Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T18:38:34.833Z Has data issue: false hasContentIssue false

Part III - Biochar Production

Published online by Cambridge University Press:  01 December 2016

Viktor J. Bruckman
Affiliation:
Austrian Academy of Sciences
Esin Apaydın Varol
Affiliation:
Anadolu University, Turkey
Bașak B. Uzun
Affiliation:
Anadolu University, Turkey
Jay Liu
Affiliation:
Pukyong National University, South Korea
Get access

Summary

Abstract

This chapter gives an overview of the key technologies to produce biochar. First, an introduction will be given to the different thermochemical conversion techniques of dry biomass (including pyrolysis) which result in char as one of the product fractions. A second part of this chapter is devoted to the discussion on how the biochar physicochemical properties result from the type of biomass feedstock used, as well as from the prevailing process conditions applied during thermochemical conversion – as some of these physicochemical properties in biochar have a major impact on the functionality and stability of biochar in soil. A major challenge for the successful deployment of biochar systems is to render its production economically profitable. Hence, this chapter concludes with an economic assessment of biochar. This last part of the chapter also emphasizes the potential increase in value creation in the biochar production process by identifying potential economic uses of co-products, including bio-oil and producer gas.

Type
Chapter
Information
Biochar
A Regional Supply Chain Approach in View of Climate Change Mitigation
, pp. 197 - 288
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adam, J. C. (2009). Improved and more environmentally friendly charcoal production system using a low-cost retort-kiln (eco-charcoal). Renewable Energy, 34, pp. 19231925.CrossRefGoogle Scholar
Antal, M. J. and Grønli, M. (2003). The art, science, and technology of charcoal production. Industrial and Engineering Chemistry Research, 42, pp. 16191640.CrossRefGoogle Scholar
Antal, M. J., Mochidzuki, K. and Paredes, L. S. (2003). Flash carbonization of biomass. Industrial Engineering Chemistry Research, 42, pp. 36903699.CrossRefGoogle Scholar
Antoniou, N., Stavropoulos, G. and Zabaniotou, A. (2014). Activation of end of life tyres pyrolytic char for enhanching viability of pyrolysis – critical review, analysis and recommendations for a hybrid dual system. Renewable and Sustainable Reviews, 39, pp. 10531073.CrossRefGoogle Scholar
Arbogast, S., Bellman, D., Paynter, J. D. and Wykowski, J. (2013). Advanced biofuels from pyrolysis oil … opportunities for cost reduction. Fuel Processing Technology, 106, pp. 518525.CrossRefGoogle Scholar
ASTM (2007). D1762-84: Standard Method for Chemical Analysis of Wood Charcoal. American Society for Testing and Materials international.Google Scholar
Azargohar, R., Nanda, S., Kozinski, J. A., Dalai, A. K. and Sutarto, R. (2014). Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel, 125, pp. 9010.CrossRefGoogle Scholar
Bain, R. and Broer, K. (2011). Gasification. In: Brown, R. C. and Stevens, C. (eds.) Thermochemical Processing of Biomass – Conversion into Fuels, Chemicals and Power. London: John Wiley and Sons, pp. 4777.CrossRefGoogle Scholar
Balat, M., Balat, M., Kirtay, E. and Balat, H. (2009). Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems. Energy Conversion and Management, 50, pp. 31473157.CrossRefGoogle Scholar
Baldwin, H. I. (1958). The New Hampshire Charcoal Kiln. Concord, NH: New Hampshire Forestry and Recreation Commission.Google Scholar
Basu, P. (2013). Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. 2nd Edition. Burlington, MA: Academic Press.Google Scholar
Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, pp. 6894.CrossRefGoogle Scholar
Bridgwater, A. V. and Peacocke, G. V. C. (2000). Fast pyrolysis processes for biomass. Renewable Sustainable Energy Reviews, 4, pp. 173.CrossRefGoogle Scholar
Brown, R. C. (2009). Biochar production technology. In: Lehmann, J. and Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology. London: Earthscan, pp. 127146.Google Scholar
Bruun, E. W., Ambus, P., Egsgaard, H. and Hauggaard-Nielsen, H. (2012). Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology and Biochemistry, 46, pp. 7379.CrossRefGoogle Scholar
Busch, D., Stark, A., Kammann, C. I. and Glaser, B. (2013). Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis. Ecotoxicology and Environmental Safety, 97, pp. 5966.CrossRefGoogle ScholarPubMed
Cantrell, K. B. and Martin, J. H. (2012). Stochastic state-space temperature regulation of biochar production. Part II: application to manure processing via pyrolysis. Journal of the Science of Food and Agriculture, 92, pp. 490495.CrossRefGoogle ScholarPubMed
Chen, Y., Yang, H., Wang, X., Zhang, S. and Chen, H. (2012). Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. Bioresource Technology, 107, pp. 411418.CrossRefGoogle ScholarPubMed
Chidumayo, E. N. and Gumbo, D. J. (2013). The environmental impacts of charcoal production in tropical ecosystems of the world: a synthesis. Energy for Sustainable Development, 17, pp. 8694.CrossRefGoogle Scholar
Collard, F.-X. and Blin, J. (2014). A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, 38, pp. 594608.CrossRefGoogle Scholar
Cordero, T., Marquez, F., Rodriguez-Mirasol, J. and Rodriguez, J. J. (2001). Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel, 80, pp. 15671571.CrossRefGoogle Scholar
Crombie, K., Masek, O., Sohi, S. P., Brownsort, P. and Cross, A. (2013). The effect of pyrolysis conditions on biochar stability as determined by three methods. Global Change Biology Bioenergy, 5, pp. 122131.CrossRefGoogle Scholar
Crombie, K. and Masek, O. (2014). Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. Global Change Biology Bioenergy, 7, pp. 349361.CrossRefGoogle Scholar
Crombie, K., Masek, O., Cross, A. and Sohi, S. (2015). Biochar – synergies and trade-offs between soil enhancing properties and C sequestration potential. Global Change Biology Bioenergy, 7, 1161–1175.Google Scholar
Cross, A. and Sohi, S. P. (2011). The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biology and Biochemistry, 43, pp. 21272134.CrossRefGoogle Scholar
Cross, A. and Sohi, S. P. (2013). A method for screening the relative long-term stability of biochar. GCB Bioenergy, 5, pp. 215220.CrossRefGoogle Scholar
Czernik, S. and Bridgwater, A. V. (2004). Overview of applications of biomass fast pyrolysis oil. Energy & Fuels, 18, pp. 590598.CrossRefGoogle Scholar
De Oliveira Vilela, A., Lora, E. S., Quintero, Q. R., Vicintin, R. A. and da Silva e Souza, R. P. (2014). A new technology for the combined production of charcoal and electricity through cogeneration. Biomass & Bioenergy, 69, pp. 222240.CrossRefGoogle Scholar
Deenik, J. L., McClellan, T., Uehara, G., Antal, M. J. and Campbell, S. (2010). Charcoal volatile matter influences plant growth and soil nitrogen transformations. Soil Science Society of America Journal, 74, pp. 12591270.CrossRefGoogle Scholar
Demirbas, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion Management, 42, pp. 13571378.CrossRefGoogle Scholar
Di Blasi, C. (2008). Modeling chemical and physical processes of wood and biomass pyrolysis. Progress in Energy and Combustion Science, 34, pp. 4790.CrossRefGoogle Scholar
Dickinson, D., Balduccio, L., Buysse, J., Ronsse, F., Van Huylenbroeck, G. and Prins, W. (2015). Cost-benefit analysis of using biochar to improve cereals agriculture. GCB Bioenergy, 7, pp. 850864.Google Scholar
Domínguez, A., Menéndez, J. A, Inguanzo, M. and Pís, J. J. (2006). Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresource Technology, 97, pp. 11851193.CrossRefGoogle ScholarPubMed
Downie, A., Crosky, A. and Munroe, P. (2009). Physical properties of biochar. In: Lehmann, J. and Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology. London: Earthscan, pp. 1332.Google Scholar
Du, S., Yang, H., Qian, K., Wang, X. and Chen, H. (2014). Fusion and transformation properties of the inorganic components in biomass ash. Fuel, 117, pp. 12811287.CrossRefGoogle Scholar
Duku, M. H., Gu, S. and Hagan, E. B. (2011). Biochar production potential in Ghana – a review. Renewable and Sustainable Energy Reviews, 15, pp. 35393551.CrossRefGoogle Scholar
EBC (2012). European Biochar Certificate – Guidelines for a sustainable production of biochar. [online] Available at: www.european-biochar.org/en/download. European Biochar Foundation (EBC), Arbaz, Switzerland, Version 5 of 1 January 2015. [Accessed 29 December 2014]Google Scholar
Enders, A., Hanley, K., Whitman, T., Joseph, S. and Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, pp. 644653.CrossRefGoogle ScholarPubMed
FAO, Food and Agriculture Organization of the United Nations (1983). Simple Technologies for Charcoal Making. FAO Forestry Paper 41.Google Scholar
FAO, Food and Agriculture Organization of the United Nations (1985). Industrial Charcoal Making. FAO Forestry Paper 63.Google Scholar
Field, J. L., Keske, C. M. H., Birch, G. L., Defoort, M. W. and Cotrufo, M. F. (2013). Distributed biochar and bioenergy coproduction: a regionally specific case study of environmental benefits and economic impacts. Global Change Biology Bioenergy, 5, pp. 177191.CrossRefGoogle Scholar
Gajic, A., Ramke, H.-G., Hendricks, A. and Koch, H.-J. (2012). Microcosm study on the decomposability of hydrochars in a Cambisol. Biomass & Bioenergy, 47, pp. 250259.CrossRefGoogle Scholar
Graber, E. R., Harel, Y. M., Kolton, M., Cytryn, E., Silber, A., David, D. R., Tsechansky, L., Borenshtein, M. and Yigal, E. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337, pp. 481496.CrossRefGoogle Scholar
Grønli, M. (2005). Industrial Production of Charcoal. Sintef Energy Research Paper, N-7465. Norway: Trondheim.Google Scholar
Grønli, M. and Melaaen, M. C. (2000). Mathematical model for wood pyrolysis – comparison of experimental measurements with model predictions. Energy & Fuels, 14, pp. 791800.CrossRefGoogle Scholar
Gwezi, W., Chaukura, N., Mukome, F. N. D., Machado, S. and Nyamasoka, B. (2015). Biochar production and applications in sub-Saharan Africa: opportunities, constraints, risks and uncertainties. Journal of Environmental Management, 150, pp. 250261.CrossRefGoogle Scholar
Hajaligol, M., Waymack, B. and Kellogg, D. (2001). Low temperature formation of aromatic hydrocarbon from pyrolysis of cellulosic materials. Fuel, 80, pp. 17991807.CrossRefGoogle Scholar
Hu, B., Wang, K., Wu, L., Yu, S.-H., Antonietti, M. and Titirici, M.-M. (2010). Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials, 22, pp. 813823.CrossRefGoogle ScholarPubMed
International Biochar Initiative (IBI) Guidelines (2014). Standardized product definition and product testing guidelines for biochar that used in soil. Internation Biochar Initiative, Westeville (OH), US. Version 2 as of 27 October 2014. [online] Available at: www.biochar-international.org. [Accessed 29 December 2014]Google Scholar
Isahak, W. N. R. W., Hisham, M. W. M., Yarmo, M. A. and Hin, T. Y. Y. (2012). A review on bio-oil production from biomass by using pyrolysis method. Renewable & Sustainable Energy Reviews, 16, pp. 59105923.CrossRefGoogle Scholar
Kambo, H. and Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, pp. 359378.CrossRefGoogle Scholar
Kim, S., Chmely, S. C., Nimlos, M. R., Bomble, Y. J., Foust, T. D., Paton, R. S. and Beckham, G. T. (2011). Computational study of bond dissociation enthalpies for a large range of native and modified lignins. The Journal of Physical Chemistry Letters, 2, pp. 28462852.CrossRefGoogle Scholar
Klose, W. and Wiest, W. (1999). Experiments and mathematical modeling of maize pyrolysis in a rotary kiln. Fuel, 78, pp. 6572.CrossRefGoogle Scholar
Krull, E. S., Baldock, J. A., Skjemstad, J. O. and Smernik, R. J. (2009). Characteristics of biochar: organo-chemical properties. In: Lehmann, J. and Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology. London: Earthscan. pp. 5366.Google Scholar
Kruse, A. (2009). Hydrothermal biomass gasification. The Journal of Supercritical Fluids, 47, pp. 391399.CrossRefGoogle Scholar
Kruse, A., Funke, A. and Titirici, M.-M. (2013). Hydrothermal conversion of biomass to fuels and energetic materials. Current Opinion in Chemical Biology, 17, pp. 515521.CrossRefGoogle ScholarPubMed
Kruse, A. and Dahmen, N. (2015). Water – a magic solvent for biomass conversion. The Journal of Supercritical Fluids, 96, pp. 3645.CrossRefGoogle Scholar
Kumar, A. and Sarkar, S. (2009). Techno-economic Assessment of Biomass Conversion to Charcoal for Carbon Sequestration. Edmonton (Canada): University of Alberta.Google Scholar
Lédé, J. (2013). Biomass fast pyrolysis reactors: a review of a few scientific challenges and of related recommended research topics. Oil & Gas Science and Technology – Revue de IFP Energies Nouvelles, 68, pp. 801814.CrossRefGoogle Scholar
Lehmann, J. and Joseph, S. (2009). Biochar for environmental management: an introduction. In: Lehmann, J. and Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology. London: Earthscan, pp. 112.Google Scholar
Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C and Crowley, D. (2011). Biochar effects on soil biota – a review. Soil Biology and Biochemistry, 43, pp. 18121836.CrossRefGoogle Scholar
Lei, H., Ren, S. and Julson, J. (2009). The effects of reaction temperature and time and particle size of corn stover on microwave pyrolysis. Fuel, 23, pp. 32543261.CrossRefGoogle Scholar
Liaw, S.-S., Wang, Z., Ndegwa, P., Frear, C., Hu, S., Li, C.-Z. and Garcia-Perez, M. (2012). Effect of pyrolysis temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas Fir wood. Journal of Analytical and Applied Pyrolysis, 93, pp. 5262.CrossRefGoogle Scholar
Lu, Q., Li, W.-Z. and Zhu, X.-F. (2009). Overview of fuel properties of biomass fast pyrolysis oils. Energy Conversion and Management, 50, pp. 13761383.CrossRefGoogle Scholar
Manya, J. J., Laguarta, S. and Ortigosa, M. A. (2013). Study on the biochar yield and heat required during pyrolysis of two-phase olive mill waste. Energy & Fuels, 27, pp. 59315939.CrossRefGoogle Scholar
Manya, J. J., Ortigosa, M. A., Laguarta, S. and Manso, J. A. (2014). Experimental study on the effect of pyrolysis pressure, peak temperature, and particle size on the potential stability of vine shoots-derived biochar. Fuel, 133, pp. 163172.CrossRefGoogle Scholar
Masek, O., Budarin, V., Gronnow, M., Crombie, K., Brownsort, P., Fitzpatrick, E. and Hurst, P. (2013a). Microwave and slow pyrolysis biochar – comparison of physical and functional properties. Journal of Analytical and Applied Pyrolysis, 100, pp. 4148.CrossRefGoogle Scholar
Masek, O., Brownsort, P., Cross, A. and Sohi, S. (2013b). Influence of production conditions on the yield and environmental stability of biochar. Fuel, 103, pp. 151155.CrossRefGoogle Scholar
McCarl, B. A., Peacocke, C., Chrisman, R., Chih-chun, K. and Sands, R. D. (2009). Economics of biochar production, utilization and greenhouse gas offsets. In: Lehmann, J. and Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology. London: Earthscan, pp. 341358.Google Scholar
McKendry, P. (2002). Energy production from biomass (part 3): gasification technologies. Bioresource Technology, 83, pp. 5563.CrossRefGoogle ScholarPubMed
Mohan, D., Pittman, C. U. and Steel, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels, 20, pp. 848889.CrossRefGoogle Scholar
Morf, P., Hasler, P. and Nussbaumer, T. (2002). Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips. Fuel, 81, pp. 843883.CrossRefGoogle Scholar
Nachenius, R. W., Ronsse, F., Venderbosch, R. H. and Prins, W. (2013). Biomass pyrolysis. In: Murzin, D. Y. (ed.) Advances in Chemical Engineering. Burlington: Academic Press, pp. 75139.Google Scholar
Nachenius, R. W., Van de Wardt, T. A., Ronsse, F. and Prins, W. (2015). Residence time distributions of coarse biomass particles in a screw conveyer reactor. Fuel Processing Technology, 130, pp. 8785.CrossRefGoogle Scholar
Park, W. C., Atreya, A. and Baum, H. R. (2010). Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combustion and Flame, 157, pp. 481494.CrossRefGoogle Scholar
Patwardhan, P. R., Satrio, J. A., Brown, R. C. and Shanks, B. H. (2010). Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresource Technology, 101, pp. 46464655.CrossRefGoogle ScholarPubMed
Pennise, D. M., Smith, K. R., Kithinji, J. P., Rezende, M. E., Raad, T. J., Zhang, J. and Fan, C. (2001). Emissions of greenhouse gases and other airborne pollutants from charcoal making in Kenya and Brazil. Journal of Geophysical Research, 106, pp. 2414324155.CrossRefGoogle Scholar
Qian, K., Kumar, A., Zhang, H., Bellmer, D. and Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, pp. 10551064.CrossRefGoogle Scholar
Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R. and Lehmann, J. (2010). Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environmental Science & Technology, 44, pp. 827833.CrossRefGoogle ScholarPubMed
Rogers, J. G. and Brammer, J. G. (2012). Estimation of the production cost of fast pyrolysis bio-oil. Biomass and Bioenergy, 36, pp. 208217.CrossRefGoogle Scholar
Ronsse, F., Bai, X., Prins, W. and Brown, R. C. (2012). Secondary reactions of levoglucosan and char in the fast pyrolysis of cellulose. Environmental Progress and Sustainable Energy, 31, pp. 256260.CrossRefGoogle Scholar
Ronsse, F., Van Hecke, S., Dickinson, D. and Prins, W. (2013). Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. Global Change Biology Bioenergy, 5, pp.104115.CrossRefGoogle Scholar
Saha, B. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 30, pp. 279291.CrossRefGoogle ScholarPubMed
Salena, A. and Ani, F. N. (2011). Microwave induced pyrolysis of oil palm biomass. Bioresource Technology, 102, pp. 33883395.CrossRefGoogle Scholar
Schenkel, Y., Bertaux, P., Vanwijnsberghe, S. and Carre, J. (1998). An evaluation of the mound kiln carbonization technique. Biomass & Bioenergy, 14, pp. 505516.CrossRefGoogle Scholar
Schimmelpfennig, S. and Glaser, B. (2012). One step forward toward characterization: some important material properties to distinguish biochars. Journal of Environmental Quality, 41, pp. 10011013.CrossRefGoogle ScholarPubMed
Shackley, S., Hammond, J., Gaunt, J. and Ibarrola, R. (2011). The feasibility and costs of biochar deployment in the UK. Carbon Management, 2, pp. 335356.CrossRefGoogle Scholar
Smider, B. and Singh, B. (2014). Agronomic performance of a higher ash biochar in two contrasting soils. Agriculture, Ecosystems & Environment, 191, pp. 99107.CrossRefGoogle Scholar
Song, W. and Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, pp. 138145.CrossRefGoogle Scholar
Spokas, K. A. (2010). Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Management, 1, pp. 289303.CrossRefGoogle Scholar
Spokas, K. A., Novak, J. M., Stewart, C. E., Cantrell, K. B., Uchimiya, M., DuSaire, M. G. and Ro, K. S. (2011). Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 85, pp. 869882.CrossRefGoogle ScholarPubMed
Stefanidis, S. D., Kalogiannis, K. G., Iliopoulou, E. F., Michailof, C. M., Pilavachi, P. A. and Lappas, A. A. (2014). A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. Journal of Analytical and Applied Pyrolysis, 105, pp. 143150.CrossRefGoogle Scholar
Thomas, R., Grose, A., Obaje, G., Taylor, R., Rownson, N. and Blackburn, S. (2009). Residence time investigation of a multiple hearth kiln using mineral tracers. Chemical Engineering and Processing: Process Intensification, 48, pp. 950954.CrossRefGoogle Scholar
Titirici, M.-M., Thomas, A., Yu, S.-H., Müller, J.-O. and Antonietti, M. (2007). A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chemistry of Materials, 19, pp. 42054212.CrossRefGoogle Scholar
Van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A. and Ptasinski, K. J. (2011). Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass and Bioenergy, 35, pp. 37483762.Google Scholar
Vanholme, B., Desmet, T., Ronsse, F., Rabaey, K., Van Breusegem, F., De Mey, M., Soetaert, W. and Boerjan, W. (2013). Towards a carbon-negative sustainable bio-economy. Frontiers in Plant Science, 4, p. 174.CrossRefGoogle Scholar
Van Laer, T., De Smedt, P., Ronsse, F., Ruysschaert, G., Boeckx, P., Verstraete, W., Buysse, J. and Lavrysen, L. J. (2015). Legal constraints and opportunities for biochar: a case analysis of EU law. Global Change Biology, 7, pp. 1425.CrossRefGoogle Scholar
Van Wesenbeeck, S., Prins, W., Ronsse, F. and Antal, M. J. (2014). Sewage sludge carbonization for biochar applications. Fate of heavy metals. Energy & Fuels, 28, pp. 53185326.CrossRefGoogle Scholar
Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., Joseph, D. and Cowie, A. (2009). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327, pp. 235246.CrossRefGoogle Scholar
Venderbosch, R. H. and Prins, W. (2010). Fast pyrolysis technology development. Biofuels, Bioproducts & Biorefining, 4, pp. 178208.CrossRefGoogle Scholar
Wagenaar, B. M., Prins, W. and Van Swaaij, W. P. M. (1994). Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification. Chemical Engineering Science, 49, pp. 51095126.CrossRefGoogle Scholar
Wei, L., Xu, S., Zhang, L., Zhang, H., Liu, C., Zhu, H. and Lio, S. (2006). Characteristics of fast pyrolysis of biomass in a free fall reactor. Fuel Processing Technology, 87, pp. 863871.CrossRefGoogle Scholar
White, J. E., Catallo, W. J. and Legendre, B. L. (2011). Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91, pp. 133.CrossRefGoogle Scholar
Wiedner, K., Rumpel, C., Steiner, C., Pozzi, A., Maas, R. and Glaser, B. (2013). Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. Biomass & Bioenergy, 59, pp. 264278.CrossRefGoogle Scholar
Williams, P. T. and Besler, S. (1996). The influence of temperature and heating rate on the slow pyrolysis of biomass. Renewable Energy, 7, pp. 233250.CrossRefGoogle Scholar
Wright, M. M., Daugaard, D. E., Satrio, J. A. and Brown, R. C. (2010). Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel, 89, pp. S2S10.CrossRefGoogle Scholar
Yang, H., Yan, R., Chen, H., Lee, D.H. and Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, pp. 17811788.CrossRefGoogle Scholar
Yang, S. I., Wu, M. S. and Wu, C. Y. (2014). Application of biomass fast pyrolysis part I: pyrolysis characteristics and products. Energy, 66, pp. 162171.CrossRefGoogle Scholar
Zakzeski, J., Bruijninck, P. C. A., Jongerius, A. L. and Weckhuysen, B. M. (2010). The catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews, 110, pp. 35523599.CrossRefGoogle ScholarPubMed
Zhou, H., Long, Y. Q., Meng, A. H., Li, Q. H. and Zhang, Y. G. (2013). The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves. Thermochimica Acta, 566, pp. 3643.CrossRefGoogle Scholar
Zimmermann, A. R. (2010). Abiotic and microbial oxidation of laboratory-produced black biochar (biochar). Environmental Science and Technology, 44, pp. 12951301.CrossRefGoogle Scholar

References

Adams, M. D. (1991). The mechanisms of adsorption of Hg(CN)2 and HgCl2 on to activated carbon. Hydrometallurgy, 26, pp. 201210.CrossRefGoogle Scholar
Antal, M. J. and Gronli, M. (2003). The art, science and technology of charcoal production. Journal of the American Chemical Society, 42, pp. 16191640.Google Scholar
Boroson, M. L., Howard, J. B., Longwell, J. P. and Peters, W. A. (1989). Product yields and kinetics from the vapor phase cracking of wood pyrolysis tars. AIChE Journal, 35, pp. 120128.CrossRefGoogle Scholar
Bridgwater, A. V. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal, 91, pp. 87102.CrossRefGoogle Scholar
Burnham, A. K. and Braun, L. R. (1999). Global kinetic analysis of complex materials. Energy Fuels, 13, pp. 122.CrossRefGoogle Scholar
Conesa, J. A., Marcilla, A., Caballero, J. A. and Font, R. (2001). Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data. Journal of Analytical and Applied Pyrolysis, 58–59, pp. 617633.CrossRefGoogle Scholar
Demirbas, A. (2004). Effect of temperature and particle size on biochar yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 721, pp. 243248.CrossRefGoogle Scholar
de Diego, L. F., García-Labiano, F., Abad, A., Gayán, P. and Adánez, J. (2002). Modeling of the devolatilization of nonspherical wet pine wood particles in fluidized beds. Industrial & Engineering Chemical Research, 41, pp. 36423650.CrossRefGoogle Scholar
de Jong, W., Di Nola, G., Venneker, B. C. H., Spliethoff, H. and Wojtowicz, M. A. (2007). TG-FTIR pyrolysis of coal and secondary biomass fuels: determination of pyrolysis kinetic parameters for main species and NOx precursors. Fuel, 86, pp. 23672376.CrossRefGoogle Scholar
Di Blasi, C. (2008). Modeling chemical and physical processes of wood and biomass pyrolysis. Progress in Energy and Combustion Science, 34, pp. 4790.CrossRefGoogle Scholar
Di Blasi, C. and Branca, C. (2001). Kinetics of primary product formation from wood pyrolysis. Industrial & Engineering Chemical Research, 40, pp. 55475556.CrossRefGoogle Scholar
Duku, M. H., Gu, S. and Hagan, E. B. (2011). Biochar production potantial in Ghana – a review. Renewable and Sustainable Energy Reviews, 15, 35393551.CrossRefGoogle Scholar
Fagbemi, L., Khezami, L. and Capart, R. (2001). Pyrolysis products from different biomasses: application to the thermal cracking of tar. Applied Energy, 69, pp. 293306.CrossRefGoogle Scholar
Gaunt, J. L. and Lehmann, J. (2008). Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environmental Science & Technology, 42, pp. 41524158.CrossRefGoogle ScholarPubMed
Gomez-Barea, A. and Leckner, B. (2010). Modeling of biomass gasification in fluidized bed. Progress in Energy & Combustion Science, 36, pp. 444509.CrossRefGoogle Scholar
Goyal, A. and Rehmat, A. (1993). Modelling of a fluidized-bed coal carbonizer. Industrial & Engineering Chemical Research, 32, pp. 13961410.CrossRefGoogle Scholar
Kung, C. C., Kong, F. and Choi, Y. (2015). Pyrolysis and biochar potential using crop residues and agricultural wastes in China. Ecological Indicators, 51, pp. 139145.CrossRefGoogle Scholar
Lehmann, J. and Joseph, S. (eds.) (2009). Biochar for Environmental Management: Science and Technology. London: Earthscan.Google Scholar
Loison, R. and Chauvin, R. (1964). Pyrolyse Rapide du Charbon. Chimie et Industrie, 91, pp. 269275.Google Scholar
Meier, D. and Faix, O. (1999). State of the applied fast pyrolysis of lignocellulosic materials. Bioresource Technology, 68, pp. 7177.CrossRefGoogle Scholar
Neves, D., Thunman, H., Matos, A., Tarelho, L. and Gomez-Barea, A. (2011). Characterization and prediction of biomass pyrolysis products. Progress in Energy & Combustion Science, 37, pp. 611630.CrossRefGoogle Scholar
Nguyen, T. D. B., Ngo, S. I., Lim, Y. I., Lee, J. W., Lee, U. D. and Song, B. H. (2012). Three-stage steady-state model for biomass gasification in a dual circulating fluidized-bed. Energy Conversion and Management, 54, pp. 100112.CrossRefGoogle Scholar
Niksa, S. (2000). Predicting the rapid devolatilization of diverse forms of biomass with bio-flashchain. Proceedings of the Combustion Institute, 8, pp. 27272733.CrossRefGoogle Scholar
Nunn, T. R., Howard, J. B., Longwell, J. P. and Peters, W. A. (1985). Product compositions and kinetics in the rapid pyrolysis of sweet gum hardwood. Industrial & Engineering Chemistry Process Design and Development, 24, pp. 836844.Google Scholar
Pitt, G. J. (1962). The kinetics of the evolution of volatile products from coal. Fuel, 41, pp. 267274.Google Scholar
Prasad, B. V. R. K. and Kuester, J. L. (1988). Process analysis of a dual fluidized bed biomass gasification system. Industrial & Engineering Chemical Research, 27, pp. 304–10.CrossRefGoogle Scholar
Ranzi, E., Cuoci, A., Faravelli, T., Frassoldati, A., Migliavacca, G. and Pierucci, S. (2008). Chemical kinetics of biomass pyrolysis. Energy Fuels, 22, pp. 42924300.CrossRefGoogle Scholar
Ringer, M., Putsche, V. and Scahill, J. (2006). Large-scale pyrolysis oil production: a technology assessment and economic analysis. Technical Report NERL/TP-51037779, doi: 10.2172/894989.CrossRefGoogle Scholar
Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R. and Lehmann, J. (2010). Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environmental Science & Technology, 44, pp. 827833.CrossRefGoogle ScholarPubMed
Sadaka, S. S., Ghaly, A. E. and Sabbah, M. A. (2002). Two phase biomass air-steam gasification model for fluidized bed reactors: part I – model development. Biomass Bioenergy, 22, pp. 439462.Google Scholar
Shafizadeh, F. and Chin, P. P. S. (1977). Thermal deterioration of wood. ACS Symposium Series, 43, pp. 5781.CrossRefGoogle Scholar
Sohi, S. P., Krull, E., Lopez-Capel, E. and Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, pp. 4782.CrossRefGoogle Scholar
Song, B. H. and Watkinson, A. P. (2000). Three-stage well-mixed reactor model for a pressurized coal gasifier. Canadian Journal of Chemical Engineering, 78, pp. 143155.CrossRefGoogle Scholar
Song, B. H. and Watkinson, A. P. (2004). Effect of temperature on the gas yield from flash pyrolysis of bituminous coals. Journal of Industrial and Engineering Chemistry, 10, pp. 460467.Google Scholar
Steiner, T., Mosenthin, R., Zimmermann, B., Greiner, R. and Roth, S. (2007). Distribution of phytase activity, total phosphorus and phytate phosphorus in legume seeds, cereals and cereal products as influenced by harvest year and cultivar. Animal Feed Science and Technology, 133, pp. 320334.CrossRefGoogle Scholar
Thurner, F. and Mann, U. (1981). Kinetic investigation of wood pyrolysis. Industrial & Engineering Chemistry Process Design and Development, 20, pp. 482–488.CrossRefGoogle Scholar
Varhegyi, G., Antal, M. J., Jakab, E. and Szabo, P. (1996). Kinetic modeling of biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 42, pp. 7387.CrossRefGoogle Scholar
White, J. E., Catallo, W. J., Legendre, B. L. (2011). Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91, pp. 133.CrossRefGoogle Scholar
Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. and Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1, pp. 19.CrossRefGoogle ScholarPubMed
Wright, M. M., Brown, R. C. and Boateng, A. A. (2008). Distributed processing of biomass to bio-oil for subsequent production of Fischer-Tropsch liquids. Biofuels, Bioproducts and Biorefining, 2, pp. 229238.CrossRefGoogle Scholar
Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management, 45, pp. 651671.CrossRefGoogle Scholar
Zhang, Q., Yang, Z. and Wu, W. (2008). Role of crop residue management in sustainable agricultural development in the North China Plain. Journal of Sustainable Agriculture, 32, pp. 137148.CrossRefGoogle Scholar

References

Agirre, I., Griessacher, T., Rösler, G. and Antrekowitsch, J. (2013). Production of charcoal as an alternative reducing agent from agricultural residues using a semi-continuous semi-pilot scale pyrolysis screw reactor. Fuel Processing Technolgy, 106, pp. 114121.CrossRefGoogle Scholar
American Statistical Association. (2015). World population likely to surpass 11 billion in 2100: US population projected to grow by 40 percent over next 85 years. ScienceDaily [online] Available at: www.sciencedaily.com/releases/2015/08/150810110634.htm [Accessed 10 August 2015]Google Scholar
Amutio, M., Lopez, G., Artetxe, M., Elordi, G., Olazar, M. and Bilbao, J. (2012). Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. Resources, Conservation and Recycling, 59, pp. 2331.CrossRefGoogle Scholar
Antal, M. J. and Gronli, M. (2003). The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research, 42, pp. 16191640.CrossRefGoogle Scholar
Apaydın, E., Pütün, A. E. and Pütün, E. (2003). Pyrolysis of rice straw in a thermogravimetric analyser: how to obtain high yields of char at low temperatures. Proceedings of the ECOS 2003 Conference, Copenhagen, 2, pp. 10571063.Google Scholar
Apaydın Varol, E. and Pütün, A. E. (2012). Preparation and characterization of pyrolytic chars from different biomass samples. Journal of Analytical and Applied Pyrolysis, 98, pp. 2936.CrossRefGoogle Scholar
Apaydin-Varol, E. and Mutlu, Ü. (2013). Biofuels from selected biomass samples via pyrolysis: effect of the interaction between cellulose, hemicellulose and lignin. In: 8th Dubrovnik Conference on Sustainable Development of Energy, Water and Environment Systems-SDEWES 2013 Proceedings cd. Croatia: Dubrovnik.Google Scholar
Apaydin-Varol, E., Uzun, B. B., Önal, E. and Pütün, A. E. (2014). Synthetic fuel production from cottonseed: fast pyrolysis and a TGA/FT-IR/MS study. Journal of Analytical and Applied Pyrolysis, 105, pp. 8390.CrossRefGoogle Scholar
Apaydın-Varol, E. and Erülken, Y. (2015). A study on the porosity development for biomass based carbonaceous materials. Journal of the Taiwan Institute of Chemical Engineers, 54, pp. 3744.CrossRefGoogle Scholar
Ates, F. Pütün, A. E. and Pütün, E. (2005). Fixed bed pyrolysis of Euphorbia rigida with different catalysts. Energy Conversion and Management, 46, pp.421432.CrossRefGoogle Scholar
Bonelli, P. R., Della Rocca, P. A., Cerella, E. G. and Cukierman, A. L. (2001). Effect of pyrolysis temperature on composition, surface properties and thermal degradation rates of Brazil nut shells. Bioresource Technology, 76, pp. 1522.CrossRefGoogle ScholarPubMed
Brebu, M. and Vasile, C. (2010). Thermal degradation of lignin – a review. Cellulose Chemistry and Technology, 44, pp. 353363.Google Scholar
Bridgwater, A. V. and Grassi, G. (1991). Biomass Pyrolysis Liquids Upgrading and Utilisation. London: Elsevier Applied Science.CrossRefGoogle Scholar
Bridgwater, A. V. and Meier, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 30, pp. 14791493.CrossRefGoogle Scholar
Bridgwater, A. V., Czernik, S. and Piskorz, J. (2001). An overview of fast pyrolysis. Progress in Thermochemical Biomass Conversion, 2, pp. 977997.CrossRefGoogle Scholar
Brown, R. (2009). Biochar production technology. In: Lehmann, J. and Joseph, S. (eds.) Biochar for Environmental Management: Science and Technology. Oxford, New York: Earthscan, Routledge, pp. 127144.Google Scholar
Bru, K., Blin, J., Julbe, A. and Volle, G. (2007). Pyrolysis of metal impregnated biomass: an innovative catalytic way to produce gas fuel. Journal of Analytical and Applied Pyrolysis, 78, pp. 291300.CrossRefGoogle Scholar
Carpenter, N. E. (2014). Chemistry of Sustainable Energy, Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Cross, A., and Sohi, S. P. (2013). A method for screening the relative long-term stability of biochar. GCB Bioenergy, 5, pp. 215220.CrossRefGoogle Scholar
Czernik, S. and Bridgwater, A. V. (2004). Overview of applications of biomass fast pyrolysis oil, Energy & Fuels, 18, pp. 590598.CrossRefGoogle Scholar
Dorez, G., Ferry, L., Sonnier, R., Taguet, A. and Lopez-Cuesta, J.-M. (2014). Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. Journal of Analytical and Applied Pyrolysis, 107 pp. 323331.CrossRefGoogle Scholar
Dunst, G. (2015) SONNENERDE. [online] Available at: www.sonnenerde.at/ Austria: Riedlingsdorf. [Accessed 18 August 2015]Google Scholar
Glasser, W. G. (1985). Lignin. In: Overend, R. P., Milne, T. A. and Mudge, L. K. (eds.), Fundamentals of Thermochemical Biomass Conversion. London: Elsevier Applied Science, pp. 6176.CrossRefGoogle Scholar
IEA Bioenergy Task 34 (2015). Pyrolysis. [online] Available at: www.pyne.co.uk [Accessed 15 March 2015]Google Scholar
Intergovermental Panel on Climate Change (IPCC) (2015). Emissions Scenarios. [online] Available at: www.ipcc.ch/ipccreports/sres/emission/index.php?idp=44#fig28 [Accessed 12 August 2015]Google Scholar
International Biochar Initiative (2013). IBI Standards Standardized Product Definition and Product Testing Guidelines for Biochar. [online] Available at: www.biochar-international. org/characterizationstandard [Accessed 10 January 2015]Google Scholar
Islam, M. N., Joardder, M. U. H., Hoque, S. M. N. and Uddin, M. S. (2013). A comparative study on pyrolysis for liquid oil from different biomass solid wastes. Procedia Engineering, 56, pp. 643649.CrossRefGoogle Scholar
Islam, M. R., Parveen, M. and Haniu, H. (2010). Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis. Bioresource Technology, 101, pp. 41624168.CrossRefGoogle ScholarPubMed
Jahirul, I. and Rasul, M. (2012). Biofuels production through biomass pyrolysis – a technological review. Energies, 5, pp. 49525001.CrossRefGoogle Scholar
Kılıc, M., Apaydın-Varol, E. and Putun, A. E. (2012). Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4. Applied Surface Science, 261, pp. 247254.CrossRefGoogle Scholar
Klass, D. L. (1998). Biomass for Renewable Energy, Fuels, and Chemicals. San Diego, CA: Academic Press.Google Scholar
Kloss, S., Zehetner, F., Dellantonio, A. et al. (2012). Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41, pp. 9901000.CrossRefGoogle ScholarPubMed
Lehmann, J. (2007). A handful of carbon. Nature, 447, pp. 143144.CrossRefGoogle ScholarPubMed
Lipinsky, E. S. (1985). Pretreatment of biomass for thermochemical biomass conversion, In: Overend, R. P., Milne, T. A. and Mudge, L. K. (eds.) Fundamentals of Thermochemical Biomass Conversion. London: Elsevier Applied Science, pp. 7789.CrossRefGoogle Scholar
Lv, D., Xu, M., Liu, X., Zhan, Z., Li, Z. and Yao, H. (2010). Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Processing Technology, 91, pp. 903909.CrossRefGoogle Scholar
McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, 83, pp. 3746.CrossRefGoogle ScholarPubMed
Mohan, D., Pittman, C. U. and Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy and Fuels, 20, pp. 848889.CrossRefGoogle Scholar
Nguyen, B. T. and Lehmann, J. (2009). Black carbon decomposition under varying water regimes. Organic Geochemistry, 40, pp. 846853.CrossRefGoogle Scholar
Novak, J. M., Cantrell, K. B. and Watts, D. W. (2012). Compositional and thermal evaluation of lignocellulosic and poultry litter chars via high and low temperature pyrolysis: high and low temperature pyrolyzed biochars. BioEnergy Research. [online] Available at: www.ars.usda.gov/SP2UserFiles/Place/60820000/Manuscripts/2012/man895.pdf [Accessed 08 March 2015]Google Scholar
Ortega, J. V., Renehan, A. M., Liberatore, M. W. and Herring, A. M. (2011). Physical and chemical characteristics of aging pyrolysis oils produced from hardwood and softwood feedstocks. Journal of Analytical and Applied Pyrolysis, 91, pp. 190198.CrossRefGoogle Scholar
Overend, R. P., Milne, T. A., and Mudge, L. (1985). Fundamentals of Thermochemical Biomass Conversion. London: Elsevier Applied Science.CrossRefGoogle Scholar
Özbay, N., Apaydın-Varol, E., Uzun, B. B. and Pütün, A. E. (2008). Characterization of bio-oil obtained from fruit pulp pyrolysis. Energy, 33, pp. 12331240.CrossRefGoogle Scholar
Pütün, A. E., Apaydın, E. and Pütün, E. (2004). Rice straw as a bio-oil source via pyrolysis and steam pyrolysis. Energy, 29, pp. 21712180.CrossRefGoogle Scholar
Pütün, A. E., Uzun, B. B., Apaydın, E. and Pütün, E. (2005). Bio-oil from olive oil industry wastes: pyrolysis of olive residue under different conditions. Fuel Processing Technology, 87 (1), pp. 2532.CrossRefGoogle Scholar
Pütün, A. E., Özbay, N., Apaydın-Varol, E., Uzun, B. B. and Ateş, F. (2007). Rapid and slow pyrolysis of pistachio shell: effect of pyrolysis conditions on the product yields and characterization of the liquid product. International Journal of Energy Research, 31, pp. 506514.CrossRefGoogle Scholar
Pütün, E., Uzun, B. B. and Pütün, A. E. (2009). Rapid pyrolysis of olive residue. 2. Effect of catalytic upgrading of pyrolysis vapors in a two-stage fixed-bed reactor. Energy & Fuels, 23, pp. 22482258.CrossRefGoogle Scholar
Ross, D. S. and Ketterings, Q. (2011). Recommended methods for determining soil cation exchange capacity, Cooperative Bulletin, 493, pp. 7586.Google Scholar
Sadaka, S. (2015). Pyrolysis. [online] Available at: http://bioweb.sungrant.org/NR/rdonlyres/57BCB4D0-1F59-4BC3-A4DD-4B72E9A3DA30/0/Pyrolysis.pdf [Accessed 10 April 2015]Google Scholar
Sanchez-Silva, L., López-González, D., Villasenor, J., Sánchez, P. and Valverde, J. L. (2012). Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresource Technology, 109, pp. 163172.CrossRefGoogle ScholarPubMed
Seebauer, V., Petek, J. and Staudinger, G. (1997). Effects of particle size, heating rate and pressure on measurement of pyrolysis kinetics by thermogravimetric analysis. Fuel, 76, pp. 12771282.CrossRefGoogle Scholar
Sevilla, M., Maciá-Agulló, J. A. and Fuertes, A. B. (2011). Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass & Bioenergy, 35, pp. 31523159.CrossRefGoogle Scholar
Shen, D. K. and Gu, S. (2009). The mechanism for thermal decomposition of cellulose and its main products. Bioresource Technology, 100, pp. 64966504.CrossRefGoogle ScholarPubMed
Sohi, S. P., Krull, E., Lopez-Capel, E. and Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, pp. 4782.CrossRefGoogle Scholar
Sorum, L., Gronli, M. G. and Hustad, J. E. (2001). Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel, 80, pp. 12171227.CrossRefGoogle Scholar
Suarez-Garcia, F., Martinez-Alonso, A. and Tascon, J. M. D. (2002). Pyrolysis of apple pulp: effect of operation conditions and a-chemical additives. Journal of Analytical and Applied Pyrolysis, 62, pp. 93109.CrossRefGoogle Scholar
Sun, Y. Gao, B., Yao, Y. et al. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240, pp. 574578.CrossRefGoogle Scholar
Theander, O. (1985). Cellulose, hemicellulose and extractives. In: Overend, R. P., Milne, T. A. and Mudge, L. K. (eds.) Fundementals of Thermochemical Biomass Conversion. London: Elsevier Applied Science, pp 3561.CrossRefGoogle Scholar
Tsai, W. T., Mi, H. H., Chang, Y. M., Yang, S. Y. and Chang, J. H. (2007). Polycyclic aromatic hydrocarbons (PAHs) in bio-crudes from induction-heating pyrolysis of biomass wastes. Bioresource Technology, 98, pp. 11331137.CrossRefGoogle ScholarPubMed
Uzun, B. B. Pütün, A. E. and Pütün, E. (2007). Rapid pyrolysis of olive residue. 1. Effect of heat and mass transfer limitations on product yields and bio-oil compositions. Energy & Fuels, 21, pp. 17681776.CrossRefGoogle Scholar
Uzun, B. B. and Sarioğlu, N. (2009). Rapid and catalytic pyrolysis of corn stalks. Fuel Processing Technology, 90, pp. 705716.CrossRefGoogle Scholar
Uzun, B. B., Apaydın-Varol, E., Ateş, F., Özbay, N. and Pütün, A. E. (2010). Synthetic fuel production from tea waste: characterisation of bio-oil and bio-char. Fuel, 89, pp. 176184.CrossRefGoogle Scholar
Verheijen, F., Jeffery, S., Bastos, A. C., van der Velde, M. and Diafas, I. (2010). Biochar application to soils: a critical scientific review of effects on soil properties, processes and functions. JRC Scientific and Technical Reports, Luxembourg.Google Scholar
Wang, Y., Hu, Y., Zhao, X., Wang, S. and Xing, G. (2013). Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy & Fuels, 27, pp. 58905899.CrossRefGoogle Scholar
Woolf, D. (2008). Biochar as a soil amendment: a review of the environmental implications. [online] Available at www.orgprints.org/13268/1/Biochar_as_a_soil_amendment_-_a_ review.pdf [Accessed 2 November 2014]Google Scholar
Zaror, C. A. and Pyle, D. L. (1982). The pyrolysis of biomass: a general review. Proceedings of the Indian Academy of Science, 5, pp. 269285.CrossRefGoogle Scholar

References

Anonymous (2013). Biochar for Soil Amendment Agriculture around Thailand. Dailynews. [online] Available at: http://m.dailynews.co.th/News.do?contentId=112561 [Accessed 6 February 2015]Google Scholar
Anulaxtipan, Y., Phianphitak, P., Wanichsathian, S. et al. (2013). Utilization of Biochar to Improve Crop Yields Report. Thailand.Google Scholar
Bai, S. H., Reverchon, F., Xu, C., et al. (2015). Wood biochar increases nitrogen retention in field settings mainly through abiotic processes. Soil Biology and Biochemistry, 90, pp. 232240.CrossRefGoogle Scholar
Baimark, Y., Threeprom, J., Dumrongchai, N., Srisuwan, Y. and Kotsaeng, N. (2008). Utilization of wood vinegars as sustainable coagulating and antifungal agents in the production of natural rubber sheets. Journal of Environmental Science and Technology, 1, pp. 157163.CrossRefGoogle Scholar
Barney, K. (2014). Sparking Regionalisation? Lao Charcoal Commodity Networks in Greater Mekong. Lao PDR.Google Scholar
Brewer, C. E., Schmidt-Rohr, K., Satrio, J. A. and Brown, R. C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress and Sustainable Energy, 28, pp. 386396.CrossRefGoogle Scholar
Bunyavejchewin, S. (1989). Above-ground net primary productivity, firewood production and charcoal properties of 5 tree species. Thai Journal of Forestry, 8, pp. 6069.Google Scholar
Burnette, R. (2010). An introduction to wood vinegar. ECHO Asia Notes: A Regional Supplement to ECHO Development Notes, 7. [online] Available at: https://c.ymcdn.com/sites/members.echocommunity.org/resource/collection/F6FFA3BF-02EF-4FE3-B180-F391C063E31A/Wood_Vinegar.pdf [Accessed 2 February 2015]Google Scholar
Butphu, S., Toomsan, B., Cadisch, G., Rasche, F. and Kaewpradit, W. (2015). Impact of Biochar Application on Upland Rice Production, N Use Efficiency and Greenhouse Gas Emission in a Rotation System with Sugarcane. Stuttgart, Germany: Food Security Center.Google Scholar
Dempster, D. N., Gleeson, D. B., Solaiman, Z. M., Jones, D. L. and Murphy, D. V. (2012). Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant and Soil, 354, pp. 311324.CrossRefGoogle Scholar
Department of Alternative Energy Development and Efficiency (2009). Thailand Alternative Energy Situation 2009. Bangkok, Thailand: Department of Alternative Energy Development and Efficiency.Google Scholar
Department of Alternative Energy Development and Efficiency (2010). Thailand Alternative Energy Situation 2010. Bangkok, Thailand: Department of Alternative Energy Development and Efficiency.Google Scholar
Department of Alternative Energy Development and Efficiency (2011). Thailand Alternative Energy Situation 2011. Bangkok, Thailand: Department of Alternative Energy Development and Efficiency.Google Scholar
Department of Alternative Energy Development and Efficiency (2012a). Energy Balance of Thailand 2012. Bangkok, Thailand: Department of Alternative Energy Development and Efficiency.Google Scholar
Department of Alternative Energy Development and Efficiency (2012b). Thailand Alternative Energy Situation 2012. Bangkok, Thailand: Department of Alternative Energy Development and Efficiency.Google Scholar
Department of Alternative Energy Development and Efficiency (2013). Thailand Alternative Energy Situation 2013. Bangkok, Thailand: Department of Alternative Energy Development and Efficiency.Google Scholar
Department of Forestry (2012). Forest Cover Assessment in 2010. Vientiane: Lao PDR.Google Scholar
Food and Agriculture Organization of the United Nations (2010). Global Forest Resource Assessment 2010: Global Tables. [online] Available at: www.fao.org/forestry/fra/fra2010/en [Accessed 13 January 2015]Google Scholar
Forestry Administration (2011). Cambodia Forest Cover Change 2006–2010. Phnom Penh, Cambodia: Forestry Administration.Google Scholar
Forestry Administration (2010). Cambodia Forest Outlook Study. [online] Available at: www.fao.org/docrep/014/am627e/am627e00.pdf [Accessed 13 January 2015]Google Scholar
Garcia-Perez, M., Lewis, T. and Kruger, C. E. (2010). Methods for Producing Biochar and Advanced Biofuels in Washington State: Part 1: Literature Review of Pyrolysis Reactors; First Project Report. Pullman, WA: Department of Biological Systems Engineering and the Center for Sustaining Agriculture and Natural Resources, Washington State University.Google Scholar
Government of Lao PDR (2005). Forestry Strategy to the Year 2020 of Lao PDR. Vientiane: Lao PDR.Google Scholar
Hemwong, S. and Cadisch, G. (2011). FSC Brief No. 3: Charcoal Amendments to Improve Soil Fertility and Rice Production in NE Thailand. Stuttgart, Germany: Food Security Center, Universität Hohenheim.Google Scholar
Heov, K. S., Khlok, B., Hansen, K. and Sloth, C. (2006). The value of forest resources to rural livelihoods in Cambodia. In Cambodia Development Research Institute (CDRI) Policy Brief 2. Phnom Penh, Cambodia.Google Scholar
Hugill, B. (2013). Biochar – An Organic House for Soil Microbes. ECHO Asia Notes: A Regional Supplement to ECHO Development Notes. [online] Available at: http://c.ymcdn.com/sites/members.echocommunity.org/resource/collection/49B3D109-0DE9-458E-915B-11AAF1A67E20/TN_75_Biochar-An_Organic_House_for_Soil_Microbes.pdf [Accessed 3 February 2015]Google Scholar
IEA and ERIA (2013). Southeast Asia Energy Outlook: World Energy Outlook Special Report. Paris, France: IEA Publications.Google Scholar
Jenkins, M., Souvanhnachit, M., Rattanavong, S., et al. (2015). Enhancing productivity and livelihoods among smallholder irrigators through biochar and fertilizer amendments. In: Centre de cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD). 3rd Global Science Conference on Climate-Smart Agriculture, Montpellier, France, 16–18 March 2015. Parallel Session L1 Regional Dimensions. Paris, France: Centre de cooperation Internationale en Recherche Agronomique pour le Developpement (CIRAD), p. 141.Google Scholar
Kuhakan, C. (2007). Manual of Charcoal Production and Wood Vinegar. Bangkok, Thailand: Green Media and Products Co.Google Scholar
Kumar, M., Gupta, R. C. and Sharma, T. (1992). Effects of carbonisation conditions on the yield and chemical composition of Acacia and Eucalyptus wood chars. Biomass and Bioenergy, 3, pp. 411417.CrossRefGoogle Scholar
Kumar, M., Verma, B. B. and Gupta, R. C. (1999). Mechanical properties of Acacia and Eucalyptus wood chars. Energy Sources, 21, pp. 675685.Google Scholar
Kwon, G., Kim, D., Oh, C., Park, B. and Kang, J. (2014). Tailoring the characteristics of carbonized wood charcoal by using different heating rates. Journal of the Korean Physical Society, 64, pp. 14741478.CrossRefGoogle Scholar
Laemsak, N. (2008). Utilization of Fast Growing Tree Species for Charcoal and Wood Vinegar Production in Households. Nakorn Ratchasima, Thailand: Forest Research Center and Udomsap Subdistrict Municipality.Google Scholar
Laemsak, N. and Thornrasin, M. (2005). The Final Report: The Feasibility Study of Charcoal and Wood Vinegar Production Plant of Biopower Plus Co., Ltd. Bangkok, Thailand.Google Scholar
Loo, A. Y., Jain, K. and Darah, I. (2008). Antioxidant and radical scavenging activities of the pyroligneous acid from a mangrove plant Rhizophora apiculata. Food Chemistry, 104, pp. 300307.CrossRefGoogle Scholar
Manivong, V. and Cramb, R. A. (2008). Economics of smallholder rubber expansion in Northern Laos. Agroforestry Systems, 77, pp. 113125.CrossRefGoogle Scholar
Mathew, S. and Zakaria, Z. A. (2015). Pyroligneous acid – the smoky acidic liquid from plant biomass. Applied Microbiology and Biotechnology, 99, pp. 611622.CrossRefGoogle ScholarPubMed
Mekuria, W., Sengtaheuanghoung, O., Hoanh, C. T. and Noble, A. (2012). Economic contribution and the potential use of wood charcoal for soil restoration: a case study of village-based charcoal production in Central Laos. International Journal of Sustainable Development and World Ecology, 19, pp. 415425.CrossRefGoogle Scholar
Mekuria, W., Getnet, K., Noble, A., Hoanh, C. T., McCartney, M. and Langan, S. (2013). Economic valuation of organic and clay-based soil amendments in small-scale agriculture in Lao PDR. Field Crop Research, 149, pp. 379389.CrossRefGoogle Scholar
Mekuria, W., Noble, A., Hoanh, C. T., McCartney, M., Sengtaheuanghoung, O., Sipaseuth, N., Douangsavanh, S., Langan, S. and Getnet, K. (2014). The potential role of soil amendments in increasing agricultural productivity and improving the livelihood of smallholders in Lao PDR. Paper presented at the 15th National Agriculture and Forest Research Institute Anniversary Symposium on Agriculture and Forest Research for Development, Vientaine, Lao PDR, 8–10 April 2014.Google Scholar
Missio, A. L., Mattos, B. D., Gatto, D. A. and de Lima, E. A. (2014). Thermal analysis of charcoal from fast-growing eucalypt wood: influence of raw material moisture content. Journal of Wood Chemistry and Technology, 34, pp. 191201.CrossRefGoogle Scholar
National Institute of Statistics (1997). Socio-Economic Survey of Cambodia 1996. Phnom Penh, Cambodia: National Institute of Statistics, Ministry of Planning.Google Scholar
National Institute of Statistics (2008). Statistical Yearbook 2008: General Population Census of Cambodia 2008. Phnom Penh, Cambodia: National Institute of Statistics, Ministry of Planning.Google Scholar
National Institute of Statistics (2014). CamInfo 2014. [online] Available at: http://app.nis.gov.kh/caminfo/libraries/aspx/home.aspx [Accessed 24 February 2015]Google Scholar
National Risk Management Research Laboratory (1999). Research and Development: Greenhouse Gases from Small-scale Combustion Devices in Developing Countries: Charcoal-making Kilns in Thailand. Washington, DC: United States Environmental Protection Agency.Google Scholar
Ogawa, T. (2011). Japan Biochar Association. [online] Available at www.geocities.jp/ yasizato/pioneer.htm [Accessed 2 December 2015]Google Scholar
Panunumpa, N., Tatayanon, S., Kuhakan, C., Sutthiwilairat, L. and Piriyayotha, T. (2013). Manual of Wood Utilization: Energy and Charcoal. Bangkok, Thailand: Royal Forest Department.Google Scholar
Payamara, J. (2011). Usage of wood vinegar as new organic substance. International Journal of ChemTech Research, 3, pp. 16581662.Google Scholar
Phongoudome, C. (2014). Desk study (2000–2014) “Available biomass and their current situation in Lao PDR”. In The Second ACMECS Bioenergy Workshop Biomass for Community Energy: Production and Utilization Technology. Bangkok, Thailand, pp. 185196.Google Scholar
Pitman, R. M. (2006). Wood ash use in forestry – a review of the environmental impacts. Forestry, 79, pp. 563588.CrossRefGoogle Scholar
Prakongkep, N., Gilkes, R. J. and Wiriyakitnateekul, W. (2015). Forms and solubility of plant nutrient elements in tropical plant waste biochars. Journal of Plant Nutrition and Soil Science, 178, pp. 732740.CrossRefGoogle Scholar
Puthson, P. (1990). Effect of heating rates on mass loss and properties of charcoal obtained from pyrolysis of red gum wood. Thai Journal of Forestry, 9, pp. 121128.Google Scholar
Rahmat, B., Pangesti, D., Natawijaya, D. and Sufyadi, D. (2014). Generation of wood-waste vinegar and its effectiveness as a plant growth regulator and pest insect repellent. BioResources, 9, pp. 63506360.CrossRefGoogle Scholar
Royal Forest Department (2013). Forestry Statistics Data 2013. Bangkok, Thailand: Royal Forest Department.Google Scholar
Royal Forest Department (2014a). Executive Summary: Forest Area Assessment Project 2012–2013. Bangkok, Thailand: Royal Forest Department.Google Scholar
Royal Forest Department (2014b). Forest Plantation Expansion Plan. Bangkok, Thailand: Royal Forest Department.Google Scholar
San, V., Spoann, V., Ly, D. and Chheng, N. V. (2012). Fuelwood consumption patterns in Chumriey Mountain, Kampong Chhnang Province, Cambodia. Energy, 44, pp. 335346.CrossRefGoogle Scholar
Saunders, J. (2014). Illegal Logging and Related Trade. The Response in Lao PDR. London, UK: Chatham House, the Royal Institute of International Affairs.Google Scholar
Sirising, S. (2013). Development of Learning Process in Applying Biochar for Soil Improvement for Agriculture. Bangkok, Thailand: Kasetsart University.Google Scholar
Somerville, M. and Jahanshahi, S. (2015). The effect of temperature and compression during pyrolysis on the density of charcoal made from Australian eucalypt wood. Renewable Energy, 80, pp. 471478.CrossRefGoogle Scholar
Southavilay, T. and Castren, T. (1999). Timber trade and wood flow-study, Lao PDR. [online] Available at: www.mekonginfo.org/assets/midocs/0002916-environment-timber-trade-and-wood-flow-study-lao-pdr.pdf [Accessed 27 February 2015]Google Scholar
Takahara, Y., Katoh, K., Inaba, R. and Iwata, H. (1993). Study on odor control using wood vinegars. Japanese Journal of Public Health, 40, pp. 2938.Google Scholar
Takahara, Y., Katoh, K., Inaba, R. and Iwata, H. (1994). Study on odor control using wood vinegars (II). Application of wood vinegars to piggery wastes. Japanese Journal of Public Health, 41, pp. 147156.Google Scholar
Theapparat, Y., Chandumpai, A., Leelasuphakul, W. and Leamsak, N. (2015). Pyroligneous acids from carbonisation of wood and bamboo: their components and antifungal activity. Journal of Tropical Forest Science, 27, pp. 517526.Google Scholar
Tiilikkala, K., Fagernäs, L. and Tiilikkala, J. (2010). History and use of wood pyrolysis liquids as biocide and plant protection product. The Open Agriculture Journal, 4, pp. 111118.CrossRefGoogle Scholar
Top, N., Mizoue, N., Kai, S. and Nakao, T. (2004). Variation in woodfuel consumption patterns in response to forest availability in Kampong Thom Province, Cambodia. Biomass and Bioenergy, 27, pp. 5768.CrossRefGoogle Scholar
UN-REDD (2011). Cambodia National UN-REDD National Programme Document. [online] Available at: www.unredd.net/index.php?option=com_docman&task=doc_view&gid=7388&tmpl=component&format=raw&Itemid=53 [Accessed 13 January 2015]Google Scholar
Wang, Z., Cao, J. and Wang, J. (2009). Pyrolytic characteristics of pine wood in a slowly heating and gas sweeping fixed-bed reactor. Journal of Analytical and Applied Pyrolysis, 84, pp. 179184.CrossRefGoogle Scholar
Wititsiri, S. (2011). Production of wood vinegars from coconut shells and additional materials for control of termite workers, Odontotermes sp. and striped mealy bugs, Ferrisia virgata. Songklanakarin Journal of Science and Technology, 33, pp. 349354.Google Scholar
Woolf, D., Amonette, E. J., Alayne Street-Perrott, F., Lehmann, J. and Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communication, 56, pp. 18.Google Scholar
Yooyen, J., Wijitkosum, S. and Sriburi, T. (2015). Increasing yield of soybean by adding biochar. Journal of Environmental Research and Development, 9, pp. 10661074.Google Scholar
Yoshimoto, T. (1994). Toward enhanced and sustainable agricultural productivity in the 2000s: breeding research and biotechnology. In: Proceedings of The 7th lnternational Congress of the Society for the Advancement of Breeding Researches in Asia and Oceania, held on 16–20 November 1993, Taipei, Taiwan.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×