Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-11T03:31:21.934Z Has data issue: false hasContentIssue false

8 - Solid–Liquid Separation of Clay Tailings

Published online by Cambridge University Press:  30 August 2017

Markus Gräfe
Affiliation:
Emirates Global Aluminium (EGA)
Craig Klauber
Affiliation:
Curtin University of Technology, Perth
Angus J. McFarlane
Affiliation:
Commonwealth Scientific and Industrial Research Organisation, Canberra
David J. Robinson
Affiliation:
Commonwealth Scientific and Industrial Research Organisation, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, J. 1979. Control systems and operational features of the deep cone thickener. Filtration & Separation, 16, 376380, 393.Google Scholar
Abd-El Rahman, M. K. 2000. Dewatering of phosphatic clay waste by flocculation. Chemical Engineering & Technology, 23 (5), 457461.Google Scholar
Abu-Hejleh, A. N., Znidarcic, D. & Barnes, B. L. 1996. Consolidation characteristics of phosphatic clays. Journal of Geotechnical Engineering, 122 (4), 295301.Google Scholar
Adkins, S. J. 2008. Underflow rheology optimisation to enhance thickener performance. In: Fourie, A. B., Jewel, R. J., Paterson, A. & Slatter, P. (eds) Proceedings of the Eleventh International Seminar on Paste and Thickened Tailings. Perth: Australian Centre for Geomechanics, 8395.Google Scholar
Adkins, S. J., Bellwood, J., Beveridge, A., Edgar, M. & Flanagan, I. A. 2014. Difference between secondary flocculation and rigidification via Rheomax®-enhanced tailings disposal technology. In: Jewell, R. J., Fourie, A. B., Wells, P. S. & Van Zyl, D. (eds) Proceedings of the 17th International Seminar on Paste and Thickened Tailings. Vancouver: Infomine, 187197.Google Scholar
Alam, N., Ozdemir, O., Hampton, M. A. & Nguyen, A. V. 2011. Dewatering of coal plant tailings: Flocculation followed by filtration. Fuel, 90 (1), 2635.Google Scholar
Barany, S., Meszaros, R., Marcinova, L. & Skvarla, J. 2011. Effect of polyelectrolyte mixtures on the electrokinetic potential and kinetics of flocculation of clay mineral particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 383 (1–3), 4855.Google Scholar
Bedell, D., Fawell, P., Slottee, S. & Schoenbrunn, F. 2015. Thickening. In: Jewell, R. J. & Fourie, A. B. (eds) Paste and Thickened Tailings: A Guide, 3rd edition. Nedlands, WA: Australian Centre for Geomechanics, 113–137.Google Scholar
Berger, A., Adkins, S., Hess, S., Flanagan, I. & Stocks, P. 2011. Step change improvements in underflow rheology. In: Jewell, R. J. & Fourie, A. B. (eds) Paste 2011: Proceedings of the 14th International Seminar on Paste and Thickened Tailings. Nedlands, WA: Australian Centre for Geomechanics, 135141.CrossRefGoogle Scholar
Berger, A., Muhor, J., Adkins, S., Flanagan, I. & Brodt, G. 2012. BASF Novel Flocculant Technology (NFT): ‘Thickener performance beyond the threshold’. In: Pradip, & Mishra, B. K. (eds) XXVI International Mineral Processing Congress: IMPC 2012, September 24–28, 2012. New Delhi: Technowrites Pvt. Ltd.Google Scholar
Berger, A., Muhor, J. & Adkins, S. 2013. BASF novel flocculant technology: Benefits for counter current decantation circuits based on pilot-scale trials. In: Jewell, R. J., Fourie, A. B., Caldwell, J. & Pimenta, J. (eds) Paste 2013: Proceedings of the 16th International Seminar on Paste and Thickened Tailings. Nedlands, WA: Australian Centre for Geomechanics, 161174.Google Scholar
Berlin, A. A. & Kislenko, V. N. 1995. Kinetic-models of suspension flocculation by polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 104 (1), 6772.Google Scholar
Besra, L., Sengupta, D. K., Roy, S. K. & Ay, P. 2002. Studies on flocculation and dewatering of kaolin suspensions by anionic polyacrylamide flocculant in the presence of some surfactants. International Journal of Mineral Processing, 66 (1–4), 128.Google Scholar
Besra, L., Sengupta, D. K., Roy, S. K. & Ay, P. 2004. Influence of polymer adsorption and conformation on flocculation and dewatering of kaolin suspension. Separation and Purification Technology, 37 (3), 231246.Google Scholar
Besra, L., Sengupta, D. K. & Roy, S. K. 2006. Influence of unadsorbed and weakly adsorbed flocculants on separation properties of kaolin suspensions. International Journal of Mineral Processing, 78 (2), 101109.Google Scholar
Bolto, B. & Gregory, J. 2007. Organic polyelectrolytes in water treatment. Water Research, 41 (11), 23012324.Google Scholar
Bowman, L. E., Downey, C. E., Pillai, K. J. & Roe, W. J. 1993. Kaolin filter aids: Key to improved plant productivity. Mining Engineering, 45 (6), 600602.Google Scholar
Boylu, F., Hojiyev, R., Ersever, G., Ulcay, Y. & Celik, M. S. 2012. Production of ultrapure bentonite clays through centrifugation techniques. Separation Science and Technology, 47 (6), 842849.CrossRefGoogle Scholar
Burns, J. L., Yan, Y. D., Jameson, G. J. & Biggs, S. 1997. A light scattering study of the fractal aggregation behavior of a model colloidal system. Langmuir, 13 (24), 64136420.Google Scholar
Bushell, G. C., Yan, Y. D., Woodfield, D., Raper, J. & Amal, R. 2002. On techniques for the measurement of the mass fractal dimension of aggregates. Advances in Colloid and Interface Science, 95 (1), 150.CrossRefGoogle ScholarPubMed
Caskey, J. A. & Primus, R. J. 1986. The effect of anionic polyacrylamide molecular-conformation and configuration on flocculation effectiveness. Environmental Progress, 5 (2), 98103.Google Scholar
Chaplain, V., Janex, M. L., Lafuma, F., Graillat, C. & Audebert, R. 1995. Coupling between polymer adsorption and colloidal particle aggregation. Colloid and Polymer Science, 273 (10), 984993.Google Scholar
Chen, W. J. 1998. Effects of surface charge and shear during orthokinetic flocculation on the adsorption and sedimentation of kaolin suspensions in polyelectrolyte solutions. Separation Science and Technology, 33 (4), 569590.Google Scholar
Clark, A. Q., Herrington, T. M. & Petzold, J. C. 1990. The flocculation of kaolin suspensions with anionic polyacrylamides of varying molar mass and anionic character. Colloids and Surfaces, 44, 247261.Google Scholar
Connelly, L. J., Owen, D. O. & Richardson, P. F. 1986. Synthetic flocculant technology in the Bayer process. Light Metals, 2, 6168.Google Scholar
Costine, A., Lester, D., Fawell, P. & Chryss, A. 2014. Shear isn’t mixing: How to build larger aggregates using chaotic advection for accelerated dewatering. In: Jewell, R. J., Fourie, A. B., Wells, P. S. & Van Zyl, D. (eds) Paste 2014: 17th International Seminar on Paste and Thickened Tailings. Vancouver: Infomine.Google Scholar
Curtis, A. S. G. & Hocking, L. M. 1970. Collision efficiency of equal spherical particles in a shear flow: Influence of London-van der Waals forces. Transactions of the Faraday Society, 66 (570), 13811390.Google Scholar
Dollimore, D. & Horridge, T. A. 1973. Dependence of flocculation behavior on China clay–polyacrylamide suspensions on suspension pH. Journal of Colloid and Interface Science, 42 (3), 581588.Google Scholar
Du, J. H., Pushkarova, R. A. & Smart, R. S. C. 2009. A cryo-SEM study of aggregate and floc structure changes during clay settling and raking processes. International Journal of Mineral Processing, 93 (1), 6672.Google Scholar
Du, J. H., Morris, G., Pushkarova, R. A. & Smart, R. S. 2010. Effect of surface structure of kaolinite on aggregation, settling rate, and bed density. Langmuir, 26 (16), 1322713235.Google Scholar
Farrow, J. B. & Swift, J. D. 1991. Improving thickener technology. Fifth AUSIMM Extractive Metallurgy Conference. Carlton, VIC: Australasian Institute of Mining and Metallurgy, 227232.Google Scholar
Farrow, J. B. & Swift, J. D. 1996. A new procedure for assessing the performance of flocculants. International Journal of Mineral Processing, 46 (3–4), 263275.Google Scholar
Farrow, J. B., Johnston, R. R. M., Simic, K. & Swift, J. D. 2000. Consolidation and aggregate densification during gravity thickening. Chemical Engineering Journal, 80 (1–3), 141148.Google Scholar
Fawell, P. D., Owen, A. T., Grabsch, A. F., et al. 2009a. Factors affecting flocculation within gravity thickeners. Water in Mining 2009, Proceedings. Carlton, VIC: Australasian Institute of Mining and Metallurgy, 7176.Google Scholar
Fawell, P. D., Farrow, J. B., Heath, A. R., et al. 2009b. 20 years of AMIRA P266 ‘Improving Thickener Technology’: How has it changed the understanding of thickener performance? In: Jewel, R., Fourie, A., Barrera, S. & Wiertz, J. (eds) Paste 2009: Proceedings of the 12th International Seminar on Paste and Thickened Tailings. Nedlands, WA: Australian Centre for Geomechanics, 5968.Google Scholar
Fawell, P. D., Costine, A. D. & Grabsch, A. F. 2015. Why small-scale testing of reagents goes wrong. In: Jewell, R. & Fourie, A. (eds) Paste 2015: 18th International Seminar on Paste and Thickened Tailings. Nedlands, WA: Australian Centre for Geomechanics, 153165.Google Scholar
Franks, G. V., Yates, P. D., Lambert, N. W. A. & Jameson, G. J. 2005. Aggregate size and density after shearing, implications for dewatering fine tailings with hydrocyclones. International Journal of Mineral Processing, 77 (1), 4652.CrossRefGoogle Scholar
Franks, G. V., Li, H., O’Shea, J.-P. & Qiao, G. G. 2009. Temperature responsive polymers as multiple function reagents in mineral processing. Advanced Powder Technology, 20, 273279.CrossRefGoogle Scholar
Franks, G. V., O’Shea, J. P. & Forbes, E. 2014. Controlling thickener underflow rheology using a temperature responsive flocculant. AIChE Journal, 60, 29402948.Google Scholar
Frost, R. C., Halliday, J. & Dee, A. S. 1993. Continuous consolidation of sludge in large-scale gravity thickeners. Water Science and Technology, 28 (1), 7786.Google Scholar
Gaillard, N. & Poncet, F. 2010. Treating sludge from mining or mineral industry before spreading out into soil, comprises contacting the sludge with a branched flocculant such as a water soluble organic polymer having a specified anionicity for a specified duration. Patent FR2937635-A1; US2010105976-A1; CA2682542-A1.Google Scholar
Garcia, R. A., Riner, S. A. & Piazza, G. J. 2014. Design of a laboratory method for rapid evaluation of experimental flocculants. Industrial & Engineering Chemistry Research, 53, 880886.CrossRefGoogle Scholar
Gill, R. I. S. & Herrington, T. M. 1987. The flocculation of kaolin suspensions with cationic polyacrylamides of varying molar mass but the same cationic character. Colloids and Surfaces, 22 (1), 5176.Google Scholar
Gill, R. I. S. & Herrington, T. M. 1988. Floc size studies on kaolin suspensions flocculated with cationic polyacrylamides. Colloids and Surfaces, 32 (3–4), 331344.CrossRefGoogle Scholar
Gill, R. I. S. & Herrington, T. M. 1989. The effect of colloid concentration and pH on kaolin suspensions flocculated with cationic polyacrylamides of high molar mass. Colloids and Surfaces, 42 (1–2), 2337.CrossRefGoogle Scholar
Gladman, B., de Kretser, R. G., Rudman, M. & Scales, P. J. 2005. Effect of shear on particulate suspension dewatering. Chemical Engineering Research & Design, 83 (A7), 933936.Google Scholar
Glasgow, L. A. & Liu, S. X. 1995a. Effects of dosing regimen and agitation profile upon floc characteristics. Chemical Engineering Communications, 132, 223237.Google Scholar
Glasgow, L. A. & Liu, S. X. 1995b. Effects of macromolecular conformation upon solid–liquid separation and water-treatment plant residuals. Environmental Technology, 16 (10), 915927.Google Scholar
Grabsch, A. F., Fawell, P. D., Adkins, S. J. & Beveridge, A. 2013. The impact of achieving a higher aggregate density on polymer-bridging flocculation. International Journal of Mineral Processing, 124, 8394.Google Scholar
Graham, N. D. B. & Graham, A. D. B. 2007. Materials handling and treatment. Patent WO2007143780-A1.Google Scholar
Grassia, P., Usher, S. P. & Scales, P. J. 2011. Closed-form solutions for batch settling height from model settling flux functions. Chemical Engineering Science, 66 (5), 964972.Google Scholar
Gregory, J. 1988. Polymer adsorption and flocculation in sheared suspensions. Colloids and Surfaces, 31, 231253.Google Scholar
Gregory, J. 2009. Monitoring particle aggregation processes. Advances in Colloid and Interface Science, 147–148, 109123.CrossRefGoogle ScholarPubMed
Gregory, J. & De Moor, A. E. L. 1984. Filterability of polymer-flocculated suspensions. In: Goddard, E. D. & Vincent, B. (eds) Polymer Adsorption and Dispersion Stability. Washington, DC: ACS, 445458.Google Scholar
Gregory, J. & Nelson, D. W. 1986. Monitoring of aggregates in flowing suspensions. Colloids and Surfaces, 18 (2–4), 175188.Google Scholar
Hamza, H. A., Stanonik, D. J. & Kessick, M. A. 1996. Flocculation of lime-treated oil sands tailings. Fuel, 75 (3), 280284.Google Scholar
Heath, A. R., Fawell, P. D., Bahri, P. A. & Swift, J. D. 2002. Estimating average particle size by focused beam reflectance measurement (FBRM). Particle & Particle Systems Characterization, 19 (2), 8495.Google Scholar
Heath, A. R., Bahri, P. A., Fawell, P. D. & Farrow, J. B. 2006a. Polymer flocculation of calcite: Population balance model. AIChE Journal, 52 (5), 16411653.Google Scholar
Heath, A. R., Bahri, P. A., Fawell, P. D. & Farrow, J. B. 2006b. Polymer flocculation of calcite: Relating the aggregate size to the settling rate. AIChE Journal, 52 (6), 19871994.Google Scholar
Heath, A. R., Bahri, P. A., Fawell, P. D. & Farrow, J. B. 2006c. Polymer flocculation of calcite: Experimental results from turbulent pipe flow. AIChE Journal, 52 (4), 12841293.Google Scholar
Hecker, R., Kirwan, L., Jefferson, A., et al. 1999. Focused beam reflectance measurement for the continuous assessment of flocculant performance. In: Laskowski, J. S. (ed.) Polymers in Mineral Processing, Aug 17–19, 1999. Quebec City: Canadian Institute of Mining, Metallurgy & Petroleum, 91105.Google Scholar
Henderson, J. M. & Wheatley, A. D. 1987. Factors effecting a loss of flocculation activity of polyacrylamide solutions: Shear degradation, cation complexation, and solution aging. Journal of Applied Polymer Science, 33 (2), 669684.Google Scholar
Hogg, R. 1999. Polymer adsorption and flocculation. In: Laskowski, J. S. (ed.) Polymers in Mineral Processing, Aug 17–19, 1999. Quebec City: Canadian Institute of Mining, Metallurgy & Petroleum, 317.Google Scholar
Hopkins, D. C. & Ducoste, J. J. 2003. Characterizing flocculation under heterogeneous turbulence. Journal of Colloid and Interface Science, 264 (1), 184194.Google Scholar
Hoyland, G. & Day, M. 1986. An evaluation of picket fences for assisting the consolidation of sewage sludges. Water Pollution Control, 85 (3), 291303.Google Scholar
Hsu, J. P., Lin, D. P. & Tseng, S. 1995. The sticking probability of colloidal particles in polymer-induced flocculation. Colloid and Polymer Science, 273 (3), 271278.Google Scholar
Jarvis, P., Jefferson, B. & Parsons, S. 2004. The duplicity of floc strength. Water Science and Technology, 50 (12), 6370.Google Scholar
Jarvis, P., Jefferson, B. & Parsons, S. A. 2005. Measuring floc structural characteristics. Reviews in Environmental Science and Bio/Technology, 4, 118.Google Scholar
Johns, F. E. 1991. High-pressure filtration of fine particle slurries. Proceedings of the Sixteenth International Conference on Coal & Slurry Technologies, Apr 22–25, 1991. Washington, DC: Coal & Slurry Technology Association, 297308.Google Scholar
Klimpel, R. C. & Hogg, R. 1991. Evaluation of floc structures. Colloids and Surfaces, 55, 279288.Google Scholar
Knight, M. A., Wates, J. A. & Du Plessis, I. 2012. Application of hydrocyclone technology to tailings storage facilities to reduce water consumption. In: Jewel, R. J., Fourie, A. B. & Paterson, A. (eds) Paste 2012: Proceedings of the 15th International Seminar on Paste and Thickened Tailings. Nedlands, WA: Australian Centre for Geomechanics, 233241.Google Scholar
Koksal, E., Ramachandran, R., Somasundaran, P. & Maltesh, C. 1990. Flocculation of oxides using polyethylene oxide. Powder Technology, 62 (3), 253259.Google Scholar
La Mer, V. K. & Healy, T. W. 1963. Adsorption–flocculation reactions of macromolecules at the solid–liquid interface. Reviews of Pure and Applied Chemistry, 13, 112133.Google Scholar
Lee, C. H. & Liu, J. C. 2001. Sludge dewaterability and floc structure in dual polymer conditioning. Advances in Environmental Research, 5 (2), 129136.Google Scholar
Lee, C. S., Robinson, J. & Chong, M. F. 2014. A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection 92, 489508.Google Scholar
Liao, J. Y. H., Selomulya, C., Bushell, G., Bickert, G. & Amal, R. 2006. On different approaches to estimate the mass fractal dimension of coal aggregates. Particle & Particle Systems Characterization, 22 (5), 299309.Google Scholar
Loan, C. & Triglavcanin, R. 2009. A quantum change in the thickening process. In: Amelunxen, P., Kracht, W. & Kuyvenhoven, R. (eds) PROCEMIN 2009: Proceedings of the VI International Mineral Processing Seminar, 2–4 December 2009. Santiago: GECAMIN, 503512.Google Scholar
Long, J., Li, H., Xu, Z. & Masliyah, J. H. 2011. Improving oil sands processability using a temperature-sensitive polymer. Energy and Fuels, 25, 701707.Google Scholar
Lyklema, J. 1988. The colloidal background of flocculation and dewatering. In: Moudgil, B. M. & Scheiner, B. J. (eds) Flocculation and Dewatering. New York: Engineering Foundation, 120.Google Scholar
Mackowski, S. J. 1989. Pressure filtration of Weipa kaolin. Dewatering Practice & Technology. Brisbane: AusIMM, 137140.Google Scholar
Maggi, F., Mietta, F. & Winterwerp, J. C. 2007. Effect of variable fractal dimension on the floc size distribution of suspended cohesive sediment. Journal of Hydrology, 343, 4355.Google Scholar
Mathewson, D., Norris, R. & Dunne, M. 2006. Tailings dewatering dry screening and water clarification for reduced water usage. Proceedings: Water in Mining 2006 – Multiple Values of Water. Parkville, VIC: Australasian Institute of Mining and Metallurgy, 315322.Google Scholar
Mathur, S. & Moudgil, B. M. 1997. Adsorption mechanism(s) of poly(ethylene oxide) on oxide surfaces. Journal of Colloid and Interface Science, 196, 9298.Google Scholar
McColl, P. & Flanagan, I. J. 1999. The Twintec advanced dewatering system for the solid–liquid separation of coal tailings. In: Laskowski, J. S. (ed.) Polymers in Mineral Processing, Aug 17–19, 1999. Quebec City: Canadian Institute of Mining, Metallurgy & Petroleum, 579589.Google Scholar
McColl, P., Scammell, S., Philip, M. & Stephen, S. 2004. Treatment of mineral material, especially waste mineral slurries transferring material with dispersed particulate solids as fluid to deposition area by combining with material aqueous solution of water-soluble polymer. Patent WO2004060819-A1 WOEP000042 07 Jan 2004 and numerous country patents.Google Scholar
McFarlane, A. J., Addai-Mensah, J. & Bremmell, K. 2005. Rheology of flocculated kaolinite dispersions. Korea-Australia Rheology Journal, 17 (4), 181190.Google Scholar
McFarlane, A., Yeap, K. Y., Bremmell, K. & Addai-Mensah, J. 2008. The influence of flocculant adsorption kinetics on the dewaterability of kaolinite and smectite clay mineral dispersions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317 (1–3), 3948.Google Scholar
Mengual, O., Meunier, G., Cayre, I., Puech, K. & Snabre, P. 1999. Characterisation of instability of concentrated dispersions by a new optical analyser: The TURBISCAN MA 1000. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152 (1–2), 111123.Google Scholar
Merkl, R. & Steiger, W. 2012. Properties of decanter centrifuges in the mining industry. Minerals & Metallurgical Processing, 29 (1), 612.Google Scholar
Mpofu, P., Addai-Mensah, J. & Ralston, J. 2003. Investigation of the effect of polymer structure type on flocculation, rheology and dewatering behaviour of kaolinite dispersions. International Journal of Mineral Processing, 71 (1–4), 247268.Google Scholar
Mpofu, P., Addai-Mensah, J. & Ralston, J. 2004. Flocculation and dewatering behaviour of smectite dispersions: Effect of polymer structure type. Minerals Engineering, 17 (3), 411423.Google Scholar
Mpofu, P., Addai-Mensah, J. & Ralston, J. 2005. Interfacial chemistry, particle interactions and improved dewatering behaviour of smectite clay dispersions. International Journal of Mineral Processing, 75 (3–4), 155171.Google Scholar
Nan, J. & He, W. P. 2012. Characteristic analysis on morphological evolution of suspended particles in water during dynamic flocculation process. Desalination and Water Treatment, 41 (1–3), 3544.Google Scholar
Nasser, M. S. & James, A. E. 2006. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions. Separation and Purification Technology, 52 (2), 241252.Google Scholar
Nasser, M. S. & James, A. E. 2007. Effect of polyacrylamide polymers on floc size and rheological behaviour of kaolinite suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301 (1–3), 311322.Google Scholar
Nguyen, T. V., Farrow, J. B., Smith, J. & Fawell, P. D. 2012. Design and development of a novel thickener feedwell using computational fluid dynamics. The Journal of the Southern African Institute of Mining and Metallurgy, 112, 939948.Google Scholar
Ofori, P., Nguyen, A. V., Firth, B., McNally, C. & Ozdemir, O. 2011. Shear-induced floc structure changes for enhanced dewatering of coal preparation plant tailings. Chemical Engineering Journal, 172 (2–3), 914923.Google Scholar
Oles, V. 1992. Shear-induced aggregation and breakup of polystyrene latex-particles. Journal of Colloid and Interface Science, 154 (2), 351358.Google Scholar
Olsen, A., Franks, G., Biggs, S. & Jameson, G. J. 2006. An improved collision efficiency model for particle aggregation. Journal of Chemical Physics, 125 (18).Google Scholar
Owen, A. T., Fawell, P. D., Swift, J. D. & Farrow, J. B. 2002. The impact of polyacrylamide flocculant solution age on flocculation performance. International Journal of Mineral Processing, 67 (1–4), 123144.Google Scholar
Owen, A. T., Fawell, P. D. & Swift, J. D. 2007. The preparation and ageing of acrylamide/acrylate copolymer flocculant solutions. International Journal of Mineral Processing, 84 (1–4), 314.Google Scholar
Owen, A. T., Fawell, P. D., Swift, J. D., et al. 2008. Using turbulent pipe flow to study the factors affecting polymer-bridging flocculation of mineral systems. International Journal of Mineral Processing, 87 (3–4), 9099.Google Scholar
Pearse, M. 1980. Factors affecting the laboratory sizing of thickeners. In: Somasundaran, P. (ed.) Fine Particle Processing, Proceedings of the International Symposium. New York: AIME, 1619–1642.Google Scholar
Peng, S. J. & Williams, R. A. 1993. Control and optimization of mineral flocculation and transport processes using online particle-size analysis. Minerals Engineering, 6 (2), 133153.Google Scholar
Potanin, A. A. & Uriev, N. B. 1991. Microrheological models of aggregated suspensions in shear-flow. Journal of Colloid and Interface Science, 142 (2), 385395.Google Scholar
Rattanakawin, C. & Hogg, R. 2001. Aggregate size distributions in flocculation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177 (2–3), 8798.Google Scholar
Rattanakawin, C. & Hogg, R. 2005. Reagent combinations in flocculation. Minerals & Metallurgical Processing, 22 (4), 211218.Google Scholar
Reif, F., Stahl, W. & Langeloh, T. 1990. Optimising decanter centrifuges. Filtration & Separation, 27 (6), 408410.Google Scholar
Revington, A. P., Omotoso, O., Wells, P. S., et al. 2011a. Process for flocculating and dewatering oil sand mature fine tailings. Patent WO2011/032258 A1.Google Scholar
Revington, A. P., Martin, W. M. & Eastwood, J. 2011b. Method and device for in-line injection of flocculant agent into a fluid flow of mature fine tailings. Canada patent application WO2011/032258 A1.Google Scholar
Richardson, J. F. & Zaki, W. N. 1954. Sedimentation and fluidisation: Part 1. Transactions of the Institution of Chemical Engineers, 32, 3553.Google Scholar
Roldan-Villasana, E. J. & Williams, R. A. 1999. Classification and breakage of flocs in hydrocyclones. Minerals Engineering, 12 (10), 12251243.Google Scholar
Rubio, J. 1981. The flocculation properties of poly (ethylene-oxide). Colloids and Surfaces, 3 (1), 7995.Google Scholar
Rudman, M., Simic, K., Paterson, D. A., et al. 2008. Raking in gravity thickeners. International Journal of Mineral Processing, 86 (1–4), 114130.Google Scholar
Rudman, M., Paterson, D. A. & Simic, K. 2010. Efficiency of raking in gravity thickeners. International Journal of Mineral Processing, 95 (1–4), 3039.Google Scholar
Rulyov, N. N., Korolyov, B. Y. & Kovalchuk, N. M. 2006. Application of ultra-flocculation for improving fine coal concentrate dewatering. Coal Preparation, 26 (1), 1732.Google Scholar
Rulyov, N. N., Laskowski, J. S. & Concha, F. 2011. The use of ultra-flocculation in optimization of the experimental flocculation procedures. Physicochemical Problems of Mineral Processing, (47), 516.Google Scholar
Rushton, A., Ward, A. S. & Holdich, R. G. 1996. Solid–Liquid Filtration and Separation Technology. Weinheim, VCH: Wiley.Google Scholar
Sabah, E. & Cengiz, I. 2004. An evaluation procedure for flocculation of coal preparation plant tailings. Water Research, 38 (6), 15421549.CrossRefGoogle ScholarPubMed
Sabah, E. & Erkan, Z. E. 2006. Interaction mechanism of flocculants with coal waste slurry. Fuel, 85 (3), 350359.Google Scholar
Saffman, P. G. & Turner, J. S. 1956. On the collision of drops in turbulent clouds. Journal of Fluid Mechanics, 1 (1), 1630.Google Scholar
Scheiner, B. J. & Wilemon, G. M. 1987. Applied flocculation efficiency: A comparison of polyethylene oxide and polyacrylamides. In: Attia, Y. A. (ed.) Flocculation in Biotechnology and Separation Systems. Amsterdam: Elsevier, 175–185.Google Scholar
Scott, J. P., Fawell, P. D., Ralph, D. E. & Farrow, J. B. 1996. The shear degradation of high-molecular-weight flocculant solutions. Journal of Applied Polymer Science, 62 (12), 20972106.Google Scholar
Sengupta, D. K., Kan, J., Al Taweel, A. M. & Hamza, H. A. 1997. Dependence of separation properties on flocculation dynamics of kaolinite suspension. International Journal of Mineral Processing, 49 (1–2), 7385.Google Scholar
Senaputra, A., Jones, F., Fawell, P. D. & Smith, P. G. 2014. Focused beam reflectance measurement for monitoring the extent and efficiency of flocculation in mineral systems. AIChE Journal, 60, 251265.Google Scholar
Sutalo, I. D., Paterson, D. A. & Rudman, M. 2003. Flow visualisation and computational prediction in thickener rake models. Minerals Engineering, 16 (2), 93102.Google Scholar
Svarovsky, L. 2000a. Gravity clarification and thickening. In: Svarovsky, L. (ed.) Solid–Liquid Separation, 4th edition. Oxford: Butterworth-Heinemann, 166–190.Google Scholar
Svarovsky, L. 2000b. Separation by centrifugal sedimentation. In: Svarovsky, L. (ed.) Solid–Liquid Separation, 4th edition. Oxford: Butterworth-Heinemann, 246–280.Google Scholar
Swift, J. D., Simic, K., Johnston, R. R. M., Fawell, P. D. & Farrow, J. B. 2004. A study of the polymer flocculation reaction in a linear pipe with a focused beam reflectance measurement probe. International Journal of Mineral Processing, 73 (2–4), 103118.Google Scholar
Usher, S. & Scales, P. 2009. Predicting settler/clarifier behaviour: The role of shear effects. Filtration, 9 (4), 308314.Google Scholar
Usher, S. P., de Kretser, R. G. & Scales, P. J. 2001. Validation of a new filtration technique for dewaterability characterization. AIChE Journal, 47 (2), 15611570.CrossRefGoogle Scholar
Vahedi, A. & Gorczyca, B. 2012. Predicting the settling velocity of flocs formed in water treatment using multiple fractal dimensions. Water Research, 46, 41884194.Google Scholar
van Ryssen, G. J. & Steenkamp, P. L. 2012. Thickening of tailings using hydrocyclones operating under vacuum conditions. In: Jewel, R. J., Fourie, A. B. & Paterson, A. (eds) Paste 2012: Proceedings of the 15th International Seminar on Paste and Thickened Tailings. Nedlands, WA: Australian Centre for Geomechanics, 225231.Google Scholar
Vedoy, D. R. L. & Soares, J. B. P. 2015. Water-soluble polymers for oil sands tailing treatment: A review. The Canadian Journal of Chemical Engineering, 93, 888904.Google Scholar
Vietti, A. J., Cooke, R., Ntshabele, K., Cooks, M. & Busani, B. 2008. Rheomax™ and water conservation at Orapa Mine. In: Fourie, A. B., Jewel, R. J., Paterson, A. & Slatter, P. (eds) Paste 2008: Proceedings of the Eleventh International Seminar on Paste and Thickened Tailings. Perth: Australian Centre for Geomechanics, 353364.Google Scholar
Visman, J. & Hamza, H. A. 1973. Application of flocculants in hydrocyclone separation. CIM Bulletin, 66 (730), 7885.Google Scholar
Wallace, L. B., Dabir, B. & Petty, C. A. 1980. Preliminary findings on the effect of polyacrylamide on particle–liquid separation in hydrocyclones. Chemical Engineering Communications, 7 (1–3), 2736.Google Scholar
Watson, P., Farinato, R., Fenderson, T., et al. 2011. Novel polymeric additives to improve oil sands tailings consolidation. Proceedings – SPE International Symposium on Oilfield Chemistry. Houston, TX: Society of Petroleum Engineers, 703709.Google Scholar
Wells, P. S., Revington, A. & Omotoso, O. 2011. Mature fine tailings drying: Technology update. In: Jewell, R. & Fourie, A. (eds) Proceedings of the 14th International Seminar on Paste and Thickened Tailings. Perth: Australian Centre for Geomechanics, 155166.Google Scholar
Wells, P. S., Charlebois, L., Diep, J., et al. 2015. Inline flocculation. In: Jewell, R. J. & Fourie, A. B. (eds) Paste and Thickened Tailings: A Guide, 3rd edition. Nedlands, WA: Australian Centre for Geomechanics, 231–241.Google Scholar
Whatley, J. S. 1986. Filtration and solid–liquid separation in the kaolin industry. SME Annual Meeting, March 2–6, 1986. New Orleans, LA: SME, Littleton.Google Scholar
Williams, R. A. & Roldan-Villasana, E. J. 1991. Opportunities for dewatering aggregated colloidal materials using small diameter hydrocyclones. In: Williams, R. A. & De Jaeger, N. C. (eds) Advances in Measurement and Control of Colloidal Processes.Oxford: Butterworth-Heinemann, 18–34.Google Scholar
Williams, R. A., Peng, S. J. & Naylor, A. 1992. In situ measurement of particle aggregation and breakage kinetics in a concentrated suspension. Powder Technology, 73 (1), 7583.CrossRefGoogle Scholar
Woodfield, D. & Bickert, G. 2004. Separation of flocs in hydrocyclones: Significance of floc breakage and floc hydrodynamics. International Journal of Mineral Processing, 73 (2–4), 239249.Google Scholar
Xu, Y., Hamza, H. & Matthews, J. 2004. Enlargement of fine particles in the oil sands industry: Flocculation and thickening. In: Laskowski, J. S. (ed.) Particle Size Enlargement in Mineral Processing. Montreal: Canadian Institute of Mining, Metallurgy & Petroleum, 271–288.Google Scholar
Yalcin, T. 1996. Tailings disposal using flocculant-assisted hydrocyclones. CIM Bulletin, 89 (1005), 98100.Google Scholar
Yalcin, T. & Brunet, S. 2004. Testing of flocculant-assisted hydrocyclone on Quebec Cartier Mining Company’s iron ore tailings. In: Laskowski, J. S. (ed.) Particle Size Enlargement in Mineral Processing. Montreal: Canadian Institute of Mining, Metallurgy & Petroleum, 289–301.Google Scholar
Yan, D., Parker, T. & Ryan, S. 2003. Dewatering of fine slurries by the Kalgoorlie Filter Pipe. Minerals Engineering, 16 (3), 283289.Google Scholar
Yu, X. A. & Somasundaran, P. 1993. Enhanced flocculation with double flocculants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 81, 1723.Google Scholar
Yu, X. & Somasundaran, P. 1996. Role of polymer conformation in interparticle-bridging dominated flocculation. Journal of Colloid and Interface Science, 177 (2), 283287.CrossRefGoogle Scholar
Yuan, X. S. 2011. Ore types impact on flocculation and the treatment strategies for different types of oil sands tailings. In: Jewell, R. & Fourie, A. (eds) Proceedings of the 14th International Seminar on Paste and Thickened Tailings. Perth: Australian Centre for Geomechanics, 143153.Google Scholar
Yuan, X. S. & Shaw, W. 2007. Novel processes for treatment of Syncrude fine transition and marine ore tailings. Canadian Metallurgical Quarterly, 46 (3), 265272.Google Scholar
Yukselen, M. A., O’Halloran, K. R. & Gregory, J. 2006. Effect of tapering on the break-up and reformation of flocs formed using hydrolyzing coagulants. In: Ng, H. Y. & Hu, J. (eds) Drinking Water Treatment, Supply and Management in Asia. London: IWA Publishing, 139–145.Google Scholar
Zhu, Y., Wu, J., Shepherd, I. S., et al. 2000. An automated measurement technique for slurry settling tests. Minerals Engineering, 13 (7), 765772.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×