Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-12T19:35:01.480Z Has data issue: false hasContentIssue false

Chapter 45 - Hematopoietic Cell Transplants for Central Nervous System Lymphomas

from Section 12 - Hematopoietic Cell Transplants for Lymphomas: Changing Indications

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 436 - 444
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Camilleri-Broet, S, Criniere, E, Broet, P, Delwail, V, Mokhtari, K, Moreau, A, et al. A uniform activated B-cell-like immunophenotype might explain the poor prognosis of primary central nervous system lymphomas: analysis of 83 cases. Blood. 2006;107(1):190–6.CrossRefGoogle ScholarPubMed
Rubenstein, JL, Fridlyand, J, Shen, A, Aldape, K, Ginzinger, D, Batchelor, T, et al. Gene expression and angiotropism in primary CNS lymphoma. Blood. 2006;107(9):3716–23.CrossRefGoogle ScholarPubMed
Sung, CO, Kim, SC, Karnan, S, Karube, K, Shin, HJ, Nam, DH, et al. Genomic profiling combined with gene expression profiling in primary central nervous system lymphoma. Blood. 2011;117(4):1291–300.CrossRefGoogle ScholarPubMed
Montesinos-Rongen, M, Schmitz, R, Brunn, A, Gesk, S, Richter, J, Hong, K, et al. Mutations of CARD11 but not TNFAIP3 may activate the NF-kappaB pathway in primary CNS lymphoma. Acta Neuropathologica. 2010;120(4):529–35.CrossRefGoogle Scholar
Fischer, L, Korfel, A, Pfeiffer, S, Kiewe, P, Volk, HD, Cakiroglu, H, et al. CXCL13 and CXCL12 in central nervous system lymphoma patients. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 2009;15(19):5968–73.CrossRefGoogle ScholarPubMed
Abrey, LE, Ben-Porat, L, Panageas, KS, Yahalom, J, Berkey, B, Curran, W, et al. Primary central nervous system lymphoma: the Memorial Sloan-Kettering Cancer Center prognostic model. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2006;24(36):5711–5.CrossRefGoogle ScholarPubMed
Ferreri, AJ, Blay, JY, Reni, M, Pasini, F, Spina, M, Ambrosetti, A, et al. Prognostic scoring system for primary CNS lymphomas: the International Extranodal Lymphoma Study Group experience. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2003;21(2):266–72.CrossRefGoogle ScholarPubMed
Rubenstein, JL, Hsi, ED, Johnson, JL, Jung, SH, Nakashima, MO, Grant, B, et al. Intensive chemotherapy and immunotherapy in patients with newly diagnosed primary CNS lymphoma: CALGB 50202 (Alliance 50202). Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(25):3061–8.CrossRefGoogle ScholarPubMed
Reni, M, Ferreri, AJ, Guha-Thakurta, N, Blay, JY, Dell’Oro, S, Biron, P, et al. Clinical relevance of consolidation radiotherapy and other main therapeutic issues in primary central nervous system lymphomas treated with upfront high-dose methotrexate. International Journal of Radiation Oncology, Biology, Physics. 2001;51(2):419–25.CrossRefGoogle ScholarPubMed
Blay, JY, Conroy, T, Chevreau, C, Thyss, A, Quesnel, N, Eghbali, H, et al. High-dose methotrexate for the treatment of primary cerebral lymphomas: analysis of survival and late neurologic toxicity in a retrospective series. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 1998;16(3):864–71.CrossRefGoogle Scholar
Gerstner, ER, Carson, KA, Grossman, SA, Batchelor, TT. Long-term outcome in PCNSL patients treated with high-dose methotrexate and deferred radiation. Neurology. 2008;70(5):401–2.CrossRefGoogle ScholarPubMed
Ferreri, AJ, Reni, M, Foppoli, M, Martelli, M, Pangalis, GA, Frezzato, M, et al. High-dose cytarabine plus high-dose methotrexate versus high-dose methotrexate alone in patients with primary CNS lymphoma: a randomised phase 2 trial. Lancet. 2009;374(9700):1512–20.CrossRefGoogle ScholarPubMed
Morris, PG, Correa, DD, Yahalom, J, Raizer, JJ, Schiff, D, Grant, B, et al. Rituximab, methotrexate, procarbazine, and vincristine followed by consolidation reduced-dose whole-brain radiotherapy and cytarabine in newly diagnosed primary CNS lymphoma: final results and long-term outcome. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2013;31(31):3971–9.CrossRefGoogle ScholarPubMed
Khan, RB, Shi, W, Thaler, HT, DeAngelis, LM, Abrey, LE. Is intrathecal methotrexate necessary in the treatment of primary CNS lymphoma? Journal of Neuro-Oncology. 2002;58(2):175–8.CrossRefGoogle ScholarPubMed
Rubenstein, JL, Li, J, Chen, L, Advani, R, Drappatz, J, Gerstner, E, et al. Multicenter phase 1 trial of intraventricular immunochemotherapy in recurrent CNS lymphoma. Blood. 2013;121(5):745–51.CrossRefGoogle ScholarPubMed
DeAngelis, LM, Seiferheld, W, Schold, SC, Fisher, B, Schultz, CJ, Radiation Therapy Oncology Group S. Combination chemotherapy and radiotherapy for primary central nervous system lymphoma: Radiation Therapy Oncology Group Study 93-10. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2002;20(24):4643–8.CrossRefGoogle Scholar
Thiel, E, Korfel, A, Martus, P, Kanz, L, Griesinger, F, Rauch, M, et al. High-dose methotrexate with or without whole brain radiotherapy for primary CNS lymphoma (G-PCNSL-SG-1): a phase 3, randomised, non-inferiority trial. The Lancet Oncology. 2010;11(11):1036–47.CrossRefGoogle ScholarPubMed
Abrey, LE, Moskowitz, CH, Mason, WP, Crump, M, Stewart, D, Forsyth, P, et al. Intensive methotrexate and cytarabine followed by high-dose chemotherapy with autologous stem-cell rescue in patients with newly diagnosed primary CNS lymphoma: an intent-to-treat analysis. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2003;21(22):4151–6.CrossRefGoogle ScholarPubMed
Colombat, P, Lemevel, A, Bertrand, P, Delwail, V, Rachieru, P, Brion, A, et al. High-dose chemotherapy with autologous stem cell transplantation as first-line therapy for primary CNS lymphoma in patients younger than 60 years: a multicenter phase II study of the GOELAMS group. Bone Marrow Transplantation. 2006;38(6):417–20.CrossRefGoogle Scholar
Illerhaus, G, Marks, R, Ihorst, G, Guttenberger, R, Ostertag, C, Derigs, G, et al. High-dose chemotherapy with autologous stem-cell transplantation and hyperfractionated radiotherapy as first-line treatment of primary CNS lymphoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2006;24(24):3865–70.CrossRefGoogle ScholarPubMed
Illerhaus, G, Muller, F, Feuerhake, F, Schafer, AO, Ostertag, C, Finke, J. High-dose chemotherapy and autologous stem-cell transplantation without consolidating radiotherapy as first-line treatment for primary lymphoma of the central nervous system. Haematologica. 2008;93(1):147–8.CrossRefGoogle ScholarPubMed
Kasenda, B, Schorb, E, Fritsch, K, Finke, J, Illerhaus, G. Prognosis after high-dose chemotherapy followed by autologous stem-cell transplantation as first-line treatment in primary CNS lymphoma–a long-term follow-up study. Annals of Oncology: Official Journal of the European Society for Medical Oncology/ESMO. 2012;23(10):2670–5.CrossRefGoogle ScholarPubMed
Montemurro, M, Kiefer, T, Schuler, F, Al-Ali, HK, Wolf, HH, Herbst, R, et al. Primary central nervous system lymphoma treated with high-dose methotrexate, high-dose busulfan/thiotepa, autologous stem-cell transplantation and response-adapted whole-brain radiotherapy: results of the multicenter Ostdeutsche Studiengruppe Hamato-Onkologie OSHO-53 phase II study. Annals of Oncology: Official Journal of the European Society for Medical Oncology/ESMO. 2007;18(4):665–71.CrossRefGoogle ScholarPubMed
Hassan, M, Ehrsson, H, Smedmyr, B, Totterman, T, Wallin, I, Oberg, G, et al. Cerebrospinal fluid and plasma concentrations of busulfan during high-dose therapy. Bone Marrow Transplantation. 1989;4(1):113–4.Google ScholarPubMed
Heideman, RL, Cole, DE, Balis, F, Sato, J, Reaman, GH, Packer, RJ, et al. Phase I and pharmacokinetic evaluation of thiotepa in the cerebrospinal fluid and plasma of pediatric patients: evidence for dose-dependent plasma clearance of thiotepa. Cancer Research. 1989;49(3):736–41.Google ScholarPubMed
Wiebe, VJ, Smith, BR, DeGregorio, MW, Rappeport, JM. Pharmacology of agents used in bone marrow transplant conditioning regimens. Critical Reviews in Oncology/Hematology. 1992;13(3):241–70.CrossRefGoogle ScholarPubMed
Soussain, C, Hoang-Xuan, K, Taillandier, L, Fourme, E, Choquet, S, Witz, F, et al. Intensive chemotherapy followed by hematopoietic stem-cell rescue for refractory and recurrent primary CNS and intraocular lymphoma: Societe Francaise de Greffe de Moelle Osseuse-Therapie Cellulaire. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2008;26(15):2512–8.CrossRefGoogle ScholarPubMed
Chen, YB, Batchelor, T, Li, S, Hochberg, E, Brezina, M, Jones, S, et al. Phase 2 trial of high-dose rituximab with high-dose cytarabine mobilization therapy and high-dose thiotepa, busulfan, and cyclophosphamide autologous stem cell transplantation in patients with central nervous system involvement by non-Hodgkin lymphoma. Cancer. 2015;121(2):226–33.CrossRefGoogle ScholarPubMed
Boehme, V, Schmitz, N, Zeynalova, S, Loeffler, M, Pfreundschuh, M. CNS events in elderly patients with aggressive lymphoma treated with modern chemotherapy (CHOP-14) with or without rituximab: an analysis of patients treated in the RICOVER-60 trial of the German High-Grade Non-Hodgkin Lymphoma Study Group (DSHNHL). Blood. 2009;113(17):3896–902.CrossRefGoogle Scholar
Schmitz, N, Zeynalova, S, Nickelsen, M, Kansara, R, Villa, D, Sehn, LH, et al. CNS international prognostic index: A risk model for CNS relapse in patients with diffuse large B-cell lymphoma treated with R-CHOP. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2016;34(26):3150–6.CrossRefGoogle ScholarPubMed
Bernstein, SH, Unger, JM, Leblanc, M, Friedberg, J, Miller, TP, Fisher, RI. Natural history of CNS relapse in patients with aggressive non-Hodgkin’s lymphoma: a 20-year follow-up analysis of SWOG 8516 – the Southwest Oncology Group. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2009;27(1):114–9.CrossRefGoogle ScholarPubMed
Tilly, H, Lepage, E, Coiffier, B, Blanc, M, Herbrecht, R, Bosly, A, et al. Intensive conventional chemotherapy (ACVBP regimen) compared with standard CHOP for poor-prognosis aggressive non-Hodgkin lymphoma. Blood. 2003;102(13):4284–9.CrossRefGoogle ScholarPubMed
Abramson, JS, Hellmann, M, Barnes, JA, Hammerman, P, Toomey, C, Takvorian, T, et al. Intravenous methotrexate as central nervous system (CNS) prophylaxis is associated with a low risk of CNS recurrence in high-risk patients with diffuse large B-cell lymphoma. Cancer. 2010;116(18):4283–90.CrossRefGoogle ScholarPubMed
Bromberg, JE, Doorduijn, JK, Illerhaus, G, Jahnke, K, Korfel, A, Fischer, L, et al. Central nervous system recurrence of systemic lymphoma in the era of stem cell transplantation: an International Primary Central Nervous System Lymphoma Study Group project. Haematologica. 2013;98(5):808–13.CrossRefGoogle ScholarPubMed
Cote, GM, Hochberg, EP, Muzikansky, A, Hochberg, FH, Drappatz, J, McAfee, SL, et al. Autologous stem cell transplantation with thiotepa, busulfan, and cyclophosphamide (TBC) conditioning in patients with CNS involvement by non-Hodgkin lymphoma. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2012;18(1):7683.CrossRefGoogle ScholarPubMed
Korfel, A, Elter, T, Thiel, E, Hanel, M, Mohle, R, Schroers, R, et al. Phase II study of central nervous system (CNS)-directed chemotherapy including high-dose chemotherapy with autologous stem cell transplantation for CNS relapse of aggressive lymphomas. Haematologica. 2013;98(3):364–70.CrossRefGoogle ScholarPubMed
Maziarz, RT, Wang, Z, Zhang, MJ, Bolwell, BJ, Chen, AI, Fenske, TS, et al. Autologous haematopoietic cell transplantation for non-Hodgkin lymphoma with secondary CNS involvement. British Journal of Haematology. 2013;162(5):648–56.CrossRefGoogle ScholarPubMed
Soussain, C, Suzan, F, Hoang-Xuan, K, Cassoux, N, Levy, V, Azar, N, et al. Results of intensive chemotherapy followed by hematopoietic stem-cell rescue in 22 patients with refractory or recurrent primary CNS lymphoma or intraocular lymphoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2001;19(3):742–9.CrossRefGoogle ScholarPubMed
Williams, CD, Pearce, R, Taghipour, G, Green, ES, Philip, T, Goldstone, AH. Autologous bone marrow transplantation for patients with non-Hodgkin’s lymphoma and CNS involvement: those transplanted with active CNS disease have a poor outcome–a report by the European Bone Marrow Transplant Lymphoma Registry. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 1994;12(11):2415–22.CrossRefGoogle ScholarPubMed
Plotkin, SR, Betensky, RA, Hochberg, FH, Grossman, SA, Lesser, GJ, Nabors, LB, et al. Treatment of relapsed central nervous system lymphoma with high-dose methotrexate. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 2004;10(17):5643–6.CrossRefGoogle ScholarPubMed
Doolittle, ND, Abrey, LE, Shenkier, TN, Tali, S, Bromberg, JE, Neuwelt, EA, et al. Brain parenchyma involvement as isolated central nervous system relapse of systemic non-Hodgkin lymphoma: an International Primary CNS Lymphoma Collaborative Group report. Blood. 2008;111(3):1085–93.CrossRefGoogle ScholarPubMed
Lotze, C, Schuler, F, Kruger, WH, Hirt, C, Kirsch, M, Vogelgesang, S, et al. Combined immunoradiotherapy induces long-term remission of CNS relapse of peripheral, diffuse, large-cell lymphoma after allogeneic stem cell transplantation: case study. Neuro-oncology. 2005;7(4):508–10.CrossRefGoogle ScholarPubMed
Varadi, G, Or, R, Kapelushnik, J, Naparstek, E, Nagler, A, Brautbar, C, et al. Graft-versus-lymphoma effect after allogeneic peripheral blood stem cell transplantation for primary central nervous system lymphoma. Leukemia & Lymphoma. 1999;34(1–2):185–90.CrossRefGoogle ScholarPubMed
Saad, AG, Alyea, EP, 3rd, Wen, PY, Degirolami, U, Kesari, S. Graft-versus-host disease of the CNS after allogeneic bone marrow transplantation. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2009;27(30):e147–9.CrossRefGoogle ScholarPubMed
Kickingereder, P, Wiestler, B, Sahm, F, Heiland, S, Roethke, M, Schlemmer, HP, et al. Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology. 2014;272(3):843–50.CrossRefGoogle ScholarPubMed
Maza, S, Buchert, R, Brenner, W, Munz, DL, Thiel, E, Korfel, A, et al. Brain and whole-body FDG-PET in diagnosis, treatment monitoring and long-term follow-up of primary CNS lymphoma. Radiology and Oncology. 2013;47(2):103–10.CrossRefGoogle ScholarPubMed
Kasenda, B, Haug, V, Schorb, E, Fritsch, K, Finke, J, Mix, M, et al. 18F-FDG PET is an independent outcome predictor in primary central nervous system lymphoma. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine. 2013;54(2):184–91.CrossRefGoogle ScholarPubMed
Treon, SP, Cao, Y, Xu, L, Yang, G, Liu, X, Hunter, ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014;123(18):2791–6.CrossRefGoogle ScholarPubMed
Grupp, SA, Kalos, M, Barrett, D, Aplenc, R, Porter, DL, Rheingold, SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. The New England Journal of Medicine. 2013;368(16):1509–18.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×