Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-02T13:02:39.397Z Has data issue: false hasContentIssue false

1 - Graphene: Basic Properties

from Part I

Published online by Cambridge University Press:  22 June 2017

Phaedon Avouris
Affiliation:
IBM T. J. Watson Research Center, New York
Tony F. Heinz
Affiliation:
Stanford University, California
Tony Low
Affiliation:
University of Minnesota
Get access
Type
Chapter
Information
2D Materials
Properties and Devices
, pp. 7 - 24
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.6 References

Radzig, A. A. and Smirnov, B. M., Reference Data on Atoms, Molecules and Ions (Berlin: Springer, 1985).Google Scholar
Pauling, L., The Nature of the Chemical Bond (Ithaca, NY: Cornell University Press, 1960).Google Scholar
Eyring, H., Walter, J., and Kimball, G. E., Quantum Chemistry (Ithaca, NY: Cornell University Press, 1946).Google Scholar
Girifalco, L. A. and Lad, R. A., Energy of cohesion, compressibility, and the potential energy of the graphite system. J. Chem. Phys. 25 (1956) 693–7.Google Scholar
Savini, G., Dappe, Y. J., Oberg, S. et al., Bending modes, elastic constants and mechanical stability of graphitic systems. Carbon 49 (2011) 62–9.Google Scholar
Reguzzoni, M., Fasolino, A., Molinari, E., and Righi, M. C., Potential energy surface for graphene on graphene: Ab initio derivation, analytical description, and microscopic interpretation. Phys. Rev. B 86 (2012) 245434.Google Scholar
Dresselhaus, M., Dresselhaus, G., and Eklund, P., Science of Fullerenes and Carbon Nanotubes (New York: Academic Press, 1996).Google Scholar
Fahy, S., Louie, S. T., and Cohen, M. L., Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond. Phys. Rev. B 34 (1986) 1191–9.CrossRefGoogle ScholarPubMed
Los, J. H. and Fasolino, A., Intrinsic long-range bond-order potential for carbon: Performance in Monte Carlo simulations of graphitization. Phys. Rev. B 68 (2003) 024107.Google Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V. et al., Electric field effect in atomically thin carbon films. Science 306 (2004) 666–9.Google Scholar
Novoselov, K. S., Jiang, D., Zhang, Y. et al., Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102 (2005) 10451–3.Google Scholar
Kara, A., Enriquez, H., Seitsonen, A. P. et al., A review on silicene: New candidate for electronics. Surf. Sci. Rep. 67 (2012) 118.Google Scholar
Acun, A., Zhang, L., Bampoulis, P. et al., Germanene: The germanium analogue of graphene. J. Phys.: Cond. Mat. 27 (2015) 443002.Google Scholar
Ghiringhelli, L. M., Los, J. H., Meijer, E. J., Fasolino, A., and Frenkel, D., Modeling the phase diagram of carbon. Phys. Rev. Lett. 94 (2005) 145701.Google Scholar
Bundy, F. P., Bassett, W. A., Weathers, M. S., Hemley, R. J., Mao, H. K., and Goncharov, A. F., The pressure–temperature phase and transformation diagram for carbon; updated through 1994. Carbon 34 (1996) 141–53.Google Scholar
Togaya, M., Pressure dependences of the melting temperature of graphite and the electrical resistivity of liquid carbon. Phys. Rev. Lett. 79 (1997) 2474–7.Google Scholar
Bundy, F.P., Bovenkerk, H.P., Strong, H.M., and Wentorf, J. R. H., Diamond–graphite equilibrium line from growth and graphitization of diamond. J. Chem. Phys. 35 (1961) 383.Google Scholar
Nelson, D. R., Piran, T., and Weinberg, S. (eds.), Statistical Mechanics of Membranes and Surfaces (Singapore: World Scientific, 2004).Google Scholar
Katsnelson, M. I., Graphene: Carbon in Two Dimensions (Cambridge: Cambridge University Press, 2012).Google Scholar
Katsnelson, M. I. and Fasolino, A., Graphene as a prototype crystalline membrane. Acc. Chem. Res. 46 (2013) 97105.Google Scholar
Peierls, R. E., Bemerkungen über Umwandlungstemperaturen. Helv. Phys. Acta 7 (1934) 81–3.Google Scholar
Landau, L. D., Zur Theorie der Phasenumwandlungen II. Phys. Z. Sowjetunion 11 (1937) 2635.Google Scholar
Mermin, N. D., Crystalline order in two dimensions. Phys. Rev. 176 (1968) 250–4.Google Scholar
Lifshitz, I. M., О тепловых свойствах цепных и слоистых структур при низких температурах [On thermal properties of chained and layered structures at low temperatures]. Zh. Eksp. Teor. Fiz. 22 (1952) 475–86.Google Scholar
Fasolino, A., Los, J. H., and Katsnelson, M. I., Intrinsic ripples in graphene. Nature Mater. 6 (2007) 858–61.Google Scholar
Los, J. H., Katsnelson, M. I., Yazyev, O. V., Zakharchenko, K. V., and Fasolino, A., Scaling properties of flexible membranes from atomistic simulations: Application to graphene. Phys. Rev. B 80 (2009) 121405 (R).Google Scholar
Meyer, J. C., Geim, A. K., Katsnelson, M. I. et al., The structure of suspended graphene sheets. Nature 446 (2007) 60–3.Google Scholar
Zan, R., Muryn, C., Banger, U. et al., Scanning tunneling microscopy of suspended graphene. Nanoscale 4 (2012) 3065–8.Google Scholar
Los, J. H., Ghiringhelli, L. M., Meijer, E. J., and Fasolino, A., Improved long-range reactive bond-order potential for carbon. I. Construction. Phys. Rev. B 72 (2005) 214102.Google Scholar
Bassani, F. and Parravicini, G. Pastori, Electronic States and Optical Transitions in Solids (Oxford: Pergamon, 1975).Google Scholar
Rudenko, A. N., Keil, F. J., Katsnelson, M. I., and Lichtenstein, A. I., Exchange interactions and frustrated magnetism in single-side hydrogenated and fluorinated graphene. Phys. Rev. B 88 (2013) 081405(R).CrossRefGoogle Scholar
Wallace, P. R., The band theory of graphite. Phys. Rev. 71 (1947) 622–34.Google Scholar
McClure, J. W., Band structure of graphite and de Haas–van Alphen effect. Phys. Rev. 108 (1957) 612–18.Google Scholar
Slonczewski, J. S. and Weiss, P. R., Band structure of graphite. Phys. Rev. 109 (1958) 272–9.Google Scholar
Tsidilkovsii, I. M., Electron Spectrum of Gapless Semiconductors (Berlin: Springer, 1996).Google Scholar
Katsnelson, M. I., Zitterbewegung, chirality, and minimal conductivity of graphene. Eur. Phys. J. B 51 (2006) 157–60.Google Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V. et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438 (2005) 197200.CrossRefGoogle ScholarPubMed
Zhang, Y., Tan, Y.-W., Stormer, H. L., and Kim, P., Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438 (2005) 201–4.Google Scholar
Kretinin, A., Yu, G. L., Jalil, R. et al., Quantum capacitance measurements of electron–hole asymmetry and next-nearest-neighbor hopping in graphene. Phys. Rev. B 88 (2013) 165427.Google Scholar
Mañes, J. L., Guinea, F., and Vozmediano, M. A. H., Existence and topological stability of Fermi points in multi-layered graphene. Phys. Rev. B 75 (2007) 155424.Google Scholar
Tsidilkovsii, I. M., Band Structure of Semiconductors (Oxford: Pergamon, 1982).Google Scholar
Bjorken, J. D. and Drell, S. D., Relativistic Quantum Mechanics (New York: McGraw-Hill, 1964).Google Scholar
Kane, C. L. and Mele, E. J., Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95 (2005) 226801.Google Scholar
Huertas-Hernando, D., Guinea, F., and Brataas, A., Spin–orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys. Rev. B 74 (2006) 155426.Google Scholar
Katsnelson, M. I., Novoselov, K. S., and Geim, A. K., Chiral tunneling and the Klein paradox in graphene. Nature Phys. 2 (2006) 620–5.Google Scholar
Ando, T., Nakanishi, T., and Saito, R., Berry’s phase and absence of back scattering in carbon nanotubes. J. Phys. Soc. Japan 67 (1998) 2857–62.Google Scholar
Novoselov, K. S., McCann, A., Morozov, S. V. et al., Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nature Phys. 2 (2006) 177–80.Google Scholar
McCann, E. and Fal’ko, V. I., Landau level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96 (2006) 086805.Google Scholar
Dresselhaus, M. S. and Dresselhaus, G., Intercalation compounds of graphite. Adv. Phys. 51 (2002) 1186.Google Scholar
Mayorov, A. S., Elias, D. C., Mucha-Kruczynski, M. et al., Interaction-driven spectrum reconstruction in bilayer graphene. Science 333 (2011) 860–3.Google Scholar
Castro, E. V., Novoselov, K. S., Morozov, S. V. et al., Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99 (2007) 216802.Google Scholar
Oostinga, K. B., Heersche, H. B., Lie, X. et al., Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7 (2008) 151–7.Google Scholar
Boukvalow, D. W. and Katsnelson, M. I., Tuning the gap in bilayer graphene using chemical functionalization: DFT calculations. Phys. Rev. B 78 (2008) 085413.Google Scholar
Low, T., Guinea, F., and Katsnelson, M. I., Gaps tunable by electrostatic gates in strained graphene. Phys. Rev. B 83 (2011) 195436.Google Scholar
Son, Y.-W., Cohen, M. L., and Louie, S., Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97 (2006) 216803.Google Scholar
Volovik, G. E., The Universe in a Helium Droplet (Oxford: Clarendon Press, 2003).Google Scholar
Qi, X.-L. and Zhang, S.-C., Topological insulators and superconductors. Rev. Mod. Phys. 83 (2011) 1057–110.Google Scholar
Zel’dovich, Ya. B. and Popov, V. S., Electronic structure of superheavy atoms. Sov. Phys. Uspekhi 14 (1972) 673–94.Google Scholar
Pereira, V. M., Nilsson, J., and Neto, A. H. Castro, Coulomb impurity problem in graphene. Phys. Rev. Lett. 99 (2007)166802.CrossRefGoogle ScholarPubMed
Shytov, A. V., Katsnelson, M. I., and Levitov, L. S., Vacuum polarization and screening of supercritical impurities in graphene. Phys. Rev. Lett. 99(2007) 236801.Google Scholar
Shytov, A. V., Katsnelson, M. I., and Levitov, L. S., Atomic collapse and quasi-Rydberg states in graphene. Phys. Rev. Lett. 99 (2007) 246802.Google Scholar
Wang, Y., Wong, D., Shytov, A. V. et al., Observing atomic collapse resonances in artificial nuclei on graphene. Science 340 (2013) 734–7.Google Scholar
Nair, R. R., Blake, P., Grigorenko, A. N. et al., Fine structure constant defines visual transparency of graphene. Science 320 (2008) 1308.Google Scholar
Stander, N., Huard, B., and Goldhaber-Gordon, D., Evidence for Klein tunneling in graphene p–n junctions. Phys. Rev. Lett. 102 (2009) 026807Google Scholar
Young, A. F. and Kim, P., Quantum interference and Klein tunneling in graphene heterojunctions. Nature Phys. 5 (2009) 222–6Google Scholar
Martin, J., Akerman, N., Ulbricht, G., Lohmann, T., Smet, J. H., von Klitzing, K., and Yacoby, A., Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nature Phys. 4 (2007) 144–8.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×