Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-25T14:36:41.102Z Has data issue: false hasContentIssue false

6 - Effects of Human Disturbance and Climate Change on Myrmecochory in Brazilian Caatinga

from Part II - Ant-Seed Interactions and Man-Induced Disturbance

Published online by Cambridge University Press:  01 September 2017

Paulo S. Oliveira
Affiliation:
Universidade Estadual de Campinas, Brazil
Suzanne Koptur
Affiliation:
Florida International University
Get access
Type
Chapter
Information
Ant-Plant Interactions
Impacts of Humans on Terrestrial Ecosystems
, pp. 112 - 132
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ab’Sáber, A. N. (1999). Dossiê Nordeste seco. Estudos Avançados, 13, 159.Google Scholar
Ahrends, A., Burgess, N. D., Milledge, S. A. H., Bulling, M. T., Fisher, B., Smart, J. C. R., Clarke, G. P., Mhoro, B. E. and Lewis, S. L. (2010). Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proceedings of the National Academy of Sciences of the United States of America, 107, 1455614561.Google Scholar
Andersen, A. N. (1988). Dispersal distance as a benefit of myrmecochory. Oecologia, 75, 507511.Google Scholar
Andersen, A. N. and Morrison, S. (1998). Myrmecochory in Australia’s seasonal tropics: effects of disturbance on distance dispersal. Australian Journal of Ecology, 23, 483491.Google Scholar
Anderson-Teixeira, K. J., Miller, A. D., Mohan, J. E., Hudiburg, T. W., Duval, B. D. and DeLucia, E. H. (2013). Altered dynamics of forest recovery under a changing climate. Global Change Biology, 19, 20012021.Google Scholar
Andrade-Lima, D. (1989). Plantas da Caatinga. Rio de Janeiro: Academia Brasileira de Ciências.Google Scholar
Aranda-Rickert, A. and Fracchia, S. (2012). Are subordinate ants the best seed dispersers? Linking dominance hierarchies and seed dispersal ability in myrmecochory interaction. Arthropod-Plant Interactions, 6, 297306.Google Scholar
Arcoverde, G. B. (2012). Efeitos de perturbações antrópicas na proteção de sementes e estabelecimento de plântulas em ninhos de Dinoponera quadriceps Santschi (Hymenoptera: Formicidae) no semi-árido nordestino. Master thesis, Universidade Federal de Pernambuco, Recife.Google Scholar
Barroso, G. M., Morim, M. P., Peixoto, A. L. and Ichaso, C. L. F. (1999). Frutos e sementes: morfologia aplicada à sistemática de dicotiledôneas. Viçosa: Universidade Federal de Viçosa.Google Scholar
Beattie, A. J. (1985). The evolutionary ecology of ant-plant mutualisms. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Beattie, A. J. and Culver, D. C. (1981). The guild of myrmecochores in the herbaceous flora of West Virginia forests. Ecology, 62, 107115.Google Scholar
Berg, R. Y. (1975). Myrmecochorous plants in Australia and their dispersal by ants. Australian Journal of Botany, 62, 714722.Google Scholar
Bond, W. and Slingsby, P. (1983). Seed dispersal by ants in Cape shrublands and its evolutionary implications. South Africa Journal of Science, 79, 231233.Google Scholar
Boyd, R. S. (2001). Ecological benefits of myrmecochory for the endangered chaparral shrub Fremontodendron decumbens (Sterculiaceae). American Journal of Botany, 88, 234241.Google Scholar
Christianini, A. V, Mayhé-Nunes, A. J. and Oliveira, P. S. (2007). The role of ants in the removal of non-myrmecochorous diaspores and seed germination in a Neotropical savanna. Journal of Tropical Ecology, 23, 343351.Google Scholar
Davidar, P., Sahoo, S., Mammen, P. C. et al. (2010). Assessing the extent and causes of forest degradation in India: where do we stand? Biological Conservation, 143, 29372944.Google Scholar
Farwig, N. and Berens, D. G. (2012). Imagine a world without seed dispersers: a review of threats, consequences and future directions. Basic and Applied Ecology, 13, 109115.CrossRefGoogle Scholar
García-Valdés, R., Svenning, J. C., Zavala, M. A., Purves, D. W. and Araújo, M. B. (2015). Evaluating the combined effects of climate and land-use change on tree species distributions. Journal of Applied Ecology, 52, 902912.Google Scholar
Gariglio, M. A., Sampaio, E. V. S. B., Cestaro, L. A. and Kageyama, P. Y. (2010). Uso sustentável e conservação dos recursos florestais da caatinga. Brasília: Serviço Florestal Brasileiro.Google Scholar
Garrido, J. L., Rey, P. J., Cerdá, X. and Herrera, C. M. (2002). Geographical variation in diaspore traits of an ant-dispersed plant (Helleborus foetidus): are ant community composition and diaspore traits correlated? Journal of Ecology, 90, 446455.CrossRefGoogle Scholar
Gibb, H., Sanders, N. J., Dunn, R. R. et al. (2015). Climate mediates the effects of disturbance on ant assemblage structure. Proceedings of the Royal Society of London B: Biological Sciences, 282, 20150418.Google Scholar
Gorb, E. and Gorb, S. (2003). Seed dispersal by ants in a deciduous forest ecosystem. Mechanisms, strategies, adaptation. Dordrecht: Kluwer Academic Publishers.Google Scholar
Gove, A. D., Majer, J. D. and Dunn, R. R. (2007). A keystone ant species promotes seed dispersal in a “diffuse” mutualism. Oecologia, 153, 687697.Google Scholar
Griz, L. M. S. and Machado, I. C. (2001). Fruiting phenology and seed dispersal syndromes in Caatinga, a tropical dry Forest in the Northeast of Brazil. Journal of Tropical Ecology, 17, 303321.CrossRefGoogle Scholar
Hanzawa, F. M., Beattie, A. J. and Culver, D. C. (1988). Directed dispersal: demographic analysis of an ant-seed mutualism. American Naturalist, 131, 113.CrossRefGoogle Scholar
Heithaus, E. R. (1981). Seed predation by rodents on three ant-dispersed plants. Ecology, 62, 136145.Google Scholar
Higashi, S., Tsuyuzaki, S. and Ohara, I. F. (1989). Adaptive advantages of ant-dispersed seeds in the myrmecochorous plant Trillium tschonoskii (Liliaceae). Oikos, 54, 389394.CrossRefGoogle Scholar
Hoffmann, B. D. and Andersen, A. N. (2003) Responses of ants to disturbance in Australia with particular reference to functional groups. Austral Ecology, 28, 444464.Google Scholar
Hughes, L. and Westoby, M. (1992). Fate of seeds adapted for dispersal by ants in Australian sclerophyll vegetation. Ecology, 73, 12851299.Google Scholar
Instituto Brasileiro de Geografia e Estatística, 1985 (1985). Atlas Nacional do Brasil: Região Nordeste. Rio de Janeiro: IBGE.Google Scholar
Jentsch, A., Kreyling, J., Boettcher-Treschkow, J. and Beierkuhnlein, C. (2009). Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Global Change Biology, 15, 837849.Google Scholar
Laurance, W. F. and Peres, C.A. (2006). Emerging threats to tropical forests. Chicago: University of Chicago Press.Google Scholar
Leal, I. R., Filgueiras, B. K. C., Gomes, J. P. and Andersen, A. N. (2012). Effects of habitat fragmentation on ant richness and functional composition in Atlantic Forest of northeastern Brazil. Biodiversity and Conservation, 21, 16871701.Google Scholar
Leal, I. R., Leal, L. C. and Andersen, A. N. (2015). The benefits of myrmecochory: a matter of stature. Biotropica, 47, 281285.Google Scholar
Leal, I. R. and Oliveira, P. S. (1998). Interactions between fungus-growing ants (Attini), fruits and seeds in cerrado vegetation in Southeast Brazil. Biotropica, 30, 170178.Google Scholar
Leal, I. R., Silva, J. M. C., Tabarelli, M. and Lacher, T. E. (2005). Changing the course of biodiversity conservation in the Caatinga of Northeastern Brazil. Conservation Biology, 19, 701706.Google Scholar
Leal, I. R., Wirth, R. and Tabarelli, M. (2007). Seed dispersal by ants in the semi-arid Caatinga of North-east Brazil. Annals of Botany, 99, 885894.CrossRefGoogle ScholarPubMed
Leal, L. C., Andersen, A. N. and Leal, I. R. (2014b). Anthropogenic disturbance reduces seed dispersal services for myrmecochorous plants in the Brazilian Caatinga. Oecologia, 174, 173181.Google Scholar
Leal, L. C., Lima-Neto, M. C., Oliveira, A. F. M., Andersen, A. N. and Leal, I. R. (2014a). Myrmecochores can target high-quality disperser ants: variation in elaiosome traits and ant preferences for myrmecochorous Euphorbiaceae in Brazilian Caatinga. Oecologia, 174, 493500.Google Scholar
Lengyel, S., Gove, A. D., Latimer, A. M., Majer, J. D. and Dunn, R. R. (2009). Ants sow the seeds of global diversification in flowering plants. PLoS ONE, 4(5), e5480.Google Scholar
Levey, D. J. and Byrne, M. M. (1993). Complex ant-plant interactions: rain forest ants as secondary dispersers and post-dispersal seed predators. Ecology, 74, 18021812.Google Scholar
Lôbo, D., Tabarelli, M. and Leal, I. R. (2011). Realocation of Croton sonderianus (Euphorbiaceae) seeds by Pheidole fallax Mayr (Formicidae): a case of post-dispersal seed protection by ants. Neotropical Entomology, 40, 440444.Google Scholar
Lorenzi, H. (1998). Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa: Editora Plantarum.Google Scholar
Magrin, G. O., Marengo, J. A., Boulanger, J. P. et al. (2014). Central and South America. In Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, eds. Barros, V. R., Field, C.B., Dokken, D. J., Mastrandrea, M. D., Mach, K. J., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R. and White, L. L.. Cambridge: Cambridge University Press, pp. 14991566.Google Scholar
Manzaneda, A. J. and Rey, P. J. (2008). Geographic variation in seed removal of a myrmecochorous herb: influence of variation in functional guild and species composition of disperser assemblage through spatial and temporal scale. Ecography, 31, 583591.Google Scholar
Manzaneda, A. J. and Rey, P. J. (2012). Geographical and interspecific variation and the nutrient-enrichment hypothesis as an adaptive advantage of myrmecochory. Ecography, 35, 322332.Google Scholar
Marini, L., Bruun, H. H., Heikkinen, R. K., Helm, A., Honnay, O., Krauss, J., Kuhn, I., Lindborg, R., Partel, M. and Bommarco, R. (2012). Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss. Diversity and Distributions, 18, 890908.Google Scholar
Martorell, C. and Peters, E. M. (2005). The measurement of chronic disturbance and its effects on the threatened cactus Mammilaria pectinifera. Biological Conservation, 124, 199207.Google Scholar
Medeiros, S. S., Cavalcante, A. M. B., Perez Marin, A. M., Tinôco, L. B. M., Salcedo, I. H. and Pinto, T. F. (2012). Sinopse do censo demográfico para o semiárido brasileiro. Campina Grande: Instituto Nacional de Seminário.Google Scholar
Ministério do Meio Ambiente (2011). Monitoramento do desmatamento nos biomas brasileiros por satélite: monitoramento do bioma Caatinga de 2008 a 2009. Brasília: Ministério do Meio Ambiente.Google Scholar
Moro, M. F., Lughadha, E. N., Filer, D. L., Araújo, F. S. and Martins, F. R. (2014). A catalogue of the vascular plants of the Caatinga Phytogeographical Domain: A synthesis of floristic and phytosociological surveys. Phytotaxa, 160, 130.Google Scholar
Ness, J. H., Bronstein, J., Andersen, A. N. and Holland, J. N. (2004). Ant body size predicts dispersal distance of ant-adapted seeds: implications of small-ant invasions. Ecology, 85, 12441250.CrossRefGoogle Scholar
Ness, J. H., Morin, F. and Giladi, I. (2009). Uncommon specialization in mutualism between a temperate herbaceous plant guild and the ant: are Aphaenogaster ants keystone mutualistics? Oikos, 118, 17931804.Google Scholar
Oliveira, F. M. P., Ribeiro-Neto, J. D., Andersen, A. N. and Leal, I. R. (2017). Chronic anthropogenic disturbance as a secondary driver of ant community structure: interactions with soil type in Brazilian Caatinga. Environmental Conservation, 44, 115–123.CrossRefGoogle Scholar
Passos, L. and Oliveira, P. S. (2002). Ants affect the distribution and performance of Clusia criuva seedlings, a primarily bird-dispersed rainforest tree. Journal of Ecology, 90, 517528.Google Scholar
Passos, L. and Oliveira, P. S. (2003). Interactions between ants, fruits and seeds in a restinga forest in south-eastern Brazil. Journal of Tropical Ecology, 19, 261270.Google Scholar
Passos, L. and Oliveira, P. S. (2004). Interaction between ants and fruits of Guapira opposite (Nyctaginaceae) in a Brazilian sandy plain rainforest: ant effects on seeds and seedlings. Oecologia, 139, 376382.Google Scholar
Pizo, M. A. and Oliveira, P. S. (2000). The use of fruits and seeds by ants in the Atlantic forest of southeast Brazil. Biotropica, 32, 851861.Google Scholar
Ponce-Reyes, R., Nicholson, E., Baxter, P.W.J., Fuller, R.A. and Possingham, H. (2013). Extinction risk in cloud forest fragments under climate change and habitat loss. Diversity and Distributions, 19, 518529.CrossRefGoogle Scholar
Ribeiro, E. M. S., Arroyo-Rodríguez, V., Santos, B. A., Tabarelli, M. and Leal, I. R. (2015). Chronic anthropogenic disturbance drives the biological impoverishment of the Brazilian Caatinga vegetation. Journal of Applied Ecology, 52, 611620.CrossRefGoogle Scholar
Ribeiro, E. M. S., Arroyo-Rodríguez, V., Santos, B. A., Tabarelli, M. & Leal, I. R. (2016). Phylogenetic impoverishment of plant communities following chronic human disturbances in the Brazilian Caatinga. Ecology, 97, 15831592.Google Scholar
Ribeiro-Neto, J. D., Arnan, X., Tabarelli, M. and Leal, I. R. (2016). Chronic anthropogenic disturbance causes homogenization of plant and ant communities in the Brazilian Caatinga. Biodiversity and Conservation, 25, 943956.CrossRefGoogle Scholar
Sampaio, E. V. S. B. (1995). Overview of the Brazilian Caatinga. In Seasonal dry tropical forests, eds. Bullock, S. H., Mooney, H. A. and Medina, E.. Cambridge: Cambridge University Press, pp. 3563.Google Scholar
Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A. and Appenzeller, C. (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332336.Google Scholar
Schulz, K., Voigt, K., Beusch, C., Almeida-Cortez, J. S., Kowarik, I., Walz, A. and Cierjacks, A. (2016). Grazing deteriorates the soil carbon stocks of Caatinga forest ecosystems in Brazil. Forest Ecology and Management, 367, 6270.Google Scholar
Singh, S. P. (1998). Chronic disturbance, a principal cause of environmental degradation in developing countries. Environmental Conservation, 25, 12.Google Scholar
Smith, B. H., Forman, P. D. and Boyd, A. E. (1989). Spatial patterns of seed dispersal and predation of 2 myrmecochorous forest herbs. Ecology, 70, 16491656.Google Scholar
Stuble, K. L., Patterson, C. M., Rodriguez-Cabal, M. A., Ribbons, R. R., Dunn, R. R. and Sanders, N. J. (2014). Ant-mediated seed dispersal in a warmed world. Peer J., 2, e286.Google Scholar
Sunderland, T., Apgaua, D., Baldauf, C. et al. (2015). Global dry forests: a prologue. International Forestry Review, 17, 19.CrossRefGoogle Scholar
Tabarelli, M., Vicente, A. and Barbosa, D. C. A. (2003) Variation of seed dispersal spectrum of woody plants across a rainfall gradient in northeastern Brazil. Journal of Arid Environments, 53, 197210.Google Scholar
Travis, J. M. J. (2003). Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society of London B: Biological Sciences, 270, 467473.CrossRefGoogle ScholarPubMed
van der Pijl, L. (1982). Principles of dispersal in higher plants. Berlin: Springer Verlag.CrossRefGoogle Scholar
van Roosmalen, M. G. M. (1985). Fruits of the Guianan flora. Utrecht: Institute of Systematic Botany.Google Scholar
WarrenII, R. J., Bahn, V. and Bradford, M. A. (2011). Temperature cues phenological synchrony in ant-mediated seed dispersal. Global Change Biology, 17, 24442454.Google Scholar
Westoby, M., French, K., Hugdes, L., Rice, B. and Rodgerson, L. (1991). Why do more plant species use ants for dispersal on infertile compared with fertile soils? Australian Journal of Ecology, 16, 445455.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×