Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-23T16:37:30.226Z Has data issue: false hasContentIssue false

7 - Anthropogenic Disturbances Affect the Interactions between Ants and Fleshy Fruits in Two Neotropical Biodiversity Hotspots

from Part II - Ant-Seed Interactions and Man-Induced Disturbance

Published online by Cambridge University Press:  01 September 2017

Paulo S. Oliveira
Affiliation:
Universidade Estadual de Campinas, Brazil
Suzanne Koptur
Affiliation:
Florida International University
Get access
Type
Chapter
Information
Ant-Plant Interactions
Impacts of Humans on Terrestrial Ecosystems
, pp. 133 - 156
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, F. S, Mayhé-Nunes, A. J. & Queiroz, J. M. (2013). The importance of Poneromorph ants for seed dispersal in altered environments. Sociobiology, 60, 229–35.CrossRefGoogle Scholar
Beattie, A. J. (1985). The Evolutionary Ecology of Ant-Plant Mutualisms. Cambridge: Cambridge University Press.Google Scholar
Bieber, A. G. D., Silva, P. S. D., Sendoya, S. F. & Oliveira, P. S. (2014). Assessing the impact of deforestation of the Atlantic rainforest on ant-fruit interactions: a field experiment using synthetic fruits. PLoS ONE, 9, e90369.CrossRefGoogle ScholarPubMed
Böhning-Gaese, K., Gaese, B. H. & Rabemanantsoa, S. B. (1999). Importance of primary and secondary seed dispersal in the Malagasy tree Commiphora guillaumini. Ecology, 80, 821–32.Google Scholar
Bolton, B. (2003). Synopsis and classification of Formicidae. Memoirs of the American Entomological Institute, 71, 1370.Google Scholar
Bottcher, C. & Oliveira, P.S. (2014). Consumption of lipid-rich seed arils improves larval development in a Neotropical primarily carnivorous ant, Odontomachus chelifer (Ponerinae). Journal of Tropical Ecology, 30, 621–4.CrossRefGoogle Scholar
Brandão, C. R. F., Silva, R. R. & Feitosa, R. M. (2011). Cerrado ground-dwelling ants (Hymenoptera: Formicidae) as indicators of edge effects. Zoologia (Curitiba), 28, 379–87.Google Scholar
Byrne, M. M. & Levey, D. J. (1993). Removal of seeds from frugivore defecations by ants in a Costa Rican rain forest. Vegetatio, 107/108, 363–74.Google Scholar
Camargo, P. H. S. A., Martins, M. M., Feitosa, R. M. & Christianini, A. V. (2016). Bird and ant synergy increases the seed dispersal effectiveness of an ornithochoric shrub. Oecologia, 181, 507–18.Google Scholar
Christianini, A. V., Mayhé-Nunes, A. J. & Oliveira, P. S. (2007). The role of ants in the removal of non-myrmecochorous diaspores and seed germination in a Neotropical savanna. Journal of Tropical Ecology, 23, 343–51.CrossRefGoogle Scholar
Christianini, A. V., Mayhé-Nunes, A. J. (2012). Exploitation of fallen diaspores by ants: are there ant-plant partner choices? Biotropica, 44, 360–7.Google Scholar
Christianini, A. V. & Oliveira, P. S. (2009). The relevance of ants as seed rescuers of a primarily bird-dispersed tree in the Neotropical cerrado savanna. Oecologia, 160, 735–45.Google Scholar
Christianini, A. V. (2010). Birds and ants provide complementary seed dispersal in a Neotropical savanna. Journal of Ecology, 98, 573–82.Google Scholar
Christianini, A. V. (2013). Edge effects decrease ant-derived benefits to seedlings in a Neotropical savanna. Arthropod-Plant Interactions, 7, 191–9.CrossRefGoogle Scholar
Christianini, A. V., Oliveira, P. S, Bruna, E. M. & Vasconcelos, H. L. (2014). Fauna in decline: Meek shall inherit. Science, 345, 1129.Google Scholar
Corrêa, M. M., Silva, P. S. D., Wirth, R., Tabarelli, M. & Leal, I. R. (2010). How leaf-cutting ants impact forests: drastic nest effects on light environment and plant assemblages. Oecologia, 162, 103–15.CrossRefGoogle ScholarPubMed
Dalling, J. W. & Wirth, R. (1998). Dispersal of Miconia argentea seeds by the leaf-cutting ant Atta colombica. Journal of Tropical Ecology, 14, 705–10.Google Scholar
Dausmann, K. H., Glos, J., Linsenmair, K. E. & Ganzhorn, J. U. (2008). Improved recruitment of a lemur-dispersed tree in Malagasy dry forests after the demise of vertebrates in forest fragments. Oecologia, 157, 307–16.CrossRefGoogle ScholarPubMed
Davidson, D. W. & Epstein, W. W. (1989). Epiphytic associations with ants. In Lüttge, U., ed., Vascular plants as epiphytes. Berlin: Springer, pp. 200–33.Google Scholar
Dias, B. F. S. (1992). Alternativas de Desenvolvimento dos Cerrados: Manejo e Conservação dos Recursos Naturais Renováveis. Brasília: Funatura.Google Scholar
Dirzo, R., Young, H. S., Galetti, et al. (2014). Defaunation in the Anthropocene. Science, 345, 401–6.Google Scholar
Eisenlohr, P. V. & Oliveira-Filho, A. T. (2015). Revisiting patterns of tree species composition and their driving forces in the Atlantic forests of Southeastern Brazil. Biotropica, 47, 689701.CrossRefGoogle Scholar
El Bizri, H. R., Morcatty, T. Q., Lima, J. J. S. & Valsecchi, J. (2015). The thrill of the chase: uncovering illegal sport hunting in Brazil through YouTube™ posts. Ecology and Society, 20, 30.CrossRefGoogle Scholar
Endo, W., Peres, C. A., Salas, , et al. (2010). Game vertebrate densities in hunted and nonhunted forest sites in Manu National Park, Peru. Biotropica, 42, 251–61.Google Scholar
Estes, J. A., Terborgh, J., Brashares, J. S., et al. (2011). Trophic downgrading on planet Earth. Science, 333, 301–6.CrossRefGoogle ScholarPubMed
Farji-Brener, A. G. & Ghermandi, L. (2004). Seedling recruitment in a semi-arid Patagonian steppe: facilitative effects of refuse dumps of leaf-cutting ants. Journal of Vegetation Science, 15, 823–30.Google Scholar
Ferreira, A. V., Bruna, E. M. & Vasconcelos, H. L. (2011). Seed predators limit plant recruitment in Neotropical savannas. Oikos, 120, 1013–22.Google Scholar
Fleming, T. H., Breitwisch, R. & Whitesides, G. H. (1987). Patterns of tropical vertebrate frugivore diversity. Annual Review of Ecology and Systematics, 18, 91109.Google Scholar
Fourcassié, V. & Oliveira, P. S. (2002). Foraging ecology of the giant Amazonian ant Dinoponera gigantea (Hymenoptera, Formicidae, Ponerinae): activity schedule, diet, and spatial foraging patterns. Journal of Natural History, 36, 2211–27.Google Scholar
Galetti, M., Guevara, R., Côrtes, M. C., et al. (2013). Functional extinction of birds drives rapid evolutionary changes in seed size. Science, 340, 1086–90.Google Scholar
Galetti, M., Laps, R. & Pizo, M. A. (2000). Frugivory by toucans (Ramphastidae) at two altitudes in the Atlantic forest of Brazil. Biotropica, 32, 842–50.Google Scholar
Galetti, M., Pizo, M. A. & Morellato, L. P. C. (2011). Diversity of functional traits of fleshy fruits in a species-rich Atlantic rain forest. Biota Neotropica, 11, 181–93.CrossRefGoogle Scholar
Gallegos, S.C., Hensen, I. & Schleuning, M. (2014). Secondary dispersal by ants promotes forest regeneration after deforestation. Journal of Ecology, 102, 659–66.Google Scholar
Gottsberger, G. & Silberbauer-Gottsberger, I. (1983). Dispersal and distribution in the cerrado vegetation of Brazil. Sonderbänd des Naturwissenschaftlichen Vereins in Hamburg, 7, 315–52.Google Scholar
Guimarães, P. R., & Cogni, R. (2002). Seed cleaning of Cupania vernalis (Sapindaceae) by ants: edge effect in a highland forest in south-east Brazil. Journal of Tropical Ecology 18, 303–7.CrossRefGoogle Scholar
Henao-Gallego, N., Escobar-Ramírez, S., Calle, Z., Montoya-Lerma, J. & Armbrecht, I. (2012). An artificial aril designed to induce seed hauling by ants for ecological rehabilitation purposes. Restoration Ecology, 20, 555–60.Google Scholar
Horvitz, C. C. (1981). Analysis of how ant behaviors affect germination in a tropical myrmecochore Calathea-Microcephala (P and E) Koernicke (Marantaceae) – microsite selection and aril removal by Neotropical ants, Odontomachus, Pachycondyla, and Solenopsis (Formicidae). Oecologia, 51, 4752.Google Scholar
Horvitz, C. C. & Beattie, A. J. (1980). Ant dispersal of Calathea (Marantaceae) seeds by carnivorous ponerines (Formicidae) in a tropical rain forest. American Journal of Botany, 67, 321–6.CrossRefGoogle Scholar
Horvitz, C. C. & Le Corff, J. (1993). Spatial scale and dispersion pattern of ant- and bird-dispersed herbs in two tropical lowland rain forests. Vegetatio, 107, 351–62.Google Scholar
Howe, H. F. & Smallwood, J. (1982). Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13, 201–28.Google Scholar
Hughes, L. & Westoby, M. (1992). Effect of diaspore characteristics on removal of seeds adapted for dispersal by ants. Ecology, 73, 1300–12.CrossRefGoogle Scholar
Hughes, L., Westoby, M. & Jurado, E. (1994). Convergence of elaiosomes and insect prey: evidence from ant foraging behaviour and fatty acid composition. Functional Ecology, 8, 358–65.CrossRefGoogle Scholar
Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. American Naturalist, 104, 501–29.Google Scholar
Janzen, D. H. (1977). Promising directions of study in tropical animal-plant interactions. Annals of the Missouri Botanical Garden, 64, 706–36.CrossRefGoogle Scholar
Jordano, P. (2000). Fruits and frugivory. In Fenner, M., ed., Seeds: The Ecology of Regeneration in Plant Communities. Wallingford: CAB International, pp. 125–65.Google Scholar
Kaspari, M. (1993). Removal of seeds from Neotropical frugivore droppings: ant responses to seed number. Oecologia, 95, 81–8.Google Scholar
Klink, C. A. & Machado, R. B. (2005). Conservation of the Brazilian Cerrado. Conservation Biology, 19, 707–13.Google Scholar
Laman, T. G. (1996). Ficus seed shadows in a Bornean rain forest. Oecologia, 107, 347–55.Google Scholar
Laurance, W. F., Camargo, J. L. C., Luizão, R. C. C. et al. (2010). The fate of Amazonian forest fragments: a 32-year investigation. Biological Conservation, 144, 5667.CrossRefGoogle Scholar
Laurance, W. F., Lovejoy, T. E., Vasconcelos, H. L. et al. (2002). Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology, 16, 605–18.Google Scholar
Leal, I. R., Filgueiras, B. K. C., Gomes, J. P., Iannuzzi, L. & Andersen, A. N. (2012). Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic forest. Biodiversity and Conservation, 21, 1687–701.Google Scholar
Leal, I. R. & Oliveira, P. S. (1998). Interactions between fungus-growing ants (Attini), fruits and seeds in cerrado vegetation in Southeast Brazil. Biotropica, 30, 170–8.Google Scholar
Leal, I. R., Wirth, R. & Tabarelli, M. (2007). Seed dispersal by ants in the semi-arid Caatinga of north-east Brazil. Annals of Botany, 99, 885–94.Google Scholar
Levey, D. J. & Byrne, M. M. (1993). Complex ant–plant interactions: rain forest ants as secondary dispersers and post-dispersal seed predators. Ecology, 74, 1802–12.Google Scholar
Levey, D. J., Moermond, T. C. & Denslow, J. S. (1994). Frugivory: An overview. In McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S., eds., La Selva: Ecology and Natural History of a Neotropical Rain Forest. Chicago: University of Chicago Press, pp. 282–94.Google Scholar
Lima, M. H. C., Oliveira, E. G. & Silveira, F. A. O. (2013). Interactions between ants and non-myrmecochorous fruits in Miconia (Melastomataceae) in a Neotropical savanna. Biotropica, 45, 217–23.Google Scholar
Longino, J. T, Coddington, J. & Colwell, R. K. (2002). The ant fauna of a tropical rain forest: estimating species richness three different ways. Ecology, 83, 689702.Google Scholar
McConkey, K.R., Prasad, S., Corlett, R.T. et al. (2012). Seed dispersal in changing landscapes. Biological Conservation, 146, 113.Google Scholar
Mendonça, A. H., Russo, C., Melo, A. C. G. & Durigan, G. (2015). Edge effects in savanna fragments: a case study in the cerrado. Plant Ecology & Diversity, 8, 493503.Google Scholar
Meyer, S. T., Leal, I. R., Tabarelli, M. & Wirth, R. (2011). Ecosystem engineering by leaf-cutting ants: nests of Atta cephalotes drastically alter forest structure and microclimate. Ecological Entomology, 36, 1424.Google Scholar
Mokany, K., Prasad, S. & Westcott, D. A. (2015). Impacts of climate change and management responses in tropical forests depend on complex frugivore-mediated seed dispersal. Global Ecology and Biogeography, 24, 685–94.Google Scholar
Morellato, L. P. C. (1992). Nutrient cycling in two south-east Brazilian forests. I Litterfall and litter standing crop. Journal of Tropical Ecology, 8, 205–15.Google Scholar
Morellato, L. P. C., Alberton, B., Alvarado, S. T. et al. (2016). Linking plant phenology to conservation biology. Biological Conservation, 195, 6072.Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–8.Google Scholar
Oliveira, P. S., Galetti, M., Pedroni, F. & Morellato, L. P. C. (1995). Seed cleaning by Mycocepurus goeldii ants (Attini) facilitates germination in Hymenaea courbaril (Caesalpiniaceae). Biotropica, 27, 518–22.Google Scholar
Oliveira, P. S. & Marquis, R. J. (eds.) (2002). The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. New York: Columbia University Press.Google Scholar
Oliveira-Filho, A. T. & Ratter, J. A. (2002). Vegetation physiognomies and woody flora of the Cerrado biome. In Oliveira, P. S. & Marquis, R. J., eds., The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna. New York: Columbia University Press, pp. 91120.Google Scholar
Passos, L. & Oliveira, P. S. (2002). Ants affect the distribution and performance of Clusia criuva seedlings, a primarily bird-dispersed rainforest tree. Journal of Ecology, 90, 517–28.Google Scholar
Passos, L. (2003). Interactions between ants, fruits and seeds in a restinga forest in south-eastern Brazil. Journal of Tropical Ecology, 19, 261–70.CrossRefGoogle Scholar
Passos, L. (2004). Interaction between ants and fruits of Guapira opposita (Nyctaginaceae) in a Brazilian sandy plain rainforest: ant effects on seeds and seedlings. Oecologia, 139, 376–82.Google Scholar
Pinto, N. & Keitt, T. H. (2008). Scale-dependent responses to forest cover displayed by frugivore bats. Oikos, 117, 1725–31.Google Scholar
Pizo, M. A. (1997). Seed dispersal and predation in two populations of Cabralea canjerana (Meliaceae) in the Atlantic forest of southeastern Brazil. Journal of Tropical Ecology, 13, 559–78.Google Scholar
Pizo, M. A. (2008). The use of seeds by a twig-dwelling ant on the floor of a tropical rain forest. Biotropica, 40, 119–21.Google Scholar
Pizo, M. A. & Oliveira, P. S. (1998). Interaction between ants and seeds of a nonmyrmecochorous Neotropical tree, Cabralea canjerana (Meliaceae), in the Atlantic forest of southeast Brazil. American Journal of Botany, 85, 669–74.Google Scholar
Pizo, M. A. & Oliveira, P. S. (1999). Removal of seeds from vertebrate faeces by ants: effects of seed species and deposition site. Canadian Journal of Zoology, 77, 15951602.Google Scholar
Pizo, M. A. & Oliveira, P. S. (2000). The use of fruits and seeds by ants in the Atlantic forest of southeast Brazil. Biotropica, 32, 851–61.Google Scholar
Pizo, M. A. & Oliveira, P. S. (2001). Size and lipid content of nonmyrmecochorous diaspores: effects on the interaction with litter-foraging ants in the Atlantic rain forest of Brazil. Plant Ecology, 157, 3752.Google Scholar
Pizo, M. A., Passos, L. & Oliveira, P. S. (2005). Ants as seed dispersers of fleshy diaspores in Brazilian Atlantic forests. In Forget, P.-M., Lambert, J. E., Hulme, P. E. and Vander Wall, S. B., eds., Seed Fate: Predation and Secondary Dispersal. Wallingford: CABI Publishing, pp. 315–29.Google Scholar
Redford, K. H. (1992). The empty forest. BioScience, 42, 412–22.Google Scholar
Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J. & Hirota, M. M. (2009). The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142, 1141–53.Google Scholar
Rico-Gray, V. & Oliveira, P. S. (2007). The Ecology and Evolution of Ant-Plant Interactions. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Roberts, J. T. & Heithaus, R. (1986). Ants rearrange the vertebrate-generated seed shadow of a Neotropical fig tree. Ecology, 67, 1046–51.CrossRefGoogle Scholar
Santos-Heredia, C., Andresen, E. & Stevenson, P. (2011). Secondary seed dispersal by dung beetles in an Amazonian forest fragment of Colombia: influence of dung type and edge effect. Integrative Zoology, 6, 399408.Google Scholar
Schaefer, H. M. & Ruxton, G. D. (2011). Plant-Animal Communication. Oxford: Oxford University Press.Google Scholar
Terborgh, J., Nuñez-Iturri, G., Pitman, N. C. A. et al. (2008). Tree recruitment in an empty forest. Ecology, 89, 1757–68.Google Scholar
Travis, J. M. J., Delgado, M., Bocedi, G. et al. (2013). Dispersal and species response to climate change. Oikos, 122, 1532–40.Google Scholar
van der Pijl, L. (1969). Principles of Seed Dispersal in Higher Plants. Berlin: Springer-Verlag.Google Scholar
Vander Wall, S. B. & Longland, W. S. (2005). Diplochory and the evolution of seed dispersal. In Forget, P.-M., Lambert, J. E., Hulme, P. E. and Vander Wall, S. B., eds., Seed Fate: Predation and Secondary Dispersal. Wallingford: CABI Publishing, pp. 297314.Google Scholar
Vasconcelos, H. L., Pacheco, R., Silva, R. C. et al. (2009). Dynamics of the leaf-litter arthropod fauna following fire in a Neotropical woodland savanna. PLoS ONE, 4, e7762.Google Scholar
Vasconcelos, H. L., Vieira Neto, E. M. H., Mundim, F. M. R. & Bruna, E. M. (2006). Roads alter the colonization dynamics of a keystone herbivore in Neotropical savannas. Biotropica, 38, 661–5.Google Scholar
Wilson, E. O. (1987). The little things that run the world. Conservation Biology, 1, 344–6.Google Scholar
Wirth, R., Herz, H., Ryel, R., Beyschlag, W. & Hölldobler, B. (2003). Herbivory of Leaf-Cutting Ants – A Case Study on Atta Colombica in the Tropical Rainforest of Panama. Berlin: Springer.CrossRefGoogle Scholar
Wright, S. J. (2003). The myriad consequences of hunting for vertebrates and plants in tropical forests. Perspectives in Plant Ecology, Evolution and Systematics, 6, 7386.Google Scholar
Zwiener, V. P., Bihn, J. H. & Marques, M. C. M. (2012). Ant-diaspore interactions during secondary succession in the Atlantic forest of Brazil. Revista de Biologia Tropical, 60, 933–42.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×