Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T12:23:12.060Z Has data issue: false hasContentIssue false

5 - Clays by Deposit Type

Published online by Cambridge University Press:  30 August 2017

Markus Gräfe
Affiliation:
Emirates Global Aluminium (EGA)
Craig Klauber
Affiliation:
Curtin University of Technology, Perth
Angus J. McFarlane
Affiliation:
Commonwealth Scientific and Industrial Research Organisation, Canberra
David J. Robinson
Affiliation:
Commonwealth Scientific and Industrial Research Organisation, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abedini, A. & Calagari, A. A. 2013. Geochemical characteristics of bauxites: The Permian Shahindezh horizon, NW Iran. Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, 270 (3), 301324.Google Scholar
Airey, P. & Roman, D. 1981. Uranium series disequilibria in the sedimentary uranium deposit at Yeelirrie, Western Australia. Journal of the Geological Society of Australia, 28 (3–4), 357363.Google Scholar
Alcock, R. A. 1988. The character and occurrence of primary resources available to the nickel industry. In: Tyroler, G. P. & Landolt, C. A. (eds) Extractive Metallurgy of Copper, Nickel and Cobalt. Phoenix, AZ: The Minerals, Metals and Materials Society, 6789.Google Scholar
Alderton, D. H. M., Pearce, J. A. & Potts, P. 1980. Rare earth element mobility during granite alteration: Evidence from southwest England. Earth and Planetary Science Letters, 49 (1), 149165.Google Scholar
Aleva, R. A. 1979. Bauxitic and other duricrusts in Suriname: A review. Geologie Minjbouw, 58, 321336.Google Scholar
Al-Mutairi, A. N., Galmed, M. A. & Aldamegh, K. S. 2015. Petrogenesis of the Az Zabirah south zone bauxite ore deposits, central northern Saudi Arabia. Arabian Journal of Geosciences, 8 (4), 23272339.Google Scholar
Altun, N. E., Hiçyilmaz, C., Hwang, J.-H., Bağci, A. S. & Kök, M. V. 2006. Oil shales in the world and Turkey: Reserves, current situation and future prospects – a review. Oil Shale, 23 (3), 211217.Google Scholar
Anand, R. R. & Paine, M. 2002. Regolith geology of the Yilgarn Craton, Western Australia: Implications for exploration. Australian Journal of Earth Sciences, 49 (1), 3162.CrossRefGoogle Scholar
Arakel, A. V. 1988. Carnotite mineralization in inland drainage areas of Australia. Ore Geology Reviews, 3 (1), 289311.Google Scholar
Arribas, A. J. 1995. Characteristics of high-sulfidation epithermal deposits, and their relation to magmatic fluid. In: Thompson, J. F. (ed.) Magmas, Fluids, and Ore Deposits. Québec: Mineralogical Association of Canada.Google Scholar
Attanasi, E. D. & Meyer, R. F. 2010. Natural bitumen and extra-heavy oil. In: 2010 Survey of Energy Resources. London: World Energy Council.Google Scholar
Bailey, S. 1980. Summary of recommendations of AIPEA Nomenclature Committee. Clay Minerals, 15 (1), 8593.CrossRefGoogle Scholar
Balderson, G., Ross, N. & Goldup, N. 2001. Pilot plant objectives and considerations for evaluating the waste disposal of high slimes heavy mineral sand deposits. In: Ausimm, T. (ed.) International Heavy Minerals Conference. Fremantle, WA: Australasian Institute of Mining and Metallurgy.Google Scholar
Bardossy, G. 1982. Karst Bauxites: Bauxite Deposits on Carbonate Rocks. Amsterdam: Elsevier.Google Scholar
Bardossy, G. & Aleva, G. J. J. 1990. Lateritic Bauxites. Amsterdam: Elsevier.Google Scholar
Barnes, S. J. 2006. Komatiite-hosted nickel sulfide deposits: Geology, geochemistry, and genesis. In: Barnes, S. J. (ed.) Nickel Deposits of the Yilgarn Craton: Geology, Geochemistry, and Geophysics Applied to Exploration. Littleton, CO: Society of Economic Geologists.Google Scholar
Baxter, J. L. 1990. Heavy mineral sand deposits of Western Australia. In: Hughes, F. E. (ed.) Geology of the Mineral Deposits of Australia and Papua New Guinea. Melbourne, VIC: The Australasian Institute of Mining and Metallurgy.Google Scholar
Beane, R. E. & Bodnar, R. J. 1995. Hydrothermal fluids and hydrothermal alteration in porphyry copper deposits. In: Pierce, F. W. & Bohm, J. G. (eds) Porphyry Copper Deposits of the American Cordillera. Tucson, AZ: Arizona Geological Society.Google Scholar
Berger, B. R. A., Robert, A., Wynn, J. C., Seal, R. R. 2008. Preliminary Model of Porphyry Copper Deposits. Version 1.0. Reston, VA: US Geological Survey.Google Scholar
Berger, B. & Henley, R. W. 1989. Advances in the understanding of epithermal gold–silver deposits, with special reference to the western United States. In: Keays, R. R., Ramsay, W. B. H. & Groves, D. I. (eds) Economic Geology Monographs. New Haven, CT: The Economic Geology Publishing Company.Google Scholar
Berkowitz, N. & Speight, J. G. 1975. The oil sands of Alberta. Fuel, 54, 138149.Google Scholar
Bernadelli, A., Melfi, A. J., Oliveira, S. M. B. & Trescases, J. J. 1982. The Carajas nickel deposits. In: Melfi, A. J. & Carvalho, A. (eds) Proceedings of the II International Seminar on Lateritisation Processes, 4–12 July, 1982. Sao Paulo: Balkema, 107118.Google Scholar
Bhargava, S., Awaja, F. & Subasinghe, N. D. 2005. Characterisation of some Australian oil shale using thermal, X-ray and IR techniques. Fuel, 84 (6), 707715.Google Scholar
Boak, J. 2011. Oil shale developments. In: American Association of Petroleum Geologists, Unconventional energy resources: 2011 review. Natural Resources Research, 20 (4), 279328.Google Scholar
Boni, M., Rollinson, G., Mondillo, N., Balassone, G. & Santoro, L. 2013. Quantitative mineralogical characterization of Karst bauxite deposits in the Southern Apennines, Italy. Economic Geology, 108 (4), 813833.Google Scholar
Boulangé, B. 1984. Les formations bauxitiques et latéritiques de Côte d’Ivoire: Les faciès, leur transformation, leur distribution et l’évolution du modelé. PhD, L’Université Paris VIIGoogle Scholar
Bouzari, F. & Clark, A. H. 2006. Prograde evolution and geothermal affinities of a major porphyry copper deposit: The Cerro Colorado hypogene protore, I Región, Northern Chile. Economic Geology, 101 (1), 95134.CrossRefGoogle Scholar
Bowell, R. J., Barnes, A., Grogan, J. & Dey, M. 2009. Geochemical controls on uranium precipitation in calcrete palaeochannel deposits of Namibia. In: International Applied Geochemistry Symposium. Fredericton, NB: The Association of Applied Geochemists, 425.Google Scholar
Bowell, R., Grogan, J., Hutton-Ashkenny, M., et al. 2011. Geometallurgy of uranium deposits. Minerals Engineering, 24 (12), 13051313.Google Scholar
Boyle, R. W. 1987. Gold: History and Genesis of Deposits. New York: Springer.Google Scholar
Brand, N. W. & Butt, C. R. M. 1998. Regolith geology of the Mt. Keith MKD5 nickel sulphide deposit, Western Australia. In: Taylor, G. & Pain, C. (eds) New Approaches to an Old Continent, Proceedings of Regolith ‘98, 2–9 May. Kalgoorlie, WA: CRCLEME, Perth, 335341.Google Scholar
Brand, N. W., Butt, C. R. M. & Hellsten, K. J. 1996. Structural and lithological controls in the formation of the Cawse Nickel laterite deposits, Western Australia: Implications for supergene ore formation and exploration in deeply weathered terrains. In: Grimsey, E. J. & Neuss, I. (eds) Nickel ‘96: Mineral to Market, 27–29 November. Kalgoorlie, WA: Australasian Institute of Mining and Metallurgy, 185190.Google Scholar
Brand, N. W., Butt, C. R. M. & Elias, M. 1998. Nickel laterites: Classification and features. AGSO Journal of Australian Geology and Geophysics, 17 (4), 8188.Google Scholar
Braxton, D. P., Cooke, D. R., Ignacio, A. M., Rye, R. O. & Waters, P. J. 2009. Ultra-deep oxidation and exotic copper formation at the Late Pliocene Boyongan and Bayugo porphyry copper–gold deposits, Surigao, Philippines: Geology, mineralogy, paleoaltimetry, and their implications for geologic, physiographic, and tectonic controls. Economic Geology, 104 (3), 333349.Google Scholar
Brigatti, M. F. 1983. Relationships between composition and structure in Fe-rich smectites. Clay Minerals, 18 (2), 177186.CrossRefGoogle Scholar
Bundy, W. M. 1993. The diverse industrial applications of kaolin. In: Murray, H. H., Bundy, W. M. & Harvey, C. C. (eds) Kaolin Genesis and Utilization. Boulder, CO: The Clay Minerals Society.Google Scholar
Burger, P. A. 1996. Origins and characteristics of lateritic nickel deposits. In: Grimsey, E. J. & Neuss, I. (eds) Nickel ‘96: Mineral to Market, 27–29 November. Kalgoorlie, WA: Australasian Institute of Mining and Metallurgy, 179183.Google Scholar
Burnham, G. F. & Hawke, P. J. 2002. Smart solution to a sticky problem: In-mine clay mapping using high-resolution geophysics. In: Ausimm, T. (ed.) Iron Ore 2002 Conference, 9–11 September. Perth, WA: The Australasian Institute of Mining and Metallurgy, 189194.Google Scholar
Butt, C. R. M. & Cluzel, D. 2013. Nickel laterite ore deposits: Weathered serpentinites. Elements, 9, 123128.Google Scholar
Butt, C. R. M. & Gray, D. J. 2007. Palaeochannel uranium in southern western Australia: Déjà vu all over again. In: Bierlein, F. P. & Knox-Robinson, C. M. (eds) Kalgoorlie ‘07; Old Ground, New Knowledge, 25 September. Kalgoorlie, WA: Geoscience Australia, 115117.Google Scholar
Butt, C. R. M. & Nickel, E. H. 1981. Mineralogy and geochemistry of the weathering of the disseminated nickel sulfide deposit at Mt Keith, Western Australia. Economic Geology, 76 (6), 17361751.Google Scholar
Butt, C. R. M., Horwitz, R. C. & Mann, A. W. 1977. Uranium occurrences in calcrete and associated sediments in Western Australia. Report. Perth, WA: CSIRO Division of Mineralogy.Google Scholar
Butt, C. R. M., Nickel, E. H. & Brand, N. W. 2006. The weathering of nickel sulfide deposits and implications for geochemical exploration. In: Barnes, S. J. (ed.) Nickel Deposits of the Yilgarn Craton: Geology, Geochemistry, and Geophysics Applied to Exploration. Littleton, CO: Society of Economic Geologists.Google Scholar
Caillaud, J., Proust, D., Righi, D. & Martin, F. 2004. Fe-rich clays in a weathering profile developed from serpentinite. Clays and Clay Minerals, 52 (6), 779791.Google Scholar
Camus, F. 2002. The Andean porphyry systems. In: Cooke, D. R. & Pongratz, J. (eds) Giant Ore Deposits: Characteristics, Genesis and Exploration. Hobart, TA: University of Tasmania, Centre for Ore Deposit Research (CODES).Google Scholar
Camuti, K. S. & Riel, R. G. 1996. Mineralogy of the Murrin Murrin nickel laterites. In: Grimsey, E. J. & Neuss, I. (eds) Nickel ‘96: Mineral to Market, 27–29 November. Kalgoorlie, WA: The Australasian Institute of Mining and Metallurgy, 209210.Google Scholar
Carrillo-Rosúa, J., Morales-Ruano, S., Esteban-Arispe, I. & Hach-Alí, P. F. 2009. Significance of phyllosilicate mineralogy and mineral chemistry in an epithermal environment: Insights from the Palai-Islica Au–Cu deposit (Almeria, SE Spain). Clays and Clay Minerals, 57 (1), 124.Google Scholar
Chakhmouradian, A. R. & Wall, F. 2012. Rare earth elements: Minerals, mines, magnets (and more). Elements, 8 (5), 333340.CrossRefGoogle Scholar
Chang, Z., Hedenquist, J. W., White, N. C., et al. 2011. Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion-centered Cu–Au district, Luzon, Philippines. Economic Geology, 106 (8), 13651398.Google Scholar
Chao, E. C. T., Back, J. M., Minkin, J. A., et al. 1997. The Sedimentary Carbonate-Hosted Giant Bayan Obo REE-Fe-Nb Ore Deposit of Inner Mongolia, China: A Cornerstone Example for Giant Polymetallic Ore Deposits of Hydrothermal Origin. Washington, DC: US Geological Survey, United States Government Printing Office.Google Scholar
Cohen, D. & Waite, T. 2004. Interaction of aqueous Au species with goethite, smectite and kaolinite. Geochemistry: Exploration, Environment, Analysis, 4 (3), 279287.Google Scholar
Colson, J., Cojan, I. & Thiry, M. 1998. A hydrogeological model for palygorskite formation in the Danian continental facies of the Provence Basin (France). Clay Minerals, 33 (2), 333347.Google Scholar
Cooke, D. R., Heithersayz, P. S., Wolfel, R. & Calderon, A. L. 1998. Australian and western Pacific porphyry Cu–Au deposits. AGSO Journal of Australian Geology & Geophysics, 17 (4), 97104.Google Scholar
Cooke, D. R., Hollings, P. & Walshe, J. L. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100 (5), 801818.CrossRefGoogle Scholar
CRC. 2013. Viscosity of liquids. In: Haynes, W. M. (ed.) CRC Handbook of Chemistry and Physics, 93rd edition (Internet version 2013). Boca Raton, FL: CRC Press.Google Scholar
Cruz, M. D. R. 2007. Genesis and Evolution of the Kaolin-Group Minerals During the Diagenesis and the Beginning of Metamorphism. Malaga: Departamento de Química Inorgánica, Cristalografía y Mineralogía. Facultad de Ciencias.Google Scholar
Czarnecka, E. & Gillott, J. E. 1980. Formation and characterization of clay complexes with bitumen from Athabasca oil sand. Clays and Clay Minerals, 28 (3), 197203.Google Scholar
Dalvi, A. D., Bacon, W. G. & Osborne, R. C. 2004. The past and the future of nickel laterites. In: PDAC 2004 International Convention, Trade Show and Investors Exchange, March 7–10, 2004. Toronto, ON: Prospectors & Developers Association of Canada, 127.Google Scholar
Das, S. K., Sahoo, R. K., Muralidhar, J. & Nayak, B. K. 1999. Mineralogy and geochemistry of profiles through lateritic nickel deposits at Kansa, Sukinda, Orissa. Journal of the Geological Society of India, 53, 649668.Google Scholar
de Oliveira, S. M. B., Trescases, J. J. & Melfi, A. J. 1992. Lateritic nickel deposits of Brazil. Mineralium Deposita, 27 (2), 137146.Google Scholar
de Oliveira, S. M. B., Partiti, C. S. d. M. & Enzweiler, J. 2001. Ochreous laterite: A nickel ore from Punta Gorda, Cuba. Journal of South American Earth Sciences, 14 (3), 307317.Google Scholar
Department of Mines and Petroleum 2015. Mineral and Petroleum Statistics Digest 2014. Perth, WA: Western Australian Department of Mines and Petroleum. Accessed at: www.dmp.wa.gov.au/Documents/About-Us-Careers/statsdigest2014.pdf (viewed 5 August 2015).Google Scholar
Drew, L. J., Qingrun, M. & Weijun, S. 1990. The Bayan Obo iron–rare-earth–niobium deposits, Inner Mongolia, China. Lithos, 26 (1), 4365.Google Scholar
Dusseault, M. B. & Morgenstern, N. R. 1978. Shear strength of Athabasca oil sands. Canadian Geotechnical Journal, 15 (2), 216238.Google Scholar
Dusseault, M. D. 2001. Comparing Venezuelan and Canadian heavy oil and tar sands. In: International Petroleum Conference 2001, 12–14 June. Calgary, AB: Petroleum Society of Canada, 20.Google Scholar
Dyni, J. R. 2003. Geology and resources of some world oil-shale deposits. Oil Shale, 20 (3), 193252.Google Scholar
Dyni, J. R. 2006. Geology and resources of some world oil-shale deposits. In: U.S. Geological Survey Scientific Investigations. Reston, VA: United States Geological Survey.Google Scholar
Dzemua, G. L. & Gleeson, S. A. 2012. Petrography, mineralogy, and geochemistry of the Nkamouna serpentinite: Implications for the formation of the cobalt–manganese laterite deposit, southeast Cameroon. Economic Geology, 107 (1), 2541.CrossRefGoogle Scholar
Ehrenberg, S., Aagaard, P., Wilson, M., Fraser, A. & Duthie, D. 1993. Depth-dependent transformation of kaolinite to dickite in sandstones of the Norwegian continental shelf. Clay Minerals, 28 (3), 325352.Google Scholar
Elias, M. 2001. Global laterite resources. Australian Journal of Mining, September/October, 6465.Google Scholar
Elias, M. 2002. Nickel laterite deposits: Geological overview, resources and exploitation. In: Cooke, D. R. & Pongratz, J. (eds) Giant Ore Deposits: Characteristics, Genesis and Exploitation. Hobart, TA: CODES.Google Scholar
Elias, M. 2006. Lateritic nickel mineralization of the Yilgarn Craton. In: Barnes, S. J. (ed.) Nickel Deposits of the Yilgarn Craton: Geology, Geochemistry, and Geophysics Applied to Exploration. Boulder, CO: Society of Economic Geologists.Google Scholar
Elias, M., Donaldson, M. J. & Giorgetta, N. 1981. Geology, mineralogy, and chemistry of lateritic nickel–cobalt deposits near Kalgoorlie, Western Australia. Economic Geology, 76 (6), 17751783.Google Scholar
Eliopoulos, D. G. & Economou-Eliopoulos, M. 2000. Geochemical and mineralogical characteristics of Fe–Ni- and bauxitic-laterite deposits of Greece. Ore Geology Reviews, 16 (1), 4158.Google Scholar
El-Sherbini, M. & Issa, G. I. 1989. Composition and origin of some calcrete deposits in south Western Desert of Egypt. Journal of African Earth Sciences (and the Middle East), 9 (3), 461466.Google Scholar
Esson, J. 1983. Geochemistry of a nickeliferous laterite profile, Liberdade, Brazil. In: Wilson, R. C. L. (ed.) Residual Deposits: Surface Related Weathering Processes and Materials. Oxford: Blackwell Scientific Publications.Google Scholar
Force, E. R. 1991. Geology of Titanium-Mineral Deposits. Boulder, CO: Geological Society of America.Google Scholar
Foster, L. & Eggleton, R. A. 2002. The Marlborough nickel laterite deposits. In: Roach, I. C. (ed.) Regolith Landscapes in Eastern Australia. Perth, WA: Cooperative Research Center for Landscape Evolution and Mineral Exploration.Google Scholar
Fournier, R. O. 1965. Montmorillonite pseudomorphic after plagioclase in a porphyry copper deposit. American Mineralogist, 50 (5–6), 771777.Google Scholar
Franchini, M., Impiccini, A., Meinert, L., Grathoff, G. & Schalamuk, I. B. A. 2007. Clay mineralogy and zonation in the Campana Mahuida porphyry Cu deposit, Neuquén, Argentina: Implications for porphyry Cu exploration. Economic Geology, 102 (1), 2754.Google Scholar
Freyssinet, P., Butt, C. R. M., Morris, R. C. & Piantone, P. 2005. Ore-forming processes related to lateritic weathering. Economic Geology, 100th Anniversary (4), 681722.Google Scholar
Fu, X., Wang, J., Tan, F., et al. 2012. Geochemistry of terrestrial oil shale from the Lunpola area, northern Tibet, China. International Journal of Coal Geology, 102 (1), 111.Google Scholar
Garza, R. A. P., Titley, S. R. & Pimentel, F. 2001. Geology of the Escondida porphyry copper deposit, Antofagasta region, Chile. Economic Geology, 96 (2), 307324.Google Scholar
Gaudin, A., Petit, S., Rose, J., et al. 2004a. The accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia): II. Spectroscopic (IR and EXAFS) approaches. Clay Minerals, 39 (4), 453467.CrossRefGoogle Scholar
Gaudin, A., Grauby, O., Noack, Y., Decarreau, A. & Petit, S. 2004b. Accurate crystal chemistry of ferric smectites from the lateritic nickel ore of Murrin Murrin (Western Australia): I. XRD and multi-scale chemical approaches. Clay Minerals, 39 (3), 310315.Google Scholar
Gaudin, A., Deacrreau, A., Noack, Y. & Grauby, O. 2005. Clay mineralogy of the nickel laterite ore developed from serpentinised peridotites at Murrin Murrin, Western Australia. Australian Journal of Earth Sciences, 52 (2), 231241.Google Scholar
George, R. L. 1998. Mining for oil. Scientific American, 278 (3), 8485.Google Scholar
Gleeson, S. A., Butt, C. R. M. & Elias, M. 2003. Nickel laterites: A review. SEG Newsletter.Google Scholar
Gleeson, S. A., Herrington, R. J., Durango, J., Velásquez, C. A. & Koll, G. 2004. The mineralogy and geochemistry of the Cerro Matoso S. A. Ni laterite deposit, Montelíbano, Colombia. Economic Geology, 99, 11971213.Google Scholar
Glover, A. S., Rogers, W. Z. & Barton, J. E. 2012. Granitic pegmatites: Storehouses of industrial minerals. Elements, 8, 269273.Google Scholar
Golightly, J. P. 1979. Nickeliferous laterites: A general description. In: Evans, D. J. I., Shoemaker, R. S. & Veltman, H. (eds) International Laterite Symposium, 19–21 February. New Orleans, LA: Society of Mining Engineers, 323.Google Scholar
Golightly, J. P. 1981. Nickeliferous laterite deposits. Economic Geology, 75th Anniversary (3), 710735.Google Scholar
Grguric, B. A. 2003. Minerals of the MKD5 nickel deposit, Mount Keith, Western Australia. Australian Journal of Mineralogy, 9 (2), 5571.Google Scholar
Gu, J., Huang, Z., Fan, H., et al. 2013. Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan–Zheng’an–Daozhen area, Northern Guizhou Province, China. Journal of Geochemical Exploration, 130, 4459.Google Scholar
Güven, N. 1988. Smectites. In: Bailey, S. W. (ed.) Reviews in Mineralogy.Washington, DC: Mineralogical Society of America.Google Scholar
Haest, M., Cudahy, T., Laukamp, C. & Gregory, S. 2012. Quantitative mineralogy from infrared spectroscopic data: II. Three-dimensional mineralogical characterization of the Rocklea Channel Iron Deposit, Western Australia. Economic Geology, 107 (2), 229249.Google Scholar
Hanilçi, N. 2013. Geological and geochemical evolution of the Bolkardaği bauxite deposits, Karaman, Turkey: Transformation from shale to bauxite. Journal of Geochemical Exploration, 133, 118137.Google Scholar
Heald, P., Foley, N. K. & Hayba, D. O. 1987. Comparative anatomy of volcanic-hosted epithermal deposits: Acid–sulfate and adularia–sericite types. Economic Geology, 82 (1), 126.Google Scholar
Hedenquist, J. W. 1986. Mineralization associated with volcanic-related hydrothermal systems in the Circum-Pacific basin. In: Horn, M. K. (ed.) Transactions of the Fourth Circum-Pacific Energy and Mineral Resources Conference, 17–22 August. Singapore: American Association of Petroleum Geologists, 513524.Google Scholar
Hedenquist, J. W., Matsuhisa, Y., Izawa, E., et al. 1994. Geology, geochemistry, and origin of high sulfidation Cu–Au mineralization in the Nansatsu district, Japan. Economic Geology, 89 (1), 130.Google Scholar
Hedenquist, J. W., Arribas, A. & Reynolds, T. J. 1998. Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu–Au deposits, Philippines. Economic Geology, 93 (4), 373404.Google Scholar
Hein, F. J. 2006. Heavy oil and oil (tar) sands in North America: An overview and summary of contributions. Natural Resources Research, 15 (2), 6784.Google Scholar
Hein, F. J. 2009. Oil sands. In: American Association of Petroleum Geologists, Unconventional energy resources: 2007–2008 review. Natural Resources Research, 18 (2), 6583.Google Scholar
Hein, F. J. & Cotterill, D. K. 2006. The Athabasca oil sands: A regional geological perspective, Fort McMurray area, Alberta, Canada. Natural Resources Research, 15 (2), 85102.Google Scholar
Heinstand, R. N. 1981. Retorted oil shale disposal research. In: Stauffer, H. (ed.) Oil Shale, Tar Sands, and Related Materials.Washington, DC: American Chemical Society.Google Scholar
Higley, D. K. & Hein, F. J. 2011. Oil sands. In: American Association of Petroleum Geologists, Unconventional energy resources: 2011 review. Natural Resources Research, 20 (4), 279328.Google Scholar
Hobday, D. & Galloway, W. 1999. Groundwater processes and sedimentary uranium deposits. Hydrogeology Journal, 7 (1), 127138.CrossRefGoogle Scholar
Hou, B. & Warland, I. 2005. Heavy mineral sands potential of the Eucla Basin in South Australia: A world-class palaeo-beach placer province. Primary Industries and Resources, South Australia, MESA Journal, 37 (1), 412.Google Scholar
Hough, R. M., Noble, R. R. P., Hitchen, G. J., et al. 2008. Naturally occurring gold nanoparticles and nanoplates. Geology, 36 (7), 571574.Google Scholar
Hover, V. C., Walter, L. M., Peacor, D. R. & Martini, A. M. 1999. Mg-smectite authigenesis in a marine evaporative environment, Salina Ometepec, Baja California. Clays and Clay Minerals, 47 (3), 252268.Google Scholar
Hutton, A. C. 1987. Petrographic classification of oil shales. International Journal of Coal Geology, 8 (3), 203231.Google Scholar
International Atomic Energy Agency 2009. World distribution of uranium deposits (UDEPO) with uranium deposit classification. In: IAEA-TECDOC-1629, Division of Nuclear Fuel Cycle.Vienna, AT: International Atomic Energy Agency.Google Scholar
Jepson, W. B. 1984. Kaolins: Their properties and uses. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 311 (1517), 411432.Google Scholar
John, D. A., Ayuso, R. A., Barton, M. D., et al. 2010. Porphyry copper deposit model. In: Mineral Deposit Models for Resource Assessment. Reston, VA: US Geological Survey.Google Scholar
Johnston, N. 1955. Role of clay in oil reservoirs. In: Pask, J. A. & Turner, M. D. (eds) Clays and Clay Technology, Proceedings of 1st National Conference. San Francisco, CA: Department of Natural Resource, Division of Mines, 306313.Google Scholar
Kholodov, V. N., Nedumov, R. I. & Golubovskaya, E. V. 2012. Facies types of sedimentary iron ore deposits and their geochemical features: Communication 1. Facies groups of sedimentary ores, their lithology, and genesis. Lithology and Mineral Resources, 47 (6), 447472.Google Scholar
Knaus, E., Killen, J., Biglarbigi, K. & Crawford, P. 2010. An overview of oil shale resources. In: Ogunsola, O. (ed.) Oil Shale: A Solution to the Liquid Fuel Dilemma.Washington, DC: American Chemical Society.Google Scholar
Kneeshaw, M. 2003. Appendix 1: Marillana formation, channel deposits in the Marillana Creek palaeochannel of the central Hamersley Ranges, Western Australia. Australian Journal of Earth Sciences, 50 (5), 669690.Google Scholar
Kravchenko, S. & Pokrovsky, B. 1995. The Tomtor alkaline ultrabasic massif and related REE-Nb deposits, northern Siberia. Economic Geology, 90 (3), 676689.Google Scholar
Kühnel, R. A., Roorda, H. J. & Steensma, J. J. S. 1978. Distribution and partitioning of elements in nickeliferous laterites. Bulletin du BRGM, II (3), 191206.Google Scholar
Kynicky, J., Smith, M. P. & Xu, C. 2012. Diversity of rare earth deposits: The key example of China. Elements, 8 (5), 361367.Google Scholar
Laskou, M. & Economou-Eliopoulos, M. 2013. Bio-mineralization and potential biogeochemical processes in bauxite deposits: Genetic and ore quality significance. Mineralogy and Petrology, 107 (4), 471486.Google Scholar
Li, Z., Din, J., Xu, J., et al. 2013. Discovery of the REE minerals in the Wulong–Nanchuan bauxite deposits, Chongqing, China: Insights on conditions of formation and processes. Journal of Geochemical Exploration, 133, 88102.Google Scholar
Liu, J., Xu, Z. & Masliyah, J. 2004. Role of fine clays in bitumen extraction from oil sands. American Institute of Chemical Engineers Journal, 50 (8), 19171927.Google Scholar
Llorca, S. M. 1993. Metallogeny of supergene cobalt mineralization, New Caledonia. Australian Journal of Earth Sciences, 40 (4), 377385.Google Scholar
Lottermoser, B. G. 1990. Rare-earth element mineralisation within the Mt. Weld carbonatite laterite, Western Australia. Lithos, 24 (2), 151167.CrossRefGoogle Scholar
Lower, C., Ehrig, K., Macmillan, E., et al. 2011. Quantitative clay mineralogy for a calcrete-hosted uranium deposit: Innovative application of existing technology on an unprecedented scale. In: Ausimm, T. (ed.) The First AusIMM International Geometallurgy Conference, 5–7 September, 2011. Brisbane, QLD: The Australasian Institute of Mining and Metallurgy, 173180.Google Scholar
Lucas, Y. 1989. Systèms pédologiques en Amazonie brésilienne: Equilibres, Déséquilibres et Transformations. PhD, University of Poitiers.Google Scholar
Mars, J. C. & Rowan, L. C. 2006. Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere, 2 (3), 161186.Google Scholar
Marsh, E. & Anderson, E. 2011. Ni-Co Laterites: A Deposit Model. Reston, VA: US Geological Survey.Google Scholar
Martinez, A. R. 1987. The Orinoco oil belt, Venezuela. Journal of Petroleum Geology, 10 (2), 125134.Google Scholar
Masters, B. K. 1990. Heavy minerals deposits in the Yoganup formation. In: Hughes, F. E. (ed.) Geology of the Mineral Deposits of Australia and Papua New Guinea. Melbourne, VIC: The Australasian Institute of Mining and Metallurgy.Google Scholar
McClenaghan, M. B., Layton-Matthews, D. & Matile, G. 2011. Till geochemical signatures of magmatic Ni–Cu deposits, Thompson nickel belt, Manitoba, Canada. Geochemistry: Exploration, Environment and Analysis, 11 (2), 145159.Google Scholar
Mercado, J. M. O. 1979. Geochemistry of the laterites in Nonoc Islands, Surigao Province, Philippines. In: Proceedings of the International Seminar on Lateritization Processes, 11–14 December. Trivandrum: Oxford and IBH Publishing Co., 4557.Google Scholar
Mercer, K. G. & Pein, H. R. 2001. Geological and geotechnical characteristics of the corridor sands deposits in Mozambique. In: Ausimm, T. (ed.) International Heavy Minerals Conference, 18–19 June, 2001. Fremantle, WA: The Australasian Institute of Mining and Metallurgy, 916.Google Scholar
Misra, A., Pande, D., Kumar, K. R., et al. 2011. Calcrete-hosted surficial uranium occurrence in playa-lake environment at Lachhri, Nagaur District, Rajasthan, India. Current Science, 101 (1), 8488.Google Scholar
Mitchell, A. H. G. & Leach, T. M. 1991. Epithermal Gold in the Philippines: Island Arc Metallogenesis, Geothermal Systems and Geology. London: Academic Press.Google Scholar
Moazallahi, M. & Farpoor, M. H. 2012. Soil genesis and clay mineralogy along the xeric–aridic climotoposequence, south central Iran. Journal of Agricultural Science and Technology, 14 (3), 683696.Google Scholar
Moldoveanu, G. A. & Papangelakis, V. G. 2012. Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy, 117, 7178.Google Scholar
Mongelli, G., Buccione, R. & Sinisi, R. 2015. Genesis of autochthonous and allochthonous Apulian karst bauxites (Southern Italy): Climate constraints. Sedimentary Geology, 325, 168176.Google Scholar
Morris, R. C. 1985. Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes: A conceptual model. In: Wolf, K. H. (ed.) Handbook of Strata-Bound and Stratiform Ore Deposits. New York: Elsevier.Google Scholar
Morris, R. C. & Kneeshaw, M. 2011. Genesis modelling for the Hamersley BIF-hosted iron ores of Western Australia: A critical review. Australian Journal of Earth Sciences, 112 (B56–B67), 417451.Google Scholar
Nahon, D. 1991. Introduction to the Petrology of Soils and Chemical Weathering. New York: Wiley & Sons.Google Scholar
Nahon, D., Paquet, H. & Delvigne, J. 1982. Lateritic weathering of ultramafic rocks and the concentration of nickel in the western Ivory Coast. Economic Geology, 77 (5), 11591175.Google Scholar
Newton, M. C. & Romeo, A. J. 2006. Geology of the Old Hickory mineral sand deposit, Dinwiddie and Sussex Counties, Virginia. In: Jeffrey, C. (ed.) Proceedings of the 42nd Forum on the Geology of Industrial Minerals, May 7–13, 2006. Asheville, NC: North Carolina Geological Survey, 464480.Google Scholar
Noble, R., Gray, D. & Reid, N. 2011. Regional exploration for channel and playa uranium deposits in Western Australia using groundwater. Applied Geochemistry, 26 (12), 19561974.Google Scholar
Odom, I. E. 1984. Smectite clay minerals: Properties and uses. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 311 (1517), 391409.Google Scholar
Ogura, Y. 1986. Mineralogical studies on the profiles of nickeliferrous latrite deposits in the southwestern Pacific area. In: Geological Society of India, (ed.) Memoirs of the Geological Survey of India: Laterisation Processes. Calcutta: Geological Society of India.Google Scholar
Ogura, Y., Murata, K. & Iwai, M. 1987. Relation between chemical composition and particle-size distribution of ores in the profile of nickeliferous laterite deposits of the Rio Tube mine, Philippines. Chemical Geology, 60 (1–4), 259271.Google Scholar
Omotoso, O., Mikula, R. J. & Stephens, P. W. 2001. Surface area of interstratified phyllosilicates in Athabasca oil sands from synchrotron XRD. Advances in X-ray Analysis, 45, 391396.Google Scholar
Ots, A. 2007. Estonian oil shale properties and utilization in power plants. Energetika, 53 (2), 818.Google Scholar
Ouangrawa, M., Trescases, J.-J. & Ambosi, J.-P. 1996. Behaviour of iron oxides during the weathering of nickeliferous ultramafic rock from New Caledonia. Comptes Rendus de l’Academie de Sciences de Paris, 323, 243249.Google Scholar
Parry, W., Jasumback, M. & Wilson, P. N. 2002. Clay mineralogy of phyllic and intermediate argillic alteration at Bingham, Utah. Economic Geology, 97 (2), 221239.Google Scholar
Patterson, J. H. 1994. A review of the effects of minerals in processing of Australian oil shales. Fuel, 73 (3), 321327.Google Scholar
Patterson, J. H. & Henstridge, D. A. 1990. Comparison of the mineralogy and geochemistry of the Kerosene Creek Member, Rundle and Stuart oil shale deposits, Queensland, Australia. Chemical Geology, 82, 319339.Google Scholar
Patterson, J. H., Hurst, H. J., Levy, J. H. & Killingley, J. S. 1990. Mineral reactions in the processing of Australian Tertiary oil shales. Fuel, 69 (9), 11191123.Google Scholar
Petránek, J. & Van Houten, F. B. 1997. Phanerozoic ooidal ironstones. Czech Geological Survey Special Papers, 7, 71.Google Scholar
Pollastro, R. M. 1993. Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals, 41 (2), 119133.Google Scholar
Qing, W., Jingru, B., Yan, C., et al. 2007. Research on release of trace elements on retorting from Haudian oil shale. In: 27th Oil Shale Symposium, 15–19 October, 2007. Golden, CO: Colorado Energy Research Institute, 1.Google Scholar
Ramanaidou, E. R. & Wells, M. A. 2014. 13.13 – Sedimentary Hosted Iron Ores. In: Turekian, K. K. (ed.) Treatise on Geochemistry of Mineral Resources, 2nd edition. Oxford: Elsevier.Google Scholar
Ramanaidou, E. R., Morris, R. C. & Horwitz, R. C. 2003. Channel iron deposits of the Hamersley Province, Western Australia. Australian Journal of Earth Sciences, 50 (5), 669690.Google Scholar
Rees, C., Riedell, K. B., Proffett, J. M., Macpherson, J. & Robertson, S. 2015. The Red Chris porphyry copper–gold deposit, Northern British Columbia, Canada: Igneous phases, alteration, and controls of mineralization. Economic Geology, 110 (4), 857888.Google Scholar
Resheidat, M., Al-Shyoukh, A. & Al-Nawasrah, M. K. 2007. On the use of oil shale beyond production of oil and gas. In: 27th Oil Shale Symposium, 15–19 October, 2007. Golden, CO: Colorado Energy Research Institute, 21.Google Scholar
Robb, L. 2005. Introduction to Ore-Forming Processes. Oxford: Blackwell Publishing.Google Scholar
Roy, P. S. 1999. Heavy mineral beach placers in southeastern Australia: Their nature and genesis. Economic Geology, 94 (4), 567588.Google Scholar
Roy, P. S. & Whitehouse, J. 2003. Changing Pliocene sea levels and the formation of heavy minerals beach placers in the Murray Basin, southeastern Australia. Economic Geology, 98 (5), 975983.Google Scholar
Rutherford, J., Munday, T., Meyers, J. & Cooper, M. 2001. Relationships between regolith materials, petrophysical properties, hydrogeology and mineralisation at the Cawse Ni laterite deposits, Western Australia: Implications for exploring with airborne EM. In: 15th Geophysical Conference and Exhibition: Geophysical Odyssey. Brisbane, QLD: Australian Society of Exploration Geophysicists, 13.Google Scholar
Sahu, K. C. & Venkateswaran, D. 1989. Characterization of nickeliferrous laterite of Sukinda in Cuttack district, Orissa. Journal of the Geological Society of India, 33 (2), 116131.Google Scholar
Saied, H., Khademi, H. & Cano, A. F. 2010. Palygorskite formation under the influence of saline and alkaline groundwater in Central Iranian soils. Soil Science, 175 (6), 303312.Google Scholar
Schellmann, W. 1983. Geochemical principles of lateritic nickel ore formation. In: Melfi, A. J. & Carvalho, A. (eds) Proceedings of the 2nd International Seminar of Laterisation Processes. Sao Paulo: Instito Agronomico Geofisico, University of Sao Paulo, Brazil.Google Scholar
Schulz, K. J., Chandler, V. W., Nicholson, S. W., et al. 2010. Magmatic Sulfide-Rich Nickel–Copper Deposits Related to Picrite and (or) Tholeiitic Basalt Dike-Sill Complexes: A Preliminary Report. Reston, VA: US Geological Survey.Google Scholar
Scott, J. D. & Ozum, B. 2010. Oil sands tailings: What needs to be done. Mining.com.[Online] Available: www.mining.com/oil-sands-tailings-what-needs-to-be-doneGoogle Scholar
Scott, J. D., Dusseault, M. B. & Carrier, W. D. I. 1985. Behaviour of the clay/bitumen/water sludge system from oil sands extraction plants. Applied Clay Science, 1 (1–2), 207218.Google Scholar
Seedorff, E., Barton, M. D., Stavast, W. J. A. & Maher, D. J. 2008. Root zones of porphyry systems: Extending the porphyry model to depth. Economic Geology, 103 (5), 939956.Google Scholar
Seeley, J. B. & Senden, T. J. 1994. Alluvial gold in Kalimantan, Indonesia: A colloidal origin? Journal of Geochemical Exploration, 50 (1), 457478.Google Scholar
Shmakin, B. 2008. Diversity of accessory minerals in rare-metal–rare earth pegmatites. Geology of Ore Deposits, 50 (7), 518523.Google Scholar
Sillitoe, R. H. 1973. The tops and bottoms of porphyry copper deposits. Economic Geology, 68 (6), 799815.Google Scholar
Sillitoe, R. H. 1989. Gold deposits in the western Pacific island arcs: The magmatic connection. In: Keays, R. R., Ramsay, W. B. H. & Groves, D. I. (eds) Economic Geology Monographs. New Haven, CT: The Economic Geology Publishing Company.Google Scholar
Sillitoe, R. H. 2000. Gold-rich porphyry deposits: Descriptive and genetic models and their role in exploration and discovery. In: Hagemann, S. G. & Brown, P. E. (eds) Gold in 2000: Reviews in Economic Geology. Littleton, CO: Society of Economic Geologists, Inc.Google Scholar
Sillitoe, R. H. 2010. Porphyry copper systems. Economic Geology, 105 (1), 341.Google Scholar
Simmons, S. F., White, N. C. & John, D. A. 2005. Geological characteristics of epithermal precious and base metal deposits. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P. (eds) Economic Geology One Hundredth Anniversary Volume: 1905–2005. Littleton, CO: Society of Economic Geologists.Google Scholar
Sinclair, W. D. 2007. Porphyry deposits. In: Goodfellow, W. D. (ed.) Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Vancouver, BC: Geological Association of Canada, Mineral Deposits Division.Google Scholar
Skirrow, R. G., Jaireth, S., Huston, D. L., et al. 2009. Uranium Mineral Systems: Processes, Exploration Criteria and a New Deposit Framework. Canberra, ACT: Geoscience Australia.Google Scholar
Som, S. K. & Joshi, R. 2002. Chemical weathering of serpentinite and Ni enrichment in Fe oxide at Sukinda area, Jajpur district, Orissa, India. Economic Geology, 97 (1), 165172.Google Scholar
Sonibare, O. O., Jacob, D. E., Ward, C. R. & Foley, S. F. 2011. Mineral and trace element composition of the Lokpanta oil shales in the Lower Benue Trough, Nigeria. Fuel, 90 (9), 28432849.Google Scholar
Sonntag, I., Laukamp, C. & Hagemann, S. G. 2012. Low potassium hydrothermal alteration in low sulfidation epithermal systems as detected by IRS and XRD: An example from the Co–O mine, Eastern Mindanao, Philippines. Ore Geology Reviews, 45 (1), 4760.Google Scholar
Stanaway, K. J. 1992. Heavy-mineral placers. Mining Engineering, 44 (4), 352358.Google Scholar
Suárez, S., Nieto, F., Velasco, F. & Martín, F. J. 2011. Serpentine and chlorite as effective Ni–Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain): TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23 (2), 179196.Google Scholar
Tardy, Y. 1997. Petrology of Laterites and Tropical Soils. Rotterdam: Balkema.Google Scholar
Tardy, Y. & Nahon, D. 1985. Geochemistry of laterites, stability of Al-goethite, Al-hematite and Fe-kaolinite in bauxites and ferricretes: An approach to the mechanism of concretion formation. American Journal of Science, 285 (10), 865903.Google Scholar
Tardy, Y. & Roquin, C. 1998. Dérive des continets, latérites et paléoclimates tropicaux. Bulletin de l’Association de Géographes Français 77 (4), 373383.Google Scholar
Taufen, P. M. & Brenner, T. L. 1987. Geochemical orientation survey of the Fortaleza de Minas O’Toole Ni deposit southwestern Minas Gerais, Brazil. Geochimica Brasiliensis, 1 (1), 118.Google Scholar
Taylor, B., Mazzoni, P., Brown, F., Kubank, C. & Rademeyer, L. 2003. Process flow sheet development for the Corridor Sands project. In: Heavy Minerals Conference: Current Challenges in Heavy Mineral Exploitation 6–8th October 2003. Cape Town: Southern African Institute of Mining and Metallurgy, 8.Google Scholar
Taylor, G. & Eggleton, R. A. 2015. Bauxites of the NSW Southern Highlands. Australian Journal of Earth Sciences, 62 (3), 341363.Google Scholar
Thompson, J. F. H. & Thompson, A. J. B. (eds) 1996. Atlas of Alteration: A Field and Petrographic Guide to Hydrothermal Alteration Minerals. Vancouver, BC: Geological Association of Canada.Google Scholar
Thorne, R., Herrington, R. & Roberts, S. 2009. Composition and origin of the Çaldağ oxide nickel laterite, W. Turkey. Mineralium Deposita, 44 (5), 581595.Google Scholar
Thorne, R., Roberts, S. & Herrington, R. 2012a. The formation and evolution of the Bitincke nickel laterite deposit, Albania. Mineralium Deposita, 47 (8), 933947.Google Scholar
Thorne, R. L., Roberts, S. & Herrington, R. 2012b. Climate change and the formation of nickel laterite deposits. Geology, 40, 331334.Google Scholar
Topf, A. 2010. In situ: Oil sands mining goes underground. Mining.com. [Online]. Available: www.mining.com/insitu-oil-sands-mining-goes-underground.Google Scholar
Tosdal, R. M., Dilles, J. H. & Cooke, D. R. 2009. From source to sinks in auriferous magmatic-hydrothermal porphyry and epithermal deposits. Elements, 5 (5), 289295.Google Scholar
Towner, R. R., Ewers, G. R. & Cassidy, K. F. 1996. Rare earths and mineral sands in Australia. In: Commercial-in-Confidence Report. Canberra, ACT: Australian Geological Survey Organisation and Bureau of Resources Sciences.Google Scholar
Traversa, G., Gomes, C. B., Brotzu, P., et al. 2001. Petrography and mineral chemistry of carbonatites and mica-rich rocks from the Araxá complex (Alto Paranaíba Province, Brazil). Anais da Academia Brasileira de Ciências, 73 (1), 7198.Google Scholar
Trescases, J.-J., Melfi, A. J. & de Oliverira, S. M. B. 1979. Nickeliferous laterites of Brazil. In: Venkatesh, S. V. & Raman, P. K. (eds) Proceedings of the International Seminar on Lateritization Processes, 11–14 December. Trivandrum: Oxford and IBH Publishing Co., 170184.Google Scholar
US Geological Survey 2015. Mineral Commodity Summaries 2015. Reston, VA: US Geological Survey.Google Scholar
Valeton, I. 1972. Bauxites. Amsterdam: Elsevier.Google Scholar
Valeton, I. 1983. Paleoenvironment of lateritic bauxites with vertical and lateral differentiation. In: Wilson, R. C. L. (ed.) Residual Deposits: Surface Related Weathering Processes and Materials. Oxford: Blackwell Scientific Publications.Google Scholar
Van Wormhoudt, A. 1993. Soil Mineralogy of an Upper Coastal Plain Landscape in Virginia. Blacksburg, VA: Virginia Polytechnic Institute and State University.Google Scholar
Varajao, C. A. C., Boulangé, B. & Carvalho, A. 1989. The bauxites of Quadrilaterro Ferrifero, Minas Gerais, Brazil. In: L’académie Yugoslave Des Sciences Et Des Arts (ed.) Proceedings of the 6th International Congress of the International Committee for the Study of Bauxite, Alumina and Aluminium (ICSOBA), 11–20 May. Pocos de Caldas: Travaux ICSOBA, 127136.Google Scholar
Vasconcelos, P. M., Renne, P. R., Brimhall, G. H. & Becker, T. A. 1994. Direct dating of weathering phenomena by 40Ar/39Ar and 40K/40Ar analysis of supergene K–Mn oxides. Geochimica et Cosmochimica Acta, 58 (6), 16351665.Google Scholar
Velde, B. & Vasseur, G. 1992. Estimation of the diagenetic smectite to illite transformation in time–temperature space. American Mineralogist, 77 (9–10), 967976.Google Scholar
Verrecchia, E. & Le Coustumer, M. 1996. Occurrence and genesis of palygorskite and associated clay minerals in a Pleistocene calcrete complex, Sde Boqer, Negev Desert, Israel. Clay Minerals, 31 (2), 183202.Google Scholar
Wang, Y., Nahon, D. & Merino, E. 1994. Dynamic model of the genesis of calcretes replacing silicate rocks in semi-arid regions. Geochimica et Cosmochimica Acta, 58 (23), 51315145.Google Scholar
Ware, C. I., Whitmore, G. P. & Uken, R. 2001. Evolution of the northern KwaZulu-Natal coastal dune Cordon, South Africa: evidence from clays. In: Ausimm, T. (ed.) International Heavy Minerals Conference, 18–19 June. Fremantle, WA: The Australasian Institute of Mining and Metallurgy, 37.Google Scholar
Wells, M. A. & Butt, C. R. M. 2000. Geology, Geochemistry and Mineralogy of the Murrin Murrin Nickel Laterite Deposit. Perth, WA: CSIRO.Google Scholar
Wigand, M., Chipera, S., Woldegabriel, G., et al. 2007. Unique mineralogy of oil shale from the Piceance Basin, Colorado. In: 27th Oil Shale Symposium, 15–19 October. Golden, CO: Colorado Energy Research Institute, 1.Google Scholar
Williams, V. (ed.) 1990. WIM 150 Detrital Heavy Mineral Deposit. Melbourne, VIC: The Australian Institute of Mining and Metallurgy.Google Scholar
Williams-Jones, A. E. & Heinrich, C. A. 2005. 100th anniversary special paper: Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology, 100 (7), 12871312.Google Scholar
Williams-Jones, A. E., Bowell, R. J. & Migdisov, A. A. 2009. Gold in solution. Elements, 5 (5), 281287.Google Scholar
Williams-Jones, A. E., Migdisov, A. A. & Samson, I. M. 2012. Hydrothermal mobilisation of the rare earth elements: A tale of ‘Ceria’ and ‘Yttria’. Elements, 8 (5), 355360.Google Scholar
Wilson, P. N. & Parry, W. T. 1995. Characterization and dating of argillic alteration in the Mercur Gold District, Utah. Economic Geology, 90 (5), 11971216.Google Scholar
Yang, K., Cardy, M., Mason, P. & Hacket, A. 2010. HyLogging for Characterisation of Clay Minerals and Carbonates in Drill-Hole Samples of the Yeelirrie Uranium Deposit. Perth, WA: CSIRO.Google Scholar
Yoffe, O., Nathan, Y., Wolfarth, A., Cohen, S. & Shoval, S. 2002. The chemistry and mineralogy of the Negev oil shale ashes. Fuel, 81 (9), 11011117.Google Scholar
Yongue-Fouateu, R., Ghogomu, R. T., Penaye, J., et al. 2006. Nickel and cobalt distribution in the laterites of the Lomié region, south-east Cameroon. Journal of African Earth Sciences, 45 (1), 3347.Google Scholar
Zotov, A., Mukhamet-Galeev, A. & Schott, J. 1998. An experimental study of kaolinite and dickite relative stability at 150–300 degrees C and the thermodynamic properties of dickite. American Mineralogist, 83 (5–6), 516524.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×