Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T12:05:42.801Z Has data issue: false hasContentIssue false

1 - Biochar in the View of Climate Change Mitigation: the FOREBIOM Experience

Published online by Cambridge University Press:  01 December 2016

Viktor J. Bruckman
Affiliation:
Austrian Academy of Sciences
Esin Apaydın Varol
Affiliation:
Anadolu University, Turkey
Bașak B. Uzun
Affiliation:
Anadolu University, Turkey
Jay Liu
Affiliation:
Pukyong National University, South Korea
Get access

Summary

Abstract

Biochar is currently one of the dominant topics in soil research, despite the fact that it is not a new discovery. It has the potential to address some of the most pressing questions humanity is currently facing, that is climate change, food security, energy security and environmental pollution. However, a soil system is very complex and together with the multitude of biochar production settings and nearly infinite number of potential feedstock resources it becomes evident that there is no single solution for these challenges available. This is specifically an issue when addressing the potential of biochar for climate change mitigation via reduction of greenhouse gases (GHG). Systems approaches are needed, covering the entire supply chain and backed up with life cycle assessments to ensure a positive impact by using biochar as a tool for environmental management.

This chapter provides a summary and brief introduction of the subsequent chapters of this book, with a focus on biochar for climate change mitigation, including an economic assessment of GHG abatement costs. The FOREBIOM project will be briefly introduced and results on biochar erosion after amendment of a forest floor are presented.

Type
Chapter
Information
Biochar
A Regional Supply Chain Approach in View of Climate Change Mitigation
, pp. 1 - 22
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abiven, S., Schmidt, M. W. I. and Lehmann, J. (2014). Biochar by design. Nature Geoscience, 7, pp. 326327.CrossRefGoogle Scholar
Anderson, C. R., Condron, L. M., Clough, T. J., Fiers, M., Stewart, A., Hill, R. A. and Sherlock, R. R. (2011). Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54, pp. 309320.CrossRefGoogle Scholar
Bauernzeitung (2012). Wie viel Wirtschaftsdünger wert sind. [online] Available at: www.bauernzeitung.at/?id=2500,1014410 [Accessed 15 October 2015]Google Scholar
BMVBS Bundesministeriums für Verkehr, Ban und Stadtentwicklung (2010). Globale und regionale räumliche Verteilung von Biomassepotenzialen: Status Quo und Möglichkeit der Präzisierung. BMVBS-Online-Publikation, Nr. 27/2010. [online]. Available at: www.bbsr.bund.de/BBSR/DE/Veroeffentlichungen/BMVBS/Online/2010/DL_ ON272010.pdf [Accessed 8 January 2016]Google Scholar
Bridgwater, A. V., Toft, A. J. and Brammer, J. G. (2002). A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renewable and Sustainable Energy Reviews, 6, pp. 181246.CrossRefGoogle Scholar
Brown, T. R., Wright, M. M. and Brown, R. C. (2011). Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis. Biofuels, Bioproducts and Biorefining, 5, pp. 5468.CrossRefGoogle Scholar
Bruckman, V. J. and Klinglmüller, M. (2014). Potentials to mitigate climate change using biochar – the Austrian perspective. In: Bruckman, V. J., Liu, J., Uzun, B. B. and Apaydın-Varol, E. (eds.) Potentials to Mitigate Climate Change Using Biochar – the Austrian Perspective. IUFRO Occasional Papers, 27. Vienna.Google Scholar
Bruckman, V. J., Liu, J., Uzun, B. B. and Apaydın-Varol, E. (2015a). FOREBIOM timelapse biochar. [online] Available at: http://dx.doi.org/10.1553/forebiom [Accessed 18 January 2016]CrossRefGoogle Scholar
Bruckman, V. J., Terada, T., Uzun, B. B., Apaydın-Varol, E. and Liu, J. (2015b). Biochar for climate change mitigation: tracing the in-situ priming effect on a forest site. Energy Procedia, 76, pp. 381387.CrossRefGoogle Scholar
Bruckman, V. J., Yan, S., Hochbichler, E. and Glatzel, G. (2011). Carbon pools and temporal dynamics along a rotation period in Quercus dominated high forest and coppice with standards stands. Forest Ecology and Management, 262, pp. 18531862.CrossRefGoogle Scholar
Budai, A., Zimmerman, A. R., Cowie, A. L., Webber, J. B. W., Singh, B. P., Glaser, B., Masiello, C. A., Andersson, D., Shields, F., Lehmann, J., Camps Arbestain, M., Williams, M., Sohi, S. and Joseph, S. (2013). Biochar carbon stability test method: an assessment of methods to determine biochar carbon stability. International Biochar Initiative document, Version: September 20, 2013.Google Scholar
Clough, T. J. and Condron, L. M. (2010). Biochar and the nitrogen cycle: introduction. Journal of Environmental Quality, 39, pp. 12181223.CrossRefGoogle ScholarPubMed
Cordell, D. and White, S. (2015). Tracking phosphorus security: indicators of phosphorus vulnerability in the global food system. Food Security, 7, pp. 337350.CrossRefGoogle Scholar
Crombie, K., Mašek, O., Cross, A. and Sohi, S. P. (2015). Biochar – synergies and trade-offs between soil enhancing properties and C sequestration potential. GCB Bioenergy, 7, pp. 11611175.CrossRefGoogle Scholar
Cross, A. and Sohi, S. P. (2013). A method for screening the relative long-term stability of biochar. GCB Bioenergy, 5, pp. 215220.CrossRefGoogle Scholar
EXAA (2013). EXAA Energy Exchange Austria. [online] Available at: www.exaa.at/en/marketdata/historical-data [Accessed 15 June 2015]Google Scholar
Finkenrath, M. (2011). Cost and Performance of Carbon Dioxide Capture from Power Generation. IEA Working Paper. Paris: International Energy Agency.Google Scholar
Gerlach, A. and Schmidt, H. (2014). The use of biochar in cattle farming. The Biochar Journal. [online] Available at: www.biochar-journal.org/en/ct/9 [Accessed 18 January 2016]Google Scholar
Gurwick, N. P., Moore, L. A., Kelly, C. and Elias, P. (2013). A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy. PLoS ONE, 8, p. e75932.CrossRefGoogle ScholarPubMed
Haaland, C. and Van Den Bosch, C. K. (2015). Challenges and strategies for urban green-space planning in cities undergoing densification: a review. Urban Forestry & Urban Greening, 14, pp. 760771.CrossRefGoogle Scholar
Höltinger, S., Schmidt, J., Schönhart, M. and Schmid, E. (2014). A spatially explicit techno-economic assessment of green biorefinery concepts. Biofuels, Bioproducts and Biorefining, 8, pp. 325341.CrossRefGoogle Scholar
Hüppi, R., Felber, R., Neftel, A., Six, J. and Leifeld, J. (2015). Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system. Soil, 1, pp. 707717.CrossRefGoogle Scholar
IBI (2013). Standardized product definition and product testing guidelines for biochar that is used in soil (Document version code IBI-STD-2.1, 23. November 2015). [online]: International Biochar Initiative. Available at: www.biochar-international.org/characterizationstandard [Accessed 25 January 2016]Google Scholar
Kappler, G.O. (2008). Systemanalytische Untersuchung zum Aufkommen und zur Bereitstellung von energetisch nutzbarem Reststroh und Waldrestholz in Baden-Württemberg: eine auf das Karlsruher bioliq-Konzept ausgerichtete Standortanalyse. Dissertation, University of Freiburg.Google Scholar
Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H. and Soja, G. (2012). Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41, pp. 9901000.CrossRefGoogle ScholarPubMed
Lal, R. (2004a). Carbon emission from farm operations. Environment International, 30, pp. 981990.CrossRefGoogle ScholarPubMed
Lal, R. (2004b). Soil carbon sequestration impacts on global climate change and food security. Science, 304, pp. 16231627.CrossRefGoogle ScholarPubMed
Lehmann, J. and Joseph, S. (eds.) (2015a). Biochar for Environmental Management: Science, Technology and Implementation. 2nd Edition. Oxford, New York: Routledge.CrossRefGoogle Scholar
Lehmann, J. and Joseph, S. (2015b). Biochar for environmental management: an introduction. In: Lehmann, J. and Joseph, S. (eds.) Biochar for Environmental Management: Science, Technology and Implementation. 2nd Edition. Oxford, New York: Routledge, pp. 112.CrossRefGoogle Scholar
Mann, M. E., Rahmstorf, S., Steinman, B. A., Tingley, M. and Miller, S. K. (2016). The likelihood of recent record warmth. Scientific Reports, 6, document No. 19831.CrossRefGoogle ScholarPubMed
McCarl, B. A., Peacocke, C., Chrisman, R., Kung, C.-C. and Sands, R. D. (2009). Economics of biochar production, utilization and greenhouse gas offsets. In: Lehmann, J. and Joseph, S. (eds.) Biochar for Environmental Management – Science and Technology. London, Washington, DC: Earthscan, pp. 341358.Google Scholar
Milenković, M., Pfeifer, N. and Glira, P. (2015). Applying terrestrial laser scanning for soil surface roughness assessment. Remote Sensing, 7, pp. 20072045.CrossRefGoogle Scholar
Myhre, G., Shindell, D., BréOn, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T. and Zhang, H. (2013). Anthropogenic and natural radiative forcing. In: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York: Cambridge University Press, pp. 659740.Google Scholar
Nabuurs, G.J., Masera, K., Andrasko, K., Benitez-Ponce, P., Boer, R., Dutschke, M., Elsiddig, J., Ford-Robertson, J., Frumhoff, P., Karjalainen, T., Krankina, O., Kurz, W. A., Matsumoto, M., Oyhantcabal, W., Ravindranath, N. H., Sanz Sanchez, M. J. and Zhang, X. (2007). Forestry. In: Metz, B., Davidson, O. R., Bosch, P. R., Dave, R. and Meyer, L. A. (eds.) Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York: Cambridge University Press, Chapter 9.Google Scholar
Pettitt, P. (2008). Art and the Middle-to-Upper Paleolithic transition in Europe: comments on the archaeological arguments for an early Upper Paleolithic antiquity of the Grotte Chauvet art. Journal of Human Evolution, 55, pp. 908917.CrossRefGoogle ScholarPubMed
Pfeifer, N., Mandlburger, G., Otepka, J. and Karel, W. (2014). OPALS – a framework for Airborne Laser Scanning data analysis. Computers, Environment and Urban Systems, 45, pp. 125136.CrossRefGoogle Scholar
Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R. and Lehmann, J. (2010). Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environmental Science & Technology, 44, pp. 827833.CrossRefGoogle ScholarPubMed
Sackett, T. E., Basiliko, N., Noyce, G. L., Winsborough, C., Schurman, J., Ikeda, C. and Thomas, S. C. (2015). Soil and greenhouse gas responses to biochar additions in a temperate hardwood forest. GCB Bioenergy, 7, pp. 10621074.CrossRefGoogle Scholar
Schmidt, J., Leduc, S., Dotzauer, E., Kindermann, G. and Schmid, E. (2010). Cost-effective CO2 emission reduction through heat, power and biofuel production from woody biomass: a spatially explicit comparison of conversion technologies. Applied Energy, 87, pp. 21282141.CrossRefGoogle Scholar
Schuetze, T. and Santiago-Fandiño, V. (2014). Terra Preta sanitation: a key component for sustainability in the urban environment. Sustainability, 6, pp. 77257750.CrossRefGoogle Scholar
Shackley, S., Hammond, J., Gaunt, J. and Ibarrola, R. (2011). The feasibility and costs of biochar deployment in the UK. Carbon Management, 2, pp. 335356.CrossRefGoogle Scholar
Shan, J. and Toth, C. (eds) (2008). Topographic Laser Ranging and Scanning: Principles and Processing. Boca Raton, London, New York: CRC Press, Taylor & Francis Group.Google Scholar
Stavi, I. and Lal, R. (2012). Agroforestry and biochar to offset climate change: a review. Agronomy for Sustainable Development, 33, pp. 8196.CrossRefGoogle Scholar
Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R. and Condron, L. M. (2011). Biochar adsorbed ammonia is bioavailable. Plant and Soil, 350, pp. 5769.CrossRefGoogle Scholar
Thies, J. E., Rillig, M. C. and Graber, E. R. (2015). Biochar effects on the abundance, activity and diversity of the soil biota. In: Lehmann, J. and Joseph, S. (eds.) Biochar for Environmental Management: Science, Technology and Implementation. 2nd Edition. Oxford, New York: Routledge, Chapter 13.Google Scholar
Uzun, B. B. and Apaydın-Varol, E. (2015). Potentials to mitigate climate change using biochar – Turkey’s perspective. In: Bruckman, V. J., Liu, J., Uzun, B. B. and Apaydın-Varol, E. (eds.) Potentials to Mitigate Climate Change Using Biochar – the Austrian Perspective. IUFRO Occasional Papers, 27, Vienna.Google Scholar
Wang, J., Xiong, Z. and Kuzyakov, Y. (2015). Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy, 8, pp. 512–523.CrossRefGoogle Scholar
Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. and Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1, article No. 56.CrossRefGoogle ScholarPubMed
Wrobel-Tobiszewska, A., Boersma, M., Sargison, J., Adams, P. and Jarick, S. (2015). An economic analysis of biochar production using residues from Eucalypt plantations. Biomass and Bioenergy, 81, pp. 177182.CrossRefGoogle Scholar
Zhao, L., Cao, X., Mašek, O. and Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256–257, pp. 19.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×