Rungger, I., Das Pemmaraju, C., Sanvito, S., Phys. Rev. B 2013, 88, 075420.Google Scholar
Yang, L. M., Majumdar, K., Liu, H., Du, Y. C., Wu, H., Hatzistergos, M., Hung, P. Y., Tieckelmann, R., Tsai, W., Hobbs, C., Ye, P. D., Nano Lett. 2014, 14, 6275.Google Scholar
Suh, J., Park, T. E., Lin, D. Y., Fu, D. Y., Park, J., Jung, H. J., Chen, Y. B., Ko, C., Jang, C., Sun, Y. H., Sinclair, R., Chang, J., Tongay, S., Wu, J. Q., Nano Lett. 2014, 14, 6976.Google Scholar
Xu, X. D., Yao, W., Xiao, D., Heinz, T. F., Nature Phys. 2014, 10, 343.Google Scholar
Chow, P. K., Jacobs-Gedrim, R. B., Gao, J., Lu, T. M., Yu, B., Terrones, H., Koratkar, N., ACS Nano 2015, 9, 1520.Google Scholar
Srivastava, A., Sidler, M., Allain, A. V., Lembke, D. S., Kis, A., Imamoğlu, A., Nature Nanotech. 2015, 10, 491.Google Scholar
He, Y. M., Clark, G., Schaibley, J. R., He, Y., Chen, M. C., Wei, Y. J., Ding, X., Zhang, Q., Yao, W., Xu, X., Lu, C. Y., Pan, J. W., Nature Nanotech. 2015, 10, 497.Google Scholar
Koperski, M., Nogajewski, K., Arora, A., Cherkez, V., Mallet, P., Veuillen, J. Y., Marcus, J., Kossacki, P., Potemski, M., Nature Nanotech. 2015, 10, 503.Google Scholar
Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R., Vamivakas, A. N., Nature Nanotech. 2015, 10, 507.Google Scholar
Jin, C. H., Lin, F., Suenaga, K., Iijima, S., Phys. Rev. Lett. 2009, 102, 195505.Google Scholar
Suenaga, K., Kobayashi, H., Koshino, M., Phys. Rev. Lett. 2012, 108, 075501.Google Scholar
Banhart, F., Kotakoski, J., Krasheninnikov, A. V., ACS Nano 2011, 5, 26.Google Scholar
Meyer, J. C., Chuvilin, A., Algara-Siller, G., Biskupek, J., Kaiser, U., Nano Lett. 2009, 9, 2683.Google Scholar
Krivanek, O. L., Chisholm, M. F., Nicolosi, V., Pennycook, T. J., Corbin, G. J., Dellby, N., Murfitt, M. F., Own, C. S., Szilagyi, Z. S., Oxley, M. P., Pantelides, S. T., Pennycook, S. J., Nature 2010, 464, 571.Google Scholar
Wei, X. L., Wang, M. S., Bando, Y., Golberg, D., ACS Nano 2011, 5, 2916.Google Scholar
Berseneva, N., Krasheninnikov, A. V., Nieminen, R. M., Phys. Rev. Lett. 2011, 107, 035501.Google Scholar
Yakobson, B. I., Appl. Phys. Lett. 1998, 72, 918.Google Scholar
Liu, Y. Y., Yakobson, B. I., Nano Lett. 2010, 10, 2178.Google Scholar
Yazyev, O. V., Louie, S. G., Phys. Rev. B 2010, 81, 195420.Google Scholar
Liu, Y. Y., Zou, X. L., Yakobson, B. I., ACS Nano 2012, 6, 7053.Google Scholar
Gibb, A. L., Alem, N., Chen, J. H., Erickson, K. J., Ciston, J., Gautam, A., Linck, M., Zettl, A., J. Am. Chem. Soc. 2013, 135, 6758.Google Scholar
Li, Q. C., Zou, X. L., Liu, M. X., Sun, J. Y., Gao, Y. B., Qi, Y., Zhou, X. B., Yakobson, B. I., Zhang, Y. F., Liu, Z. F., Nano Lett. 2015, 15, 5804.Google Scholar
Zou, X. L., Liu, Y. Y., Yakobson, B. I., Nano Lett. 2013, 13, 253.Google Scholar
van der Zande, A. M., Huang, P. Y., Chenet, D. A., Berkelbach, T. C., You, Y. M., Lee, G. H., Heinz, T. F., Reichman, D. R., Muller, D. A., Hone, J. C., Nature Mater. 2013, 12, 554.Google Scholar
Najmaei, S., Liu, Z., Zhou, W., Zou, X. L., Shi, G., Lei, S. D., Yakobson, B. I., Idrobo, J. C., Ajayan, P. M., Lou, J., Nature Mater. 2013, 12, 754.Google Scholar
Lehtinen, O., Komsa, H. P., Pulkin, A., Whitwick, M. B., Chen, M. W., Lehnert, T., Mohn, M. J., Yazyev, O. V., Kis, A., Kaiser, U., Krasheninnikov, A. V., ACS Nano 2015, 9, 3274.Google Scholar
Lin, J., Pantelides, S. T., Zhou, W., ACS Nano 2015, 9, 5189.Google Scholar
Liu, H. J., Jiao, L., Yang, F., Cai, Y., Wu, X. X., Ho, W. K., Gao, C. L., Jia, J. F., Wang, N., Fan, H., Yao, W., Xie, M. H., Phys. Rev. Lett. 2014, 113, 066105.Google Scholar
Lin, Y. C., Bjorkman, T., Komsa, H. P., Teng, P. Y., Yeh, C. H., Huang, F. S., Lin, K. H., Jadczak, J., Huang, Y. S., Chiu, P. W., Krasheninnikov, A. V., Suenaga, K., Nat. Commun. 2015, 6, 6736.Google Scholar
Lahiri, J., Lin, Y., Bozkurt, P., Oleynik, I. I., Batzill, M., Nature Nanotech. 2010, 5, 326.Google Scholar
Zou, X. L., Yakobson, B. I., Small 2015, 11, 4503.Google Scholar
Najmaei, S., Amani, M., Chin, M. L., Liu, Z., Birdwell, A. G., O’Regan, T. P., Ajayan, P. M., Dubey, M., Lou, J., ACS Nano 2014, 8, 7930.Google Scholar
Gibertini, M., Pizzi, G., Marzari, N., Nat. Commun. 2014, 5, 5157.Google Scholar
Sangwan, V. K., Jariwala, D., Kim, I. S., Chen, K. S., Marks, T. J., Lauhon, L. J., Hersam, M. C., Nature Nanotech. 2015, 10, 403.Google Scholar
Zhang, Z. H., Zou, X. L., Crespi, V. H., Yakobson, B. I., ACS Nano 2013, 7, 10475.Google Scholar
Liu, Z., Amani, M., Najmaei, S., Xu, Q., Zou, X. L., Zhou, W., Yu, T., Qiu, C. Y., Birdwell, A. G., Crowne, F. J., Vajtai, R., Yakobson, B. I., Xia, Z. H., Dubey, M., Ajayan, P. M., Lou, J., Nat. Commun. 2014, 5, 5246.Google Scholar
Zou, X. L., Liu, M., Shi, Z., Yakobson, B. I., Nano Lett. 2015, 15, 3495.Google Scholar
Cretu, O., Lin, Y. C., Suenaga, K., Nano Lett. 2014, 14, 1064.Google Scholar
Azizi, A., Zou, X. L., Ercius, P., Zhang, Z. H., Elias, A. L., Perea-Lopez, N., Stone, G., Terrones, M., Yakobson, B. I., Alem, N., Nat. Commun. 2014, 5, 4867.Google Scholar
Ding, F., Harutyunyan, A. R., Yakobson, B. I., Proc. Natl. Acad. Sci. USA. 2009, 106, 2506.Google Scholar
Burton, W. K., Cabrera, N., Frank, F. C., Philos. Trans. R. Soc. S-A 1951, 243, 299.Google Scholar
Zhang, L. M., Liu, K. H., Wong, A. B., Kim, J., Hong, X. P., Liu, C., Cao, T., Louie, S. G., Wang, F., Yang, P. D., Nano Lett. 2014, 14, 6418.Google Scholar
Chen, L., Liu, B. L., Abbas, A. N., Ma, Y. Q., Fang, X., Liu, Y. H., Zhou, C. W., ACS Nano 2014, 8, 11543.Google Scholar
Xu, F. B., Yu, H., Sadrzadeh, A., Yakobson, B. I., Nano Lett. 2016, 16, 34.Google Scholar
Butz, B., Dolle, C., Niekiel, F., Weber, K., Waldmann, D., Weber, H. B., Meyer, B., Spiecker, E., Nature 2014, 505, 533.Google Scholar
Alden, J. S., Tsen, A. W., Huang, P. Y., Hovden, R., Brown, L., Park, J., Muller, D. A., McEuen, P. L., Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 11256.Google Scholar
Lin, J. H., Fang, W. J., Zhou, W., Lupini, A. R., Idrobo, J. C., Kong, J., Pennycook, S. J., Pantelides, S. T., Nano Lett. 2013, 13, 3262.Google Scholar
Vaezi, A., Liang, Y. F., Ngai, D. H., Yang, L., Kim, E. A., Phys. Rev. X 2013, 3, 021018.Google Scholar
Zhang, F., MacDonald, A. H., Mele, E. J., Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 10546.Google Scholar
Kushima, A., Qian, X. F., Zhao, P., Zhang, S. L., Li, J., Nano Lett. 2015, 15, 1302.Google Scholar
Schweiger, H., Raybaud, P., Kresse, G., Toulhoat, H., J. Catal. 2002, 207, 76.Google Scholar
Gutierrez, H. R., Perea-Lopez, N., Elias, A. L., Berkdemir, A., Wang, B., Lv, R., Lopez-Urias, F., Crespi, V. H., Terrones, H., Terrones, M., Nano Lett. 2013, 13, 3447.Google Scholar
Hinnemann, B., Moses, P. G., Bonde, J., Joørgensen, K. P., Nielsen, J. H., Horch, S., Chorkendorff, I., Nørskov, J. K., J. Am. Chem. Soc. 2005, 127, 5308.Google Scholar
Lauritsen, J. V., Nyberg, M., Nørskov, J. K., Clausen, B. S., Topsøe, H., Laegsgaard, E., Besenbacher, F., J. Catal. 2004, 224, 94.Google Scholar
Eda, G., Fujita, T., Yamaguchi, H., Voiry, D., Chen, M. W., Chhowalla, M., ACS Nano 2012, 6, 7311.Google Scholar
Voiry, D., Mohite, A., Chhowalla, M., Chem. Soc. Rev. 2015, 44, 2702.Google Scholar
Acerce, M., Voiry, D., Chhowalla, M., Nature Nanotech. 2015, 10, 313.Google Scholar
Voiry, D., Yamaguchi, H., Li, J. W., Silva, R., Alves, D. C. B., Fujita, T., Chen, M. W., Asefa, T., Shenoy, V. B., Eda, G., Chhowalla, M., Nature Mater. 2013, 12, 850.Google Scholar
Kappera, R., Voiry, D., Yalcin, S. E., Branch, B., Gupta, G., Mohite, A. D., Chhowalla, M., Nature Mater. 2014, 13, 1128.Google Scholar
Lin, Y. C., Dumcencon, D. O., Huang, Y. S., Suenaga, K., Nature Nanotech. 2014, 9, 391.Google Scholar
Lin, J. H., Cretu, O., Zhou, W., Suenaga, K., Prasai, D., Bolotin, K. I., Cuong, N. T., Otani, M., Okada, S., Lupini, A. R., Idrobo, J. C., Caudel, D., Burger, A., Ghimire, N. J., Yan, J. Q., Mandrus, D. G., Pennycook, S. J., Pantelides, S. T., Nature Nanotech. 2014, 9, 436.Google Scholar
Liu, X. F., Xu, T., Wu, X., Zhang, Z. H., Yu, J., Qiu, H., Hong, J. H., Jin, C. H., Li, J. X., Wang, X. R., Sun, L. T., Guo, W. L., Nat. Commun. 2013, 4, 1776.Google Scholar
Venkataraman, L., Lieber, C. M., Phys. Rev. Lett. 1999, 83, 5334.Google Scholar
Venkataraman, L., Hong, Y. S., Kim, P., Phys. Rev. Lett. 2006, 96, 076601.Google Scholar
Kibsgaard, J., Tuxen, A., Levisen, M., Laegsgaard, E., Gemming, S., Seifert, G., Lauritsen, J. V., Besenbacher, F., Nano Lett. 2008, 8, 3928.Google Scholar
Yu, H., Kutana, A., Yakobson, B. I., Nano Lett. 2016, 16, 5032.Google Scholar
Zou, X. L., Yakobson, B. I., Accounts Chem. Res. 2015, 48, 73.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×