Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-29T14:28:23.236Z Has data issue: false hasContentIssue false

Part VI - Misc

Published online by Cambridge University Press:  01 December 2023

Omar Viswanath
Affiliation:
Creighton University, Omaha
Ivan Urits
Affiliation:
Southcoast Brain & Spine Center, Wareham
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Johnson, RW, Rice, ASC. Clinical practice: Postherpetic neuralgia. N Engl J Med. 2014;371(16):15261533.CrossRefGoogle ScholarPubMed
Sampathkumar, P, Drage, LA, Martin, DP. Herpes zoster (Shingles) and postherpetic neuralgia. Mayo Clin Proc. 2009;84(3):274280.CrossRefGoogle ScholarPubMed
Insinga, RP, Itzler, RF, Pellissier, JM, Saddier, P, Nikas, AA. The incidence of herpes zoster in a United States administrative database. J Gen Intern Med. 2005;20(8):748753.CrossRefGoogle Scholar
Massengill, JS, Kittredge, JL. Practical considerations in the pharmacological treatment of postherpetic neuralgia for the primary care provider. J Pain Res. 2014;7:125132.CrossRefGoogle ScholarPubMed
Johnson, BH, Palmer, L, Gatwood, J et al. Annual incidence rates of herpes zoster among an immunocompetent population in the United States. BMC Infect Dis. 2015;15(1):15.CrossRefGoogle ScholarPubMed
Forbes, HJ, Thomas, SL, Smeeth, L et al. A systematic review and meta-analysis of risk factors for postherpetic neuralgia. Pain. 2016;157(1):3054.CrossRefGoogle ScholarPubMed
Head, H, Campbell, AW. The pathology of herpes zoster and its bearing on sensory localisation. Brain. 1900;23(3):353362.CrossRefGoogle Scholar
Hadley, GR, Gayle, JA, Ripoll, J et al. Post-herpetic neuralgia: A review. Curr Pain Headache Rep. 2016;20(3):17. doi: 10.1007/s11916-016-0548-x.CrossRefGoogle ScholarPubMed
Fields, HL, Rowbotham, M, Baron, R. Postherpetic neuralgia: Irritable nociceptors and deafferentation. Neurobiol Dis. 1998;5(4):209227.CrossRefGoogle ScholarPubMed
Garry, EM, Delaney, A, Anderson, HA et al. Varicella zoster virus induces neuropathic changes in rat dorsal root ganglia and behavioral reflex sensitisation that is attenuated by gabapentin or sodium channel blocking drugs. Pain. 2005;118(1–2):97111.CrossRefGoogle ScholarPubMed
Watson, CPN, Deck, JH, Morshead, C, Van der Kooy, D, Evans, RJ. Post-herpetic neuralgia: Further post-mortem studies of cases with and without pain. Pain. 1991;44(2):105117.CrossRefGoogle ScholarPubMed
Woolf, CJ, Max, MB. Mechanism-based pain diagnosis: Issues for analgesic drug development. Anesthesiology. 2001;95(1):241249.CrossRefGoogle ScholarPubMed
Nalamachu, S, Morley-Forster, P. Diagnosing and managing postherpetic neuralgia. Drugs Aging. 2012;29(11):863869.CrossRefGoogle ScholarPubMed
Dworkin, RH, Gnann, JW, Oaklander, AL et al. Diagnosis and assessment of pain associated with herpes zoster and postherpetic neuralgia. J Pain. 2008;9(Suppl 1):3744.CrossRefGoogle ScholarPubMed
Dooling, KL, Guo, A, Patel, M et al. Recommendations of the advisory committee on immunization practices for use of herpes zoster vaccines. Morb Mortal Wkly Rep. 2018;67(3):103108.CrossRefGoogle ScholarPubMed
Finnerup, NB, Attal, N, Haroutounian, S et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015;14(2):162173.CrossRefGoogle ScholarPubMed
Dworkin, RH, O’Connor, AB, Kent, J et al. International association for the study of pain neuropathic pain special interest group. Interventional management of neuropathic pain: NeuPSIG recommendations. Pain. 2013;154(11):22492261.CrossRefGoogle Scholar
Max, MB. Treatment of post-herpetic neuralgia: Antidepressants. Ann Neurol. 1994;35(Suppl 1):S50S53.CrossRefGoogle ScholarPubMed
Liang, J, Liu, X, Zheng, J, Yu, S. Effect of amitriptyline on tetrodotoxin-resistant Nav1.9 currents in nociceptive trigeminal neurons. Mol Pain. 2013;9:31. doi: 10.1186/1744-8069-9-31.CrossRefGoogle ScholarPubMed
Yalcin, I, Choucair-Jaafar, N, Benbouzid, M et al. β2-adrenoceptors are critical for antidepressant treatment of neuropathic pain. Ann Neurol. 2009;65(2):218225.CrossRefGoogle Scholar
Dworkin, RH, O’Connor, AB, Audette, J et al. Recommendations for the pharmacological management of neuropathic pain: An overview and literature update. Mayo Clin Proc. 2010;85(Suppl 3):S3S14.CrossRefGoogle ScholarPubMed
Attal, N. Pharmacological treatments of neuropathic pain: The latest recommendations. Rev Neurol (Paris). 2019;175(1–2):4650.CrossRefGoogle ScholarPubMed
Bohnert, AS, Ilgen, MA, Trafton, JA et al. Trends and regional variation in opioid overdose mortality among veterans health administration patients, fiscal year 2001 to 2009. Clin J Pain. 2014;30(7):605612. doi: 10.1097/AJP.0000000000000011.CrossRefGoogle ScholarPubMed
Johnson, RW, Rice, ASC. Postherpetic neuralgia. N Engl J Med. 2014;371(16):15261533.CrossRefGoogle ScholarPubMed
Dworkin, RH, O’Connor, AB, Backonja, M et al. Pharmacologic management of neuropathic pain: Evidence-based recommendations. Pain. 2007;132(3):237251.CrossRefGoogle ScholarPubMed
Finnerup, NB, Otto, M, McQuay, HJ, Jensen, TS, Sindrup, SH. Algorithm for neuropathic pain treatment: An evidence based proposal. Pain. 2005;118(3):289305.CrossRefGoogle ScholarPubMed
McNicol, ED, Midbari, A, Eisenberg, E. Opioids for neuropathic pain. Cochrane Database Syst Rev. 2013;(8):CD006146. doi: 10.1002/14651858.CD006146.pub2.CrossRefGoogle ScholarPubMed
Bernstein, JE, Korman, NJ, Bickers, DR, Dahl, MV, Millikan, LE. Topical capsaicin treatment of chronic postherpetic neuralgia. J Am Acad Dermatol. 1989;21(2 Pt 1):265270.CrossRefGoogle ScholarPubMed
Backonja, MM, Malan, TP, Vanhove, GF, Tobias, JK. NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: A randomized, double-blind, controlled study with an open-label extension. Pain Med. 2010;11(4):600608.CrossRefGoogle ScholarPubMed
Watson, CP, Tyler, KL, Bickers, DR et al. A randomized vehicle-controlled trial of topical capsaicin in the treatment of postherpetic neuralgia. Clin Ther. 1993;15(3):510526.Google ScholarPubMed
Anand, P, Bley, K. Topical capsaicin for pain management: Therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8 patch. Br J Anaesth. 2011;107:490502.CrossRefGoogle ScholarPubMed
Derry, S, Rice, AS, Cole, P, Tan, T, Moore, RA. Topical capsaicin (high concentration) for chronic neuropathic pain in adults. Cochrane database Syst Rev. 2017;1:CD007393.Google ScholarPubMed
de León-Casasola, OA, Mayoral, V. The topical 5% lidocaine medicated plaster in localized neuropathic pain: A reappraisal of the clinical evidence. J Pain Res. 2016;9:6779.CrossRefGoogle ScholarPubMed
Derry, S, Wiffen, PJ, Moore, RA, Quinlan, J. Topical lidocaine for neuropathic pain in adults. Cochrane database Syst Rev. 2014;2014(7):CD010958.Google ScholarPubMed
Cui, M, Khanijou, S, Rubino, J, Aoki, KR. Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain. 2004;107(1):125133.CrossRefGoogle ScholarPubMed
Lin, C-S, Lin, Y-C, Lao, H-C, Chen, C-C. Interventional treatments for postherpetic neuralgia: A systematic review. Pain Physician. 2019;22(3):209228.CrossRefGoogle ScholarPubMed
Sluka, KA, Walsh, D. Transcutaneous electrical nerve stimulation: Basic science mechanisms and clinical effectiveness. J Pain. 2003;4(3):109121.CrossRefGoogle ScholarPubMed
Barbarisi, M, Pace, MC, Passavanti, MB et al. Pregabalin and transcutaneous electrical nerve stimulation for postherpetic neuralgia treatment. Clin J Pain. 2010;26(7):567572.CrossRefGoogle ScholarPubMed
, G, , G, Feng, Y, Tang, WZ, Lv, ZW. Transcutaneous electrical nerve stimulation in combination with cobalamin injection for postherpetic neuralgia. Am J Phys Med Rehabil. 2014;93(4):287298.CrossRefGoogle ScholarPubMed
Wu, CL, Marsh, A, Dworkin, RH. The role of sympathetic nerve blocks in herpes zoster and postherpetic neuralgia. Pain. 2000;87(2):121129.CrossRefGoogle ScholarPubMed

References

Bruehl, S. Complex regional pain syndrome. BMJ. 2016;38:8286.Google Scholar
Van Velzen, GAJ, Perez, RSGM, Van Gestel, MA et al. Health-related quality of life in 975 patients with complex regional pain syndrome type 1. Pain. 2014;155(3):629634.CrossRefGoogle ScholarPubMed
Sandroni, P, Benrud-Larson, LM, McClelland, RL, Low, PA. Complex regional pain syndrome type I: Incidence and prevalence in Olmsted county, a population-based study. Pain. 2003;103:199207.CrossRefGoogle ScholarPubMed
Elsharydah, A, Loo, NH, Minhajuddin, A, Kandil, ES. Complex regional pain syndrome type 1 predictors: Epidemiological perspective from a national database analysis. J Clin Anesth. 2017;39:3437.CrossRefGoogle ScholarPubMed
de Mos, M, de Bruijn, AGJ, Huygen, FJPM et al. The incidence of complex regional pain syndrome: A population-based study. Pain. 2007;129(1–2):1220.CrossRefGoogle ScholarPubMed
Rewhorn, MJ, Leung, AH, Gillespie, A, Moir, JS, Miller, R. Incidence of complex regional pain syndrome after foot and ankle surgery. J Foot Ankle Surg. 2014;53(3):256258.CrossRefGoogle ScholarPubMed
Jellad, A, Salah, S, Ben Salah Frih, Z. Complex regional pain syndrome type I: Incidence and risk factors in patients with fracture of the distal radius. Arch Phys Med Rehabil. 2014;95(3):487492.CrossRefGoogle ScholarPubMed
Bean, DJ, Johnson, MH, Kydd, RR. Relationships between psychological factors, pain, and disability in complex regional pain syndrome and low back pain. Clin J Pain. 2014;30(8):647653.CrossRefGoogle ScholarPubMed
Beerthuizen, A, Stronks, DL, Van’T Spijker, A et al. Demographic and medical parameters in the development of complex regional pain syndrome type 1 (CRPS1): Prospective study on 596 patients with a fracture. Pain. 2012;153(6):11871192.CrossRefGoogle ScholarPubMed
Birklein, F, Schlereth, T. Complex regional pain syndrome: Significant progress in understanding. Pain. 2015;156:S94S103.CrossRefGoogle ScholarPubMed
Marinus, J, Moseley, GL, Birklein, F et al. Clinical features and pathophysiology of complex regional pain syndrome. Lancet Neurol. 2011;10(7):637648.CrossRefGoogle ScholarPubMed
Shi, X, Wang, L, Li, X et al. Neuropeptides contribute to peripheral nociceptive sensitization by regulating interleukin-1β production in keratinocytes. Anesth Analg. 2011;113(1):175183.CrossRefGoogle ScholarPubMed
Sahbaie, P, Shi, X, Guo, TZ et al. Role of substance P signaling in enhanced nociceptive sensitization and local cytokine production after incision. Pain. 2009;145(3):341349.CrossRefGoogle ScholarPubMed
Oaklander, AL, Fields, HL. Is reflex sympathetic dystrophy/complex regional pain syndrome type I a small-fiber neuropathy? Ann Neurol. 2009;65(6):629638.CrossRefGoogle ScholarPubMed
Albrecht, PJ, Hines, S, Eisenberg, E et al. Pathologic alterations of cutaneous innervation and vasculature in affected limbs from patients with complex regional pain syndrome. Pain. 2006;120(3):244266.CrossRefGoogle ScholarPubMed
van der Laan, L, ter Laak, HJ, Gabreëls-Festen, A, Gabreëls, F, Goris, RJ. Complex regional pain syndrome type I (RSD): Pathology of skeletal muscle and peripheral nerve. Neurology. 1998;51(1):2025.CrossRefGoogle ScholarPubMed
Reinersmann, A, Maier, C, Schwenkreis, P, Lenz, M. Complex regional pain syndrome: More than a peripheral disease. Pain Manag. 2013;3(6):495502.CrossRefGoogle ScholarPubMed
Hotta, J, Saari, J, Koskinen, M et al. Abnormal brain responses to action observation in complex regional pain syndrome. J Pain. 2017;18(3):255265.CrossRefGoogle ScholarPubMed
Goebel, A, Blaes, F. Complex regional pain syndrome, prototype of a novel kind of autoimmune disease. Autoimmun Rev. 2013;12(6):682686.CrossRefGoogle ScholarPubMed
Guo, T, Shi, X, Li, W et al. Passive transfer autoimmunity in a mouse model of complex regional pain syndrome. Pain. 2017;158(12):24102421. doi: 10.1097/j.pain.0000000000001046.CrossRefGoogle Scholar
Merskey, H, Bogduk, N. Classification of chronic pain: IASP pain terminology. 1994. www.iasp-pain.org/publications/free-ebooks/classification-of-chronic-pain-second-edition-revised/.Google Scholar
Harden, NR, Bruehl, S, Perez, RSGM, et al. Validation of proposed diagnostic criteria (the “Budapest Criteria”) for Complex Regional Pain Syndrome. Pain. 2010;150(2):268274. doi: 10.1016/j.pain.2010.04.030.CrossRefGoogle ScholarPubMed
Harden, RN, Bruehl, S, Perez, RSGM et al. Validation of proposed diagnostic criteria (the “Budapest Criteria”) for complex regional pain syndrome. Pain. 2010;150(2):268274.CrossRefGoogle ScholarPubMed
Bruehl, S, Harden, RN, Galer, BS et al. External validation of IASP diagnostic criteria for complex regional pain syndrome and proposed research diagnostic criteria. Pain. 1999;81(1–2):147154.CrossRefGoogle ScholarPubMed
Oerlemans, HM, Oostendorp, RAB, de Boo, T et al. Adjuvant physical therapy versus occupational therapy in patients with reflex sympathetic dystrophy/complex regional pain syndrome type I. Arch Phys Med Rehabil. 2000;81(1):4956.CrossRefGoogle ScholarPubMed
Rome, L. The place of occupational therapy in rehabilitation strategies of complex regional pain syndrome: Comparative study of 60 cases. Hand Surg Rehabil. 2016;35(5):355362.CrossRefGoogle ScholarPubMed
Oerlemans, HM, Oostendorp, RA, de Boo, T, Goris, RJ. Pain and reduced mobility in complex regional pain syndrome I: Outcome of a prospective randomised controlled clinical trial of adjuvant physical therapy versus occupational therapy. Pain. 1999;83(1):7783.CrossRefGoogle ScholarPubMed
Smart, KM, Wand, BM, O’Connell, NE. Physiotherapy for pain and disability in adults with complex regional pain syndrome (CRPS) types I and II. Cochrane Database Syst Rev. 2016;2(2):CD010853. doi: 10.1002/14651858.CD010853.pub2.Google ScholarPubMed
Kemler, MA, Barendse, GA, van Kleef, M et al. Spinal cord stimulation in patients with chronic reflex sympathetic dystrophy. N Engl J Med. 2000;343(9):618624.CrossRefGoogle ScholarPubMed
Kumar, K, Rizvi, S, Bnurs, SB. Spinal cord stimulation is effective in management of complex regional pain syndrome I: Fact or fiction. Neurosurgery. 2011;69(3):566578.CrossRefGoogle ScholarPubMed
Connolly, SB, Prager, JP, Harden, RN. A systematic review of ketamine for complex regional pain syndrome. Pain Med. 2015;16(5):943969.CrossRefGoogle ScholarPubMed
Penn, R, Kroin, J. Intrathecal baclofen alleviates spinal cord spasticity. Lancet. 1984;323:1078. doi: 10.1016/s0140-6736(84)91487-9.CrossRefGoogle Scholar
Melcangic, M, Bowery, NG. GABA and its receptors in the spinal cord. Trends Pharmacol Sci. 1996;17(12):457462.CrossRefGoogle Scholar
van Rijn, MA, Munts, AG, Marinus, J et al. Intrathecal baclofen for dystonia of complex regional pain syndrome. Pain. 2009;143(1–2):4147.CrossRefGoogle ScholarPubMed
Ferraro, MC, Cashin, AG, Wand, BM, et al. Interventions for treating pain and disability in adults with complex regional pain syndrome: An overview of systematic reviews (Review). Cochrane Database Syst Rev. 2013;6(6): CD009416. doi: 10.1002/14651858.CD009416.pub3.Google Scholar
Chevreau, M, Romand, X, Gaudin, P, Juvin, R, Baillet, A. Bisphosphonates for treatment of complex regional pain syndrome type 1: A systematic literature review and meta-analysis of randomized controlled trials versus placebo. Jt Bone Spine. 2017;84(4):393399.CrossRefGoogle ScholarPubMed
O’Connell, NE, Wand, BM, McAuley, J, Marston, L, Moseley, GL. Interventions for treating pain and disability in adults with complex regional pain syndrome: An overview of systematic reviews. In O’Connell, NE, ed. Cochrane batabase of systematic reviews. John Wiley; 2013.Google Scholar
Goebel, A, Bisla, J, Carganillo, R et al. Low-dose intravenous immunoglobulin treatment for long-standing complex regional pain syndrome: A randomized trial. Ann Intern Med. 2017;167(7):476483.CrossRefGoogle ScholarPubMed
Goebel, A, Bisla, J, Carganillo, R et al. A randomised placebo-controlled Phase III multicentre trial: Low-dose intravenous immunoglobulin treatment for long-standing complex regional pain syndrome (LIPS trial). NIHR Journals Library. 2017. PMID: 29144634.CrossRefGoogle Scholar
Jaiman, A, Lokesh, M, Neogi, DS. Effect of vitamin C on prevention of complex regional pain syndrome type I in foot and ankle surgery. Foot Ankle Surg. 2011;17:207. doi: 10.1016/j.fas.2010.05.008.CrossRefGoogle ScholarPubMed
Shibuya, N, Humphers, JM, Agarwal, MR, Jupiter, DC. Efficacy and safety of high-dose vitamin C on complex regional pain syndrome in extremity trauma and surgery: Systematic review and meta-analysis. J Foot Ankle Surg. 2013;52(1):6266.CrossRefGoogle ScholarPubMed
Zollinger, PE, Tuinebreijer, WE, Breederveld, RS, Kreis, RW. Can vitamin C prevent complex regional pain syndrome in patients with wrist fractures? A randomized, controlled, multicenter dose-response study. J Bone Joint Surg Am. 2007;89(7):14241431.CrossRefGoogle ScholarPubMed
Meena, S, Sharma, P, Gangary, SK, Chowdhury, B. Role of vitamin C in prevention of complex regional pain syndrome after distal radius fractures: A meta-analysis. Eur J Orthop Surg Traumatol. 2015;25(4):637641.CrossRefGoogle ScholarPubMed
Malay, S, Chung, KC. Testing the validity of preventing complex regional pain syndrome with vitamin C after distal radius fracture. J Hand Surg Am. 2014;39(11):22512257.CrossRefGoogle ScholarPubMed
Kim, JH, Kim, YC, Nahm, FS, Lee, PB. The therapeutic effect of vitamin C in an animal model of complex regional pain syndrome produced by prolonged hindpaw ischemia-reperfusion in rats. Int J Med Sci. 2017;14(1):97101.CrossRefGoogle Scholar
Midbari, A, Suzan, E, Adler, T et al. Amputation in patients with complex regional pain syndrome: A comparative study between amputees and non-amputees with intractable disease. Bone Joint J. 2016;98-B(4):548554.CrossRefGoogle ScholarPubMed

References

Borhade, MB, Kondamudi, NP. Sickle cell crisis. In StatPearls. 2022. pp. 365379. Treasure Island (FL): StatPearls Publishing.Google Scholar
Sundd, P, Gladwin, MT, Novelli, EM. Pathophysiology of sickle cell disease. Annu Rev Pathol Mech Dis. 2019;14(1):421058352. doi: 10.1146/annurev-pathmechdis-012418-012838.CrossRefGoogle ScholarPubMed
Dampier, C, Palermo, TM, Darbari, DS et al. AAPT diagnostic criteria for chronic sickle cell disease pain. J Pain. 2017;18(5):490498.CrossRefGoogle ScholarPubMed
Brandow, AM, DeBaun, MR. Key components of pain management for children and adults with sickle cell disease. Hematol Oncol Clin North Am. 2018;32(3):535550.CrossRefGoogle ScholarPubMed
Strouse, J. Sickle cell disease. Handb Clin Neurol. 2016;138:311324.CrossRefGoogle ScholarPubMed
Azar, S, Wong, TE. Sickle cell disease: A brief update. Med Clin North Am. 2017;101(2):375393.CrossRefGoogle ScholarPubMed
Cacciotti, C, Vaiselbuh, S, Romanos-Sirakis, E. Pain management for sickle cell disease in the pediatric emergency department: Medications and hospitalization trends. Clin Pediatr. 2017;56:11091114.CrossRefGoogle ScholarPubMed
Tran, H, Gupta, M, Gupta, K. Targeting novel mechanisms of pain in sickle cell disease. Blood. 2017;130(22):23772385.CrossRefGoogle ScholarPubMed
Nobrega, R, Sheehy, KA, Lippold, C et al. Patient characteristics affect the response to ketamine and opioids during the treatment of vaso-occlusive episode-related pain in sickle cell disease. Pediatr Res. 2018;83(2):445454.CrossRefGoogle ScholarPubMed
Riley, TR, Boss, A, McClain, D, Riley, TT. Review of medication therapy for the prevention of sickle cell crisis. Pharm Ther. 2018;43(7):417437.Google ScholarPubMed
Lubega, FA, DeSilva, MS, Munube, D et al. Low dose ketamine versus morphine for acute severe vaso occlusive pain in children: A randomized controlled trial. Scand J Pain. 2018;18(1):1927.CrossRefGoogle ScholarPubMed
Palm, N, Floroff, C, Hassig, TB, Boylan, A, Kanter, J. Low-dose ketamine infusion for adjunct management during vaso-occlusive episodes in adults with sickle cell disease: A case series. J Pain Palliat Care Pharmacother. 2018;32(1):2026.CrossRefGoogle ScholarPubMed
Young, JR, Sawe, HR, Mfinanga, JA et al. Subdissociative intranasal ketamine plus standard pain therapy versus standard pain therapy in the treatment of paediatric sickle cell disease vaso-occlusive crises in resource-limited settings: Study protocol for a randomised controlled trial. BMJ Open. 2017;7(7):e017190.CrossRefGoogle ScholarPubMed
Kelly, GS, Stewart, RW, Strouse, JJ, Anders, JF. Intranasal fentanyl improves time to analgesic delivery in sickle cell pain crises. Am J Emerg Med. 2018;36(7):13051307. doi: 10.1016/j.ajem.2017.11.015.CrossRefGoogle ScholarPubMed
Rousseau, V, Morelle, M, Arriuberge, C et al. Efficacy and tolerance of lidocaine 5% patches in neuropathic pain and pain related to vaso-occlusive sickle cell crises in children: A prospective multicenter clinical study. Pain Pract. 2018;18(6):788797.CrossRefGoogle ScholarPubMed
Brittain, JE, Anea, C, Desai, P et al. Effect of eptifibatide on inflammation during acute pain episodes in sickle cell disease. Am J of Hematol. 2018;93:E99E101.CrossRefGoogle ScholarPubMed
Bhatt, RR, Martin, SR, Evans, S et al. The effect of hypnosis on pain and peripheral blood flow in sickle-cell disease: A pilot study. J Pain Res. 2017;10:16351644.CrossRefGoogle ScholarPubMed
Agrawal, AK, Robertson, S, Litwin, L et al. Virtual reality as complementary pain therapy in hospitalized patients with sickle cell disease. Pediatr Blood Cancer. 2019;66(2):e27525. doi: 10.1002/pbc.27525.CrossRefGoogle ScholarPubMed
Palermo, TM, Zempsky, WT, Dampier, CD et al. iCanCope with sickle cell pain: Design of a randomized controlled trial of a smartphone and web-based pain self-management program for youth with sickle cell disease. Contemp Clin Trials. 2018;74:8896.CrossRefGoogle ScholarPubMed
Palermo, TM, Dudeney, J, Santanelli, JP, Carletti, A, Zempsky, WT. Feasibility and acceptability of internet-delivered cognitive behavioral therapy for chronic pain in adolescents with sickle cell disease and their parents. J Pediatr Hematol Oncol. 2018;40(2):122127.CrossRefGoogle ScholarPubMed

References

Urits, I, Lavin, C, Patel, M et al. Chronic pain following cosmetic breast surgery: A comprehensive review. Pain Ther. 2020;9:7182. https://doi.org/10.1007/s40122-020-00150-.CrossRefGoogle ScholarPubMed
van Elk, N, Steegers, MA, van der Weij, LP et al. Chronic pain in women after breast augmentation: Prevalence, predictive factors and quality of life. Eur J Pain. 2009;13(6):660661.CrossRefGoogle ScholarPubMed
Monib, S, Abdelaziz, MI. Epidemiology and predictive factors for persistent breast pain following breast-conserving surgery. Cureus. 2021;13(3):e14063. https://doi.org/10.7759/cureus.14063.Google ScholarPubMed
Wang, L, Cohen, JC, Devasenapathy, N et al. Prevalence and intensity of persistent post-surgical pain following breast cancer surgery: A systematic review and meta-analysis of observational studies. Br J Anaesth. 2020;125(3):346357. https://doi.org/10.1016/j.bja.2020.04.088.CrossRefGoogle ScholarPubMed
Miaskowski, C, Cooper, B, Paul, SM et al. Identification of patient subgroups and risk factors for persistent breast pain following breast cancer surgery. J Pain. 2012;13(12):11721187. https://doi.org/10.1016/j.jpain.2012.09.013.CrossRefGoogle ScholarPubMed
Langford, DJ, Schmidt, B, Levine, JD et al. Preoperative breast pain predicts persistent breast pain and disability after breast cancer surgery. J Pain Symptom Manage. 2015;49(6):981994. https://doi.org/10.1016/j.jpainsymman.2014.11.292.CrossRefGoogle ScholarPubMed
Fecho, K, Miller, NR, Merritt, SA et al. Acute and persistent postoperative pain after breast surgery. Pain Med. 2009;10(4):708715. https://doi.org/10.1111/j.1526-4637.2009.00611.x.CrossRefGoogle ScholarPubMed
Ducic, I, Seiboth, LA, Iorio, ML. Chronic postoperative breast pain: Danger zones for nerve injuries. Plast Reconstr Surg. 2011;127(1):4146. https://doi.org/10.1097/PRS.0b013e3181f9587f.CrossRefGoogle ScholarPubMed
Fregoso, G, Wang, A, Tseng, K, Wang, J. Transition from acute to chronic pain: Evaluating risk for chronic postsurgical pain. Pain Physician. 2019;22(5):479488.Google ScholarPubMed
Kokosis, G, Chopra, K, Darrach, H, Dellon, AL, Williams, EH. Re-visiting post-breast surgery pain syndrome: Risk factors, peripheral nerve associations and clinical implications. Gland Surg. 2019;8(4):407415. https://doi.org/10.21037/gs.2019.07.05.CrossRefGoogle ScholarPubMed
Von Sperling, ML, Høimyr, H, Finnerup, K, Jensen, TS, Finnerup, NB. Persistent pain and sensory changes following cosmetic breast augmentation. Eur J Pain. 2011;15(3):328332.CrossRefGoogle ScholarPubMed
Ducic, I, Zakaria, HM, Felder, JM, Fantus, S. Nerve injuries in aesthetic breast surgery: Systematic review and treatment options. Aesthetic Surg J. 2014;34(6):841856.CrossRefGoogle ScholarPubMed
Waltho, D, Rockwell, G. Post-breast surgery pain syndrome: Establishing a consensus for the definition of post-mastectomy pain syndrome to provide a standardized clinical and research approach: A review of the literature and discussion. Can J Surg. 2016;59(5):342350.CrossRefGoogle ScholarPubMed
Classification of Chronic Pain. Descriptions of chronic pain syndromes and definitions of pain terms. Prepared by the International Association for the Study of Pain, Subcommittee on Taxonomy. Pain Suppl. 1986;3:S1S226.Google Scholar
Couceiro, TC, Valença, MM, Raposo, MC, Orange, FA, Amorim, MM. Prevalence of post-mastectomy pain syndrome and associated risk factors: A cross-sectional cohort study. Pain Manag Nurs. 2014;15(4):731737. https://doi.org/10.1016/j.pmn.2013.07.011.CrossRefGoogle ScholarPubMed
Chopra, K, Kokosis, G, Slavin, B, Williams, E, Dellon, AL. Painful complications after cosmetic surgery: Management of peripheral nerve injury. Aesthet Surg J. 2019;39(12):14271435. https://doi.org/10.1093/asj/sjy284.CrossRefGoogle ScholarPubMed
Massingill, J, Jorgensen, C, Dolata, J, Sehgal, AR. Myofascial massage for chronic pain and decreased upper extremity mobility after breast cancer surgery. Int J Ther Massage Bodyw Res Educ Pract. 2018;11(3):49.Google ScholarPubMed
Dowell, D, Haegerich, TM, Chou, R. CDC guideline for prescribing opioids for chronic pain – United States, 2016. JAMA. 2016;315(15):16241645.CrossRefGoogle Scholar
Kulhari, S, Bharti, N, Bala, I, Arora, S, Singh, G. Efficacy of pectoral nerve block versus thoracic paravertebral block for postoperative analgesia after radical mastectomy: A randomized controlled trial. Br J Anaesth. 2016;117(3):382386.CrossRefGoogle ScholarPubMed

References

Maloney, J, Wie, C, Pew, S et al. Post-thoracotomy pain syndrome. Curr Pain Headache Rep. 2022;26(9):677681. https://doi.org/10.1007/s11916-022-01069-z.CrossRefGoogle ScholarPubMed
Khelemsky, Y, Noto, CJ. Preventing post-thoracotomy pain syndrome. Mt Sinai J Med. 2012;79(1):133139. https://doi.org/10.1002/MSJ.21286.CrossRefGoogle ScholarPubMed
Hopkins, KG, Rosenzweig, M. Post-thoracotomy pain syndrome: Assessment and intervention. Clin J Oncol Nurs. 2012;16(4):365370. https://doi.org/10.1188/12.CJON.365-370.CrossRefGoogle ScholarPubMed
Arends, S, Böhmer, AB, Poels, M et al. Post-thoracotomy pain syndrome: Seldom severe, often neuropathic, treated unspecific, and insufficient. Pain Rep. 2020;5(2):e810. https://doi.org/10.1097/PR9.0000000000000810.CrossRefGoogle ScholarPubMed
El-Hag-Aly, MA, Hagag, MG, Allam, HK. If post-thoracotomy pain is the target, integrated thoracotomy is the choice. Gen Thorac Cardiovasc Surg. 2019;67(11):955961. https://doi.org/10.1007/S11748-019-01126-2/TABLES/4.CrossRefGoogle ScholarPubMed
Khalil, AE, Abdallah, NM, Bashandy, GM, Kaddah, TAH. Ultrasound-guided serratus anterior plane block versus thoracic epidural analgesia for thoracotomy pain. J Cardiothorac Vasc Anesth. 2017;31(1):152158. https://doi.org/10.1053/J.JVCA.2016.08.023.CrossRefGoogle ScholarPubMed
Elsabeeny, WY, Ibrahim, MA, Shehab, NN, Mohamed, A, Wadod, MA. Serratus anterior plane block and erector spinae plane block versus thoracic epidural analgesia for perioperative thoracotomy pain control: A randomized controlled study. J Cardiothorac Vasc Anesth. 2021;35(10):29282936. https://doi.org/10.1053/J.JVCA.2020.12.047.CrossRefGoogle ScholarPubMed
Reyad, RM, Shaker, EH, Ghobrial, HZ et al. The impact of ultrasound-guided continuous serratus anterior plane block versus intravenous patient-controlled analgesia on the incidence and severity of post-thoracotomy pain syndrome: A randomized, controlled study. Eur J Pain. 2020;24(1):159170. https://doi.org/10.1002/EJP.1473.CrossRefGoogle ScholarPubMed
Gaber, S, Saleh, E, Elshaikh, S et al. Role of perioperative pregabalin in the management of acute and chronic post-thoracotomy pain. Open Access Maced J Med Sci. 2019;7(12):19741978. https://doi.org/10.3889/OAMJMS.2019.556.CrossRefGoogle ScholarPubMed
Fawzi, HM, El-Tohamy, SA. Effect of perioperative oral pregabalin on the incidence of post-thoracotomy pain syndrome. Ain-Shams J Anaesthesiology. 2014;7(2):143. https://doi.org/10.4103/1687-7934.133350.CrossRefGoogle Scholar
Mendola, C, Cammarota, G, Netto, R et al. S(+)-ketamine for control of perioperative pain and prevention of post thoracotomy pain syndrome: A randomized, double-blind study. Minerva Anestesiol. 2012;78(7):757766. https://pubmed.ncbi.nlm.nih.gov/22441361/.Google ScholarPubMed
Israel, JE, St Pierre, S, Ellis, E et al. Ketamine for the treatment of chronic pain: A comprehensive review. Health Psychol Res. 2021;9(1):112. https://doi.org/10.52965/001C.25535.CrossRefGoogle ScholarPubMed
Abd-Elsayed, A, Lee, S, Jackson, M. Radiofrequency ablation for treating resistant intercostal neuralgia. Ochsner J. 2018;18(1):9193. https://doi.org/10.1043/TOJ-17-0043.Google ScholarPubMed
Engel, AJ. Utility of intercostal nerve conventional thermal radiofrequency ablations in the injured worker after blunt trauma. Pain Physician. 2012;15:E711E718. https://pubmed.ncbi.nlm.nih.gov/22996865/.CrossRefGoogle ScholarPubMed
Theodosiadis, P, Grosomanidis, V, Samoladas, E, Chalidis, BE. Subcutaneous targeted neuromodulation technique for the treatment of intractable chronic postthoracotomy pain. J Clin Anesth. 2010;22(8):638641. https://doi.org/10.1016/J.JCLINANE.2009.10.018.CrossRefGoogle ScholarPubMed
McJunkin, TL, Berardoni, N, Lynch, PJ, Amrani, J. An innovative case report detailing the successful treatment of post-thoracotomy syndrome with peripheral nerve field stimulation. Neuromodulation Technol Neural Interface. 2010;13(4):311314. https://doi.org/10.1111/J.1525-1403.2010.00277.X.CrossRefGoogle ScholarPubMed
Graybill, J, Conermann, T, Kabazie, AJ, Chandy, S. Spinal cord stimulation for treatment of pain in a patient with post thoracotomy pain syndrome. Pain Physician. 2011;14(5):441445. https://pubmed.ncbi.nlm.nih.gov/21927048/.CrossRefGoogle Scholar
Wininger, KL, Bester, ML, Deshpande, KK. Spinal cord stimulation to treat postthoracotomy neuralgia: Non-small-cell lung cancer: A case report. Pain Manag Nurs. 2012;13(1):5259. https://doi.org/10.1016/J.PMN.2011.11.001.CrossRefGoogle ScholarPubMed
lo Bianco, G, Papa, A, Gazzerro, G et al. Dorsal root ganglion stimulation for chronic postoperative pain following thoracic surgery: A pilot study. Neuromodulation. 2021;24(4):774778. https://doi.org/10.1111/NER.13265.CrossRefGoogle ScholarPubMed

References

Ghasemi, N, Razavi, S, Nikzad, E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J. 2017;19(1):110. https://doi.org/10.22074/cellj.2016.4867.Google ScholarPubMed
Monteleone, F, Nicoletti, CG, Stampanoni Bassi, M et al. Nerve growth factor is elevated in the CSF of patients with multiple sclerosis and central neuropathic pain. J Neuroimmunol. 2018;314:8993. https://doi.org/10.1016/j.jneuroim.2017.11.012.CrossRefGoogle ScholarPubMed
Kalia, LV, O’Connor, PW. Severity of chronic pain and its relationship to quality of life in multiple sclerosis. Mult Scler. 2005;11(3):322327. https://doi.org/10.1191/1352458505ms1168oa.CrossRefGoogle ScholarPubMed
Young, J, Amatya, B, Galea, MP, Khan, F. Chronic pain in multiple sclerosis: A 10-year longitudinal study. Scand J Pain. 2017;16:198203. https://doi.org/10.1016/j.sjpain.2017.04.070.CrossRefGoogle ScholarPubMed
Fallata, A, Salter, A, Tyry, T, Cutter, GR, Marrie, RA. Trigeminal neuralgia commonly precedes the diagnosis of multiple sclerosis. Int J MS Care. 2017;19(5):240246. https://doi.org/10.7224/1537-2073.2016-065.CrossRefGoogle ScholarPubMed
Zakrzewska, JM, Wu, J, Brathwaite, TSL. A systematic review of the management of trigeminal neuralgia in patients with multiple sclerosis. World Neurosurg. 2018;111:291306. https://doi.org/10.1016/j.wneu.2017.12.147.CrossRefGoogle ScholarPubMed
Xu, Z, Mathieu, D, Heroux, F et al. Stereotactic radiosurgery for trigeminal neuralgia in patients with multiple sclerosis: A multicenter study. Neurosurgery. 2019;84(2):499505. https://doi.org/10.1093/neuros/nyy142.CrossRefGoogle ScholarPubMed
La Mantia, L, Prone, V. Headache in multiple sclerosis and autoimmune disorders. Neurol Sci. 2015;36(Suppl 1):7578. https://doi.org/10.1007/s10072-015-2146-9.CrossRefGoogle ScholarPubMed
Husain, F, Pardo, G, Rabadi, M. Headache and its management in patients with multiple sclerosis. Curr Treat Options Neurol. 2018;20(4):10. https://doi.org/10.1007/s11940-018-0495-4.CrossRefGoogle ScholarPubMed
Murphy, KL, Bethea, JR, Fischer, R. Neuropathic pain in multiple sclerosis: Current therapeutic intervention and future treatment perspectives. In: Zagon, IS, McLaughlin, PJ, eds. Multiple Sclerosis: Perspectives in Treatment and Pathogenesis. Brisbane: Codon Publications. 2017.Google ScholarPubMed
Solaro, C, Cella, M, Signori, A et al. Identifying neuropathic pain in patients with multiple sclerosis: A cross-sectional multicenter study using highly specific criteria. J Neurol. 2018;265(4):828835. https://doi.org/10.1007/s00415-018-8758-2.CrossRefGoogle ScholarPubMed
Heitmann, H, Biberacher, V, Tiemann, L et al. Prevalence of neuropathic pain in early multiple sclerosis. Mult Scler. 2016;22(9):12241230. https://doi.org/10.1177/1352458515613643.CrossRefGoogle ScholarPubMed
Rice, J, Cameron, M. Cannabinoids for treatment of MS symptoms: State of the evidence. Curr Neurol Neurosci Rep. 2018;18(8):50. https://doi.org/10.1007/s11910-018-0859-x.CrossRefGoogle ScholarPubMed
Landa, L, Jurica, J, Sliva, J, Pechackova, M, Demlova, R. Medical cannabis in the treatment of cancer pain and spastic conditions and options of drug delivery in clinical practice. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2018;162(1):1825. https://doi.org/10.5507/bp.2018.007.CrossRefGoogle ScholarPubMed
Jitpakdee, T, Mandee, S. Strategies for preventing side effects of systemic opioid in postoperative pediatric patients. Paediatr Anaesth. 2014;24(6):561568. https://doi.org/10.1111/pan.12420.CrossRefGoogle ScholarPubMed
Demaneuf, T, Aitken, Z, Karahalios, A et al. Effectiveness of exercise interventions for pain reduction in people with multiple sclerosis: A systematic review and meta-analysis of randomized controlled trials. Arch Phys Med Rehabil. 2019;100(1):128139. https://doi.org/10.1016/j.apmr.2018.08.178.CrossRefGoogle ScholarPubMed
Kahraman, T, Ozdogar, AT, Yigit, P et al. Feasibility of a 6-month yoga program to improve the physical and psychosocial status of persons with multiple sclerosis and their family members. Explore (NY). 2018;14(1):3643. https://doi.org/10.1016/j.explore.2017.07.006.CrossRefGoogle ScholarPubMed
Abboud, H, Hill, E, Siddiqui, J, Serra, A, Walter, B. Neuromodulation in multiple sclerosis. Mult Scler. 2017;23(13):16631676. https://doi.org/10.1177/1352458517736150.CrossRefGoogle ScholarPubMed
Urits, I, Adamian, L, Fiocchi, J et al. Advances in the understanding and management of chronic pain in multiple sclerosis: A comprehensive review. Curr Pain Headache Rep. 2019;23(8):59. https://doi.org/10.1007/s11916-019-0800-2.CrossRefGoogle ScholarPubMed

References

Krigger, KW. Cerebral palsy: An overview. Am Fam Physician. 2006;73(1):91100. www.aafp.org/pubs/afp/issues/2006/0101/p91.html.Google ScholarPubMed
Bonellie, S, Currie, D, Chalmers, J. Comparison of risk factors for cerebral palsy in twins and singletons. Dev Med Child Neurol. 2022;47(9):587591. https://doi.org/10.1111/J.1469-8749.2005.TB01208.X.CrossRefGoogle Scholar
Graham, HK, Rosenbaum, P, Paneth, N et al. Cerebral palsy. Nat Rev Dis Primers. 2016;2(1):125. https://doi.org/10.1038/nrdp.2015.82.Google ScholarPubMed
Guillamón, N, Nieto, R, Pousada, M et al. Quality of life and mental health among parents of children with cerebral palsy: The influence of self-efficacy and coping strategies. J Clin Nurs. 2013;22(11–12):15791590. https://doi.org/10.1111/JOCN.12124.CrossRefGoogle ScholarPubMed
Wimalasundera, N, Stevenson, VL. Cerebral palsy. Pract Neurol. 2016;16(3):184194. https://doi.org/10.1136/PRACTNEUROL-2015-001184.CrossRefGoogle ScholarPubMed
Byrne, R, Noritz, G, Maitre, NL. Implementation of early diagnosis and intervention guidelines for cerebral palsy in a high-risk infant follow-up clinic. Pediatr Neurol. 2017;76:6671. https://doi.org/10.1016/J.PEDIATRNEUROL.2017.08.002.CrossRefGoogle Scholar
Vitrikas, K, Dalton, H, Breish, D. Cerebral palsy: An overview. Am Fam Physician. 2020;101(4):213220. https://doi.org/10.4274/hamidiyemedj.galenos.2021.72792.Google ScholarPubMed
Himmelmann, K, Ahlin, K, Jacobsson, B, Cans, C, Thorsen, P. Risk factors for cerebral palsy in children born at term. Acta Obstet Gynecol Scand. 2011;90(10):10701081 https://doi.org/10.1111/j.1600-0412.2011.01217.x.CrossRefGoogle ScholarPubMed
Bax, M, Tydeman, C, Flodmark, O. Clinical and MRI correlates of cerebral palsy: The European cerebral palsy study. JAMA. 2006;296(13):16021608. https://doi.org/10.1001/JAMA.296.13.1602.CrossRefGoogle ScholarPubMed
Pass, RF, Fowler, KB, Boppana, SB, Britt, WJ, Stagno, S. Congenital cytomegalovirus infection following first trimester maternal infection: Symptoms at birth and outcome. J Clin Virol. 2006;35(2):216220. https://doi.org/10.1016/J.JCV.2005.09.015.CrossRefGoogle ScholarPubMed
Neufeld, MD, Frigon, C, Graham, AS, Mueller, BA. Maternal infection and risk of cerebral palsy in term and preterm infants. J Perinatol. 2005;25(2):108113. https://doi.org/10.1038/SJ.JP.7211219.CrossRefGoogle ScholarPubMed
Wu, YW, Escobar, GJ, Grether, JK et al. Chorioamnionitis and cerebral palsy in term and near-term infants. JAMA. 2003;290(20):26772684. https://doi.org/10.1001/JAMA.290.20.2677.CrossRefGoogle ScholarPubMed
Gibson, CS, MacLennan, AH, Goldwater, PN et al. Neurotropic viruses and cerebral palsy: Population based case-control study. BMJ. 2006;332(7533):7679. https://doi.org/10.1136/BMJ.38668.616806.3A.CrossRefGoogle ScholarPubMed
Pharoah, POD. Cerebral palsy in the surviving twin associated with infant death of the co-twin. Arch Dis Child Fetal Neonatal Ed. 2001;84(2):F111–F116. https://doi.org/10.1136/FN.84.2.F111.CrossRefGoogle ScholarPubMed
Scher, AI, Petterson, B, Blair, E et al. The risk of mortality or cerebral palsy in twins: A collaborative population-based study. Pediatr Res. 2002;52(5):671681. https://doi.org/10.1203/00006450-200211000-00011.CrossRefGoogle ScholarPubMed
Glinianaia, SV, Jarvis, S, Topp, M et al. Intrauterine growth and cerebral palsy in twins: A European multicenter study. Twin Res Hum Genet. 2006;9(3):460466. https://doi.org/10.1375/183242706777591209.CrossRefGoogle ScholarPubMed
Jarvis, S, Glinianaia, SV, Torrioli, MG et al. Cerebral palsy and intrauterine growth in single births: European collaborative study. Lancet. 2003;362(9390):11061111. https://doi.org/10.1016/S0140-6736(03)14466-2.CrossRefGoogle ScholarPubMed
Reddihough, DS, Collins, KJ. The epidemiology and causes of cerebral palsy. Aust J Physiother. 2003;49(1):712. https://doi.org/10.1016/S0004-9514(14)60183-5.CrossRefGoogle ScholarPubMed
Upadhyay, J, Tiwari, N, Ansari, MN. Cerebral palsy: Aetiology, pathophysiology and therapeutic interventions. Clin Exp Pharmacol Physiol. 2020;47(12):18911901. https://doi.org/10.1111/1440-1681.13379.CrossRefGoogle ScholarPubMed
Hankins, GDV, Speer, M. Defining the pathogenesis and pathophysiology of neonatal encephalopathy and cerebral palsy. Obstet Gynaecol. 2003;102(3):628636. https://doi.org/10.1016/S0029-7844(03)00574-X.Google ScholarPubMed
Jacquelin Peck, B, Urits, I, Kassem, H et al. Interventional approaches to pain and spasticity related to cerebral palsy. Psychopharmacol Bull. 2020;50(4 Suppl 1):108120.Google Scholar
Delgado, MR, Hirtz, FD, Aisen, FM et al. Practice parameter: Pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review). Neurology. 2010;74(4):336343.CrossRefGoogle ScholarPubMed
Jacki Peck, B, Urits, I, Crane, J et al. Oral muscle relaxants for the treatment of chronic pain associated with cerebral palsy. Psychopharmacol Bull. 2020;50(4 Suppl 1):142162.Google Scholar
Sinatra, R, Jahr, J, Watkins-Pitchford, J (Eds.). In The essence of analgesia and analgesics. Cambridge: Cambridge University Press. Published online January 1, 2022. pp. 375378. https://doi.org/10.1017/CBO9780511841378.094.Google Scholar

References

Wheeler, AH, Carolina, N. Myofascial pain disorders: Theory to therapy. Drugs. 2004;64(1):4562.CrossRefGoogle ScholarPubMed
Harden, RN, Bruehl, SP, Gass, S, Niemiec, C, Barbick, B. Signs and symptoms of the myofascial pain syndrome: A national survey of pain management providers. Clin J Pain. 2000;16(1):6472.CrossRefGoogle ScholarPubMed
Fleckenstein, J, Zaps, D, Rüger, LJ et al. Discrepancy between prevalence and perceived effectiveness of treatment methods in myofascial pain syndrome: Results of a cross-sectional, nationwide survey. BMC Musculoskelet Disord. 2010;11:32. doi: 10.1186/1471-2474-11-32.CrossRefGoogle ScholarPubMed
Gerwin, RD. Classification, epidemiology, and natural history of myofascial pain syndrome. Curr Pain Headache Rep. 2001;5(5):412420.CrossRefGoogle ScholarPubMed
Vázquez-Delgado, E, Cascos-Romero, J, Gay-Escoda, C. Myofascial pain syndrome associated with trigger points: A literature review. (I): Epidemiology, clinical treatment and etiopathogeny. Med Oral Patol Oral Cir Bucal. 2009;14(10):e494e498.CrossRefGoogle ScholarPubMed
Lin, WC, Shen, CC, Tsai, SJ, Yang, AC. Increased risk of myofascial pain syndrome among patients with insomnia. Pain Med (United States). 2017;18(8):15571565.CrossRefGoogle ScholarPubMed
Bartley, J, Reid, D, Morton, RP. Prevalence of vitamin D deficiency among patients attending a general otolaryngology clinic in South Auckland. Ann Otol Rhinol Laryngol. 2009;118(5):326328.CrossRefGoogle ScholarPubMed
Vidaković, B, Uljanić, I, Perić, B, Grgurević, J, Sonicki, Z. Myofascial pain of the head and neck among Croatian war veterans treated for depression and posttraumatic stress disorder. Psychiatr Danub. 2016;28(1):7376.Google ScholarPubMed
Brodsky, M, Spritzer, K, Hays, RD, Hui, KK. Change in health-related quality-of-life at group and individual levels over time in patients treated for chronic myofascial neck pain. J Evidence-Based Complement Altern Med. 2017;22(3):365368.CrossRefGoogle ScholarPubMed
Celik, D, Mutlu, EK. Clinical implication of latent myofascial trigger point topical collection on myofascial pain. Curr Pain Headache Rep. 2013;17(8):353. doi: 10.1007/s11916-013-0353-8. PMID: 23801006.CrossRefGoogle Scholar
Money, S. Pathophysiology of trigger points in myofascial pain syndrome. J Pain Palliat Care Pharmacother. 2017;31(2):158159.CrossRefGoogle ScholarPubMed
Baldry, P. Management of myofascial trigger point pain. Acupunct Med. 2002;20(1):210.CrossRefGoogle ScholarPubMed
Hong, CZ, Simons, DG. Pathophysiologic and electrophysiologic mechanisms of myofascial trigger points. Arch Phys Med Rehabil. 1998;79(7):863872.CrossRefGoogle ScholarPubMed
Simons, DG. Clinical and etiological update of myofascial pain from trigger points. J Musculoskelet Pain. 1996;4(1–2):93122.CrossRefGoogle Scholar
Juan, FJ. Use of botulinum toxin-A for musculoskeletal pain in patients with whiplash associated disorders [ISRCTN68653575]. BMC Musculoskelet Disord. 2004;5(1):5. doi: 10.1186/1471-2474-5-5. PMID: 15018625; PMCID: PMC356919.CrossRefGoogle ScholarPubMed
Acquadro, MA, Borodic, GE. Treatment of myofascial pain with botulinum A toxin. Anesthesiology. 1994;80(3):705706.CrossRefGoogle ScholarPubMed
Zhou, JY, Wang, D. An update on botulinum toxin A injections of trigger points for myofascial pain. Curr Pain Headache Rep. 2014;18(1):386. doi: 10.1007/s11916-013-0386-z. PMID: 24338700.CrossRefGoogle ScholarPubMed
Ge, H-Y, Fernández-de-Las-Peñas, C, Yue, S-W. Myofascial trigger points: Spontaneous electrical activity and its consequences for pain induction and propagation. Chin Med. 2011;6:13. doi: 10.1186/1749-8546-6-13. PMID: 21439050; PMCID: PMC3070691.CrossRefGoogle ScholarPubMed
Simons, DG, Dexter, JR. Comparison of local twitch responses elicited by palpitation and needling of myofascial trigger points. J Musculoskelet Pain. 1995;3(1):4961.CrossRefGoogle Scholar
Bengtsson, A, Henriksson, KG, Larsson, J. Reduced high-energy phosphate levels in the painful muscles of patients with primary fibromyalgia. Arthritis Rheum. 1986;29(7):817821.CrossRefGoogle ScholarPubMed
Jafri, MS. Mechanisms of myofascial pain. Int Sch Res Not. 2014;2014:523924. oi: 10.1155/2014/523924. PMID: 25574501; PMCID: PMC4285362.Google ScholarPubMed
Graff-Radford, SB. Myofascial pain: Diagnosis and management. Curr Pain Headache Rep. 2004;8(6):463467.CrossRefGoogle ScholarPubMed
Thibaut, A, Zeng, D, Caumo, W, Liu, J, Fregni, F. Corticospinal excitability as a biomarker of myofascial pain syndrome. PAIN Rep. 2017;2(3):e594. doi: 10.1097/PR9.0000000000000594. PMID: 29392210; PMCID: PMC5741300.CrossRefGoogle ScholarPubMed
Chen, Q, Basford, J, An, K-N. Ability of magnetic resonance elastography to assess taut bands. Clin Biomech (Bristol, Avon). 2008;23(5):623629.CrossRefGoogle ScholarPubMed
Fricton, J. Myofascial pain. Oral Maxillofac Surg Clin North Am. 2016;28(3):289311.CrossRefGoogle ScholarPubMed
Bonder, JH, Chi, M, Rispoli, L. Myofascial pelvic pain and related disorders. Phys Med Rehabil Clin North Am. 2017;28(3):501515.CrossRefGoogle ScholarPubMed
Do, TP, Heldarskard, GF, Kolding, LT, Hvedstrup, J, Schytz, HW. Myofascial trigger points in migraine and tension-type headache. J Headache Pain. 2018;19(1):84. doi: 10.1186/s10194-018-0913-8. PMID: 30203398; PMCID: PMC6134706.CrossRefGoogle ScholarPubMed
Palacios-Ceña, M, Wang, K, Castaldo, M et al. Trigger points are associated with widespread pressure pain sensitivity in people with tension-type headache. Cephalalgia. 2018;38(2):237245.CrossRefGoogle ScholarPubMed
Cambron, J. A new era for the Journal of Bodywork and Movement Therapies. J Bodyw Mov Ther. 2019;23(1):12.CrossRefGoogle ScholarPubMed
Bajaj, P, Bajaj, P, Graven-Nielsen, T, Arendt-Nielsen, L. Trigger points in patients with lower limb osteoarthritis. J Musculoskelet Pain. 2001;9(3):1733.CrossRefGoogle Scholar
Henry, R, Cahill, CM, Wood, G et al. Myofascial pain in patients waitlisted for total knee arthroplasty. Pain Res Manag. 2012; 17(5):321327.CrossRefGoogle ScholarPubMed
Peral-Cagigal, B, Pérez-Villar, Á, Redondo-González, L-M et al. Temporal headache and jaw claudication may be the key for the diagnosis of giant cell arteritis. Med Oral Patol Oral Cir Bucal. 2018;23(3):e290e294.Google ScholarPubMed
Chiarotto, A, Clijsen, R, Fernandez-De-Las-Penas, C, Barbero, M. Prevalence of myofascial trigger points in spinal disorders: A systematic review and meta-analysis. Presented as an abstract and poster to the World Confederation of Physical Therapy Congress, May 1–4, 2015, Singapore. Arch Phys Med Rehabil. 2016;97(2):316337.CrossRefGoogle ScholarPubMed
Bourgaize, S, Newton, G, Kumbhare, D, Srbely, J. A comparison of the clinical manifestation and pathophysiology of myofascial pain syndrome and fibromyalgia: Implications for differential diagnosis and management. J Can Chiropr Assoc. 2018;62(1):2641.Google ScholarPubMed
Ajimsha, MS, Al-mudahka, NR. Effectiveness of myofascial release: Systematic review of randomized controlled trials. J Bodyw Mov Ther. 2015;19(1):102112.CrossRefGoogle ScholarPubMed
Laimi, K, Mäkilä, A, Bärlund, E et al. Effectiveness of myofascial release in treatment of chronic musculoskeletal pain: A systematic review. Clin Rehabil. 2018;32(4):440450.CrossRefGoogle ScholarPubMed
Ajimsha, MS, Daniel, B, Chithra, S. Effectiveness of myofascial release in the management of chronic low back pain in nursing professionals. J Bodyw Mov Ther. 2014;18(2):273281.CrossRefGoogle ScholarPubMed
Kalichman, L, Ben David, C. Effect of self-myofascial release on myofascial pain, muscle flexibility, and strength: A narrative review. J Bodyw Mov Ther. 2017;21(2):446451.CrossRefGoogle ScholarPubMed
Beardsley, C, Škarabot, J. Effects of self-myofascial release: A systematic review. J Bodyw Mov Ther. 2015;19(4):747758.CrossRefGoogle ScholarPubMed
Liu, L, Huang, QM, Liu, QG et al. Evidence for dry needling in the management of myofascial trigger points associated with low back pain: A systematic review and meta-analysis. Arch Phys Med Rehabil. 2018;99(1):144152.CrossRefGoogle ScholarPubMed
Espejo-Antúnez, L, Tejeda, JFH, Albornoz-Cabello, M et al. Dry needling in the management of myofascial trigger points: A systematic review of randomized controlled trials. Complement Ther Med. 2017;33:4657.CrossRefGoogle ScholarPubMed
Rodríguez-Mansilla, J, Gonzalez-Sanchez, B. Effectiveness of dry needling on reducing pain intensity in patients with myofascial pain syndrome: A meta-analysis. J Tradit Chinese Med. 2016;36(1):1–13. doi: 10.1016/s0254-6272(16)30001-2. PMID: 26946612.CrossRefGoogle ScholarPubMed
Furlan, AD, van Tulder, M, Cherkin, D et al. Acupuncture and dry-needling for low back pain: An updated systematic review within the framework of the cochrane collaboration. Spine. 2005;30(8):944963. doi: 10.1097/01.brs.0000158941.21571.01. PMID: 15834340.CrossRefGoogle ScholarPubMed
Abbaszadeh-Amirdehi, M, Nakhostin Ansari, N, Naghdi, S, Olyaei, G. Neurophysiological and clinical effects of dry needling in patients with upper trapezius myofascial trigger points. J Bodyw Mov Ther. 2017;21(1):4852.CrossRefGoogle ScholarPubMed
Gerber, LH, Sikdar, S, Aredo, JV et al. Beneficial effects of dry needling for treatment of chronic myofascial pain persist for 6 weeks after treatment completion. PM&R. 2017;9(2):105112.Google ScholarPubMed
Wang, R, Li, X, Zhou, S et al. Manual acupuncture for myofascial pain syndrome: A systematic review and meta-analysis. Acupunct Med. 2017;35(4):241250.CrossRefGoogle ScholarPubMed
Mayo Clinic. Acupuncture. 2019. pp. 25.Google Scholar
Chou, LW, Hsieh, YL, Chen, HS et al. Remote therapeutic effectiveness of acupuncture in treating myofascial trigger point of the upper trapezius muscle. Am J Phys Med Rehabil. 2011;90(12):10361049.CrossRefGoogle ScholarPubMed
Hsieh, Y, Hong, C, Liu, S, Chou, L. Acupuncture at distant myofascial trigger spots enhances endogenous opioids in rabbits: A possible mechanism for managing myofascial pain. Acupunct Med. 2016;34(4):302309.CrossRefGoogle Scholar
Fan, A, He, H. Dry needling is acupuncture. Acupunct Med. 2016;34(3):241. doi: 10.1136/acupmed-2015-011010. Epub 2015 Dec 15. PMID: 26672062.CrossRefGoogle ScholarPubMed
Gibson, W, Bm, W, Meads, C, Mj, C, Ne, OC. Transcutaneous electrical nerve stimulation (TENS) for chronic pain: An overview of cochrane reviews (Review). Cochrane Database Syst Rev. 2019;2(2):CD011890. doi: 10.1002/14651858.CD011890.pub2.Google ScholarPubMed
Sluka, KA, Bjordal, JM, Marchand, S, Rakel, BA. What makes transcutaneous electrical nerve stimulation work? Making sense of the mixed results in the clinical literature. Phys Ther. 2013;93(10):13971402.CrossRefGoogle ScholarPubMed
Rodríguez-Fernández, ÁL, Garrido-Santofimi, V, Güeita-Rodríguez, J, Fernández-de-las-Peñas, C. Effects of burst-type transcutaneous electrical nerve stimulation on cervical range of motion and latent myofascial trigger point pain sensitivity. Arch Phys Med Rehabil. 2011;92(9):13531358.CrossRefGoogle ScholarPubMed
Gemmell, H, Hilland, A. Immediate effect of electric point stimulation (TENS) in treating latent upper trapezius trigger points: A double blind randomised. J Bodyw Mov Ther. 2011;15(3):348354.CrossRefGoogle ScholarPubMed
Fuentes, JP, Olivo, SA, Magee, DJ, Gross, DP. Effectiveness of interferential current therapy in the management of musculoskeletal pain: A systematic review and meta-analysis. Phys Ther. 2010;90(9):12191238.CrossRefGoogle ScholarPubMed
Albornoz-Cabello, M, Maya-Martín, J, Domínguez-Maldonado, G, Espejo-Antúnez, L, Heredia-rizo, AM. Effect of interferential current therapy on pain perception and disability level in subjects with chronic low back pain: A randomized controlled trial. 2017;31(2):242249. doi: 10.1177/0269215516639653. Epub 2016 Jul 10. PMID: 26975312.Google Scholar
Cadena de Almeida, C, Maldaner de Silva, VZ, Cipriano Junior, G, Eloin Liebano, R, Joao Luiz, QD. Transcutaneous electrical nerve stimulation and interferential current demonstrate similar effects in relieving acute and chronic pain: A systematic review with meta-analysis. Brazilian J Phys Ther. 2018;22(5):347354.CrossRefGoogle Scholar
Dissanayaka, T, Pallegama, R, Suraweera, H, Johnson, MI, Kariyawasam, AP. Comparison of the effectiveness of transcutaneous electrical nerve stimulation and interferential therapy on the upper trapezius in myofascial pain syndrome. Am J Phys Med Rehabil. 2016;95(9):663672.CrossRefGoogle Scholar
Giggins, OM, Persson, UM, Caulfield, B. Biofeedback in rehabilitation. J Neuroeng Rehabil. 2013;10(1):60. doi: 10.1186/1743-0003-10-60. PMID: 23777436; PMCID: PMC3687555.CrossRefGoogle ScholarPubMed
Srinivasan, AK, Kaye, JD, Moldwin, R. Myofascial dysfunction associated with chronic pelvic floor pain: Management strategies. Curr Pain Headache Rep. 2007;11(5):359364. doi: 10.1007/s11916-007-0218-0. PMID: 17894926.CrossRefGoogle ScholarPubMed
Nestoriuc, Y, Martin, A, Rief, W, Andrasik, F. Biofeedback treatment for headache disorders: A comprehensive efficacy review. Appl Psychophysiol Biofeedback. 2008;33(3):125140.CrossRefGoogle ScholarPubMed
Whelton, A. Renal and related cardiovascular effects of conventional and COX-2-specific NSAIDs and non-NSAID analgesics. Am J Ther. 2000;7(2):6374.CrossRefGoogle ScholarPubMed
Laine, L. Gastrointestinal effects of NSAIDs and coxibs. J Pain Symptom Manage. 2003;25(2):3240.CrossRefGoogle ScholarPubMed
Rainsford, K. Profile and mechanisms of gastrointestinal and other side effects of nonsteroidal anti-inflammatory drugs (NSAIDs). Am J Med. 1999;107(6):2735.CrossRefGoogle ScholarPubMed
Cashman, JN. The mechanisms of action of NSAIDs in analgesia. Drugs. 1996;52(Suppl 5):1323.CrossRefGoogle ScholarPubMed
Hsieh, L-F, Hong, C-Z, Chern, S-H, Chen, C-C. Efficacy and side effects of diclofenac patch in treatment of patients with myofascial pain syndrome of the upper trapezius. J Pain Symptom Manage. 2010;39(1):116125.CrossRefGoogle ScholarPubMed
Plesh, O, Curtis, D, Levine, J, McCall, WD. Amitriptyline treatment of chronic pain in patients with temporomandibular disorders. J Oral Rehabil. 2000;27(10):834841.CrossRefGoogle ScholarPubMed
Huang-Lionnet, JH, Hameed, H, Cohen, SP. Pharmacologic management of myofascial pain. In Essentials of pain medicine. 4th ed. 2018. pp. 475484. doi: 10.1016/B978-0-323-40196-8.00053-X.CrossRefGoogle Scholar
Gallagher, RM. Management of neuropathic pain: Translating mechanistic advances and evidence-based research into clinical practice. Clin J Pain. 2006;22(Suppl 1):S2S8.CrossRefGoogle ScholarPubMed
Obata, H. Analgesic mechanisms of antidepressants for neuropathic pain. Int J Mol Sci. 2017;18(11): 2483. doi: 10.3390/ijms18112483.CrossRefGoogle ScholarPubMed
Bendtsen, L, Jensen, R. Amitriptyline reduces myofascial tenderness in patients with chronic tension-type headache. Cephalalgia. 2000;20(6):603610.CrossRefGoogle ScholarPubMed
Haviv, Y, Rettman, A, Aframian, D, Sharav, Y, Benoliel, R. Myofascial pain: An open study on the pharmacotherapeutic response to stepped treatment with tricyclic antidepressants and gabapentin. J Oral Facial Pain Headache. 2015;29(2):144151.CrossRefGoogle Scholar
Haviv, Y, Zini, A, Sharav, Y, Almoznino, G, Benoliel, R. Nortriptyline compared to amitriptyline for the treatment of persistent masticatory myofascial pain. J Oral Facial Pain Headache. 2018;33(1):713. doi: 10.11607/ofph.1886.CrossRefGoogle ScholarPubMed
Czarnetzki, C, Elia, N, Lysakowski, C et al. Dexamethasone and risk of nausea and vomiting and postoperative bleeding after tonsillectomy in children. JAMA. 2008;300(22):26212630. doi: 10.1001/jama.2008.794. PMID: 19066382.CrossRefGoogle ScholarPubMed
Annaswamy, TM, De Luigi, AJ, O’Neill, BJ, Keole, N, Berbrayer, D. Emerging concepts in the treatment of myofascial pain: A review of medications, modalities, and needle-based interventions. PM&R. 2011;3(10):940961.Google Scholar
Heir, GM. The efficacy of pharmacologic treatment of temporomandibular disorders. Oral Maxillofac Surg Clin North Am. 2018;30(3):279285.CrossRefGoogle ScholarPubMed
McNeill, C. Management of temporomandibular disorders: concepts and controversies. J Prosthet Dent. 1997;77(5):510522. doi: 10.1016/s0022-3913(97)70145-8. PMID: 9151272.CrossRefGoogle Scholar
Loveless, MS, Fry, AL. Pharmacologic therapies in musculoskeletal conditions. Med Clin North Am. 2016;100(4):869890.CrossRefGoogle ScholarPubMed
Häggman-Henrikson, B, Alstergren, P, Davidson, T et al. Pharmacological treatment of oro-facial pain: Health technology assessment including a systematic review with network meta-analysis. J Oral Rehabil. 2017;44(10):800826.CrossRefGoogle ScholarPubMed
Herman, CR, Schiffman, EL, Look, JO, Rindal, DB. The effectiveness of adding pharmacologic treatment with clonazepam or cyclobenzaprine to patient education and self-care for the treatment of jaw pain upon awakening: A randomized clinical trial. J Orofac Pain. 2002;16(1):6470.Google ScholarPubMed
Fishbain, DA, Cutler, RB, Rosomoff, HL, Rosomoff, RS. Clonazepam open clinical treatment trial for myofascial syndrome associated chronic pain. Pain Med. 2000;1(4):332339.CrossRefGoogle ScholarPubMed
Harkins, S, Linford, J, Cohen, J, Kramer, T, Cueva, L. Administration of clonazepam in the treatment of TMD and associated myofascial pain: A double-blind pilot study. J Craniomandib Disord. 1991;5(3):179186.Google Scholar
Hersh, EV, Balasubramaniam, R, Pinto, A. Pharmacologic management of temporomandibular disorders. Oral Maxillofac Surg Clin North Am. 2008;20(2):197210.CrossRefGoogle ScholarPubMed
Leite, FM, Atallah, ÁN, El Dib, R et al. Cyclobenzaprine for the treatment of myofascial pain in adults. Cochrane Database Syst Rev. 2009;(3):CD006830. doi: 10.1002/14651858.CD006830.Google ScholarPubMed
Beebe, FA, Barkin, RL, Barkin, S. A clinical and pharmacologic review of skeletal muscle relaxants for musculoskeletal conditions. Am J Ther. 2005;12(2):151171.CrossRefGoogle ScholarPubMed
Ghanavatian, S, Derian, A. Tizanidine. StatPearls; 2018.Google Scholar
Shakespeare, D, Boggild, M, Young, CA. Anti-spasticity agents for multiple sclerosis. Cochrane Database Syst Rev. 2003;(4):CD001332. doi: 10.1002/14651858.CD006830.Google ScholarPubMed
Malanga, GA, Gwynn, MW, Smith, R, Miller, D. Tizanidine is effective in the treatment of myofascial pain syndrome. Pain Physician. 2002;5(4):422432.CrossRefGoogle ScholarPubMed
Groves, L, Shellenberger, MK, Davis, CS. Tizanidine treatment of spasticity: A meta-analysis of controlled, double-blind, comparative studies with baclofen and diazepam. Adv Ther. 1998;15(4):241251.Google ScholarPubMed
Malanga, G, Reiter, RD, Garay, E. Update on tizanidine for muscle spasticity and emerging indications. Expert Opin Pharmacother. 2008;9(12):22092215.CrossRefGoogle ScholarPubMed
Jaiswal, M, Sanyal, RP, Goswami, S. Revalidation of trigger point injection in myofascial pain syndrome, assessed by pain disability score. Int J Sci Study. 2017;172.Google Scholar
Xie, P, Qin, B, Yang, F et al. Lidocaine injection in the intramuscular innervation zone can effectively treat chronic neck pain caused by MTrPs in the trapezius muscle. Pain Physician. 2015;18(5):E815E826.Google ScholarPubMed
Firmani, M, Miralles, R, Casassus, R. Effect of lidocaine patches on upper trapezius EMG activity and pain intensity in patients with myofascial trigger points: A randomized clinical study. Acta Odontol Scand. 2015;73(3):210218.CrossRefGoogle ScholarPubMed
Affaitati, G, Fabrizio, A, Savini, A et al. A randomized, controlled study comparing a lidocaine patch, a placebo patch, and anesthetic injection for treatment of trigger points in patients with myofascial pain syndrome: Evaluation of pain and somatic pain thresholds. Clin Ther. 2009;31(4):705720.CrossRefGoogle Scholar
Affaitati, G, Costantini, R, Tana, C et al. Effects of topical vs. injection treatment of cervical myofascial trigger points on headache symptoms in migraine patients: A retrospective analysis. J Headache Pain. 2018;19(1):104. doi: 10.1186/s10194-018-0934-3.CrossRefGoogle ScholarPubMed
Borg-Stein, J, Simons, DG. Myofascial pain. Arch Phys Med Rehabil. 2002;83:S40S47.CrossRefGoogle ScholarPubMed
Awan, KH, Patil, S, Alamir, AWH et al. Botulinum toxin in the management of myofascial pain associated with temporomandibular dysfunction. J Oral Pathol Med. 2019;48(3):192200. doi: 10.1111/jop.12822.CrossRefGoogle ScholarPubMed
Machado, E, Machado, P, Wandscher, VF et al. A systematic review of different substance injection and dry needling for treatment of temporomandibular myofascial pain. Int J Oral Maxillofac Surg. 2018;47(11):14201432.CrossRefGoogle ScholarPubMed
Baker, JS, Nolan, PJ. Effectiveness of botulinum toxin type A for the treatment of chronic masticatory myofascial pain: A case series. J Am Dent Assoc. 2017;148(1):3339.CrossRefGoogle ScholarPubMed
Khalifeh, M, Mehta, K, Varguise, N, Suarez-Durall, P, Enciso, R. Botulinum toxin type A for the treatment of head and neck chronic myofascial pain syndrome. J Am Dent Assoc. 2016;147(12):959973.CrossRefGoogle ScholarPubMed
Kwanchuay, P, Petchnumsin, T, Yiemsiri, P et al. Efficacy and safety of single botulinum toxin type A (Botox®) injection for relief of upper trapezius myofascial trigger point: A randomized, double-blind, placebo-controlled study. J Med Assoc Thai. 2015;98(12):12311236.Google ScholarPubMed
Halder, GE, Scott, L, Wyman, A et al. Botox combined with myofascial release physical therapy as a treatment for myofascial pelvic pain. Investig Clin Urol. 2017;58(2):134139. doi: 10.4111/icu.2017.58.2.134.CrossRefGoogle ScholarPubMed

References

Jahngir, MU, Qureshi, AI. Dejerine Roussy syndrome. StatPearls. Published online July 4, 2022. www.ncbi.nlm.nih.gov/books/NBK519047/.Google Scholar
Klit, H, Finnerup, NB, Jensen, TS. Central post-stroke pain: Clinical characteristics, pathophysiology, and management. Lancet Neurol. 2009;8(9):857868. https://doi.org/10.1016/S1474-4422(09)70176-0.CrossRefGoogle ScholarPubMed
Kumar, B, Kalita, J, Kumar, G, Misra, UK. Central poststroke pain: A review of pathophysiology and treatment. Anesth Analg. 2009;108(5):16451657. https://doi.org/10.1213/ANE.0B013E31819D644C.CrossRefGoogle Scholar
Delpont, B, Blanc, C, Osseby, GV et al. Pain after stroke: A review. Rev Neurol (Paris). 2018;174(10):671674. https://doi.org/10.1016/J.NEUROL.2017.11.011.CrossRefGoogle ScholarPubMed
Gasca-González, OO, Pérez-Cruz, JC, Baldoncini, M, Macías-Duvignau, MA, Delgado-Reyes, L. Neuroanatomical basis of Wallenberg syndrome. Cir Cir. 2020;88(3):376382. https://doi.org/10.24875/CIRU.19000801.Google ScholarPubMed
Canavero, S, Bonicalzi, V. Central pain of brain origin. Central Pain Syndrome. Published online December 24, 2007:9112. https://doi.org/10.1017/CBO9780511585692.003.CrossRefGoogle Scholar
Leijon, G, Boivie, J, Johansson, I. Central post-stroke pain: Neurological symptoms and pain characteristics. Pain. 1989;36(1):1325. https://doi.org/10.1016/0304-3959(89)90107-3.CrossRefGoogle ScholarPubMed
Hansen, AP, Marcussen, NS, Klit, H et al. Pain following stroke: A prospective study. Eur J Pain. 2012;16(8):11281136. https://doi.org/10.1002/J.1532-2149.2012.00123.X.CrossRefGoogle ScholarPubMed
Akyuz, G, Kuru, P. Systematic review of central post stroke pain. Am J Phys Med Rehabil. 2016;95(8):618627. https://doi.org/10.1097/PHM.0000000000000542.CrossRefGoogle ScholarPubMed
Zheng, Y, Xu, L, Dong, N, Li, F. NLRP3 inflammasome: The rising star in cardiovascular diseases. Front Cardiovasc Med. 2022;9:927061. doi: 10.3389/fcvm.2022.927061. PMID: 36204568; PMCID: PMC9530053.CrossRefGoogle ScholarPubMed
Whiting, BB, Whiting, AC, Whiting, DM. Thalamic deep brain stimulation. Prog Neurol Surg. 2018;33:198206. https://doi.org/10.1159/000481104.CrossRefGoogle ScholarPubMed
Kumar, A, Bhoi, SK, Kalita, J, Misra, UK. Central poststroke pain can occur with normal sensation. Clin J Pain. 2016;32(11):955960. https://doi.org/10.1097/AJP.0000000000000344.CrossRefGoogle ScholarPubMed
Şahin-Onat, Ş, Ünsal-Delialioğlu, S, Kulaklı, F, Özel, S. The effects of central post-stroke pain on quality of life and depression in patients with stroke. J Phys Ther Sci. 2016;28(1):96101. https://doi.org/10.1589/JPTS.28.96.CrossRefGoogle ScholarPubMed
Paolucci, S, Iosa, M, Toni, D et al. Prevalence and time course of post-stroke pain: A multicenter prospective hospital-based study. Pain Med (United States). 2016;17(5):924930. https://doi.org/10.1093/PM/PNV019.Google Scholar
Lim, TH, Choi, SI, Yoo, JI et al. Thalamic pain misdiagnosed as cervical disc herniation. Korean J Pain. 2016;29(2):119122. https://doi.org/10.3344/KJP.2016.29.2.119.CrossRefGoogle ScholarPubMed
Urits, I, Gress, K, Charipova, K et al. Diagnosis, treatment, and management of Dejerine-Roussy syndrome: A comprehensive review. Curr Pain Headache Rep. 2020;24(9):48. https://doi.org/10.1007/S11916-020-00887-3.CrossRefGoogle ScholarPubMed
Chen, CC, Chuang, YF, Huang, ACW, Chen, CK, Chang, YJ. The antalgic effects of non-invasive physical modalities on central post-stroke pain: A systematic review. J Phys Ther Sci. 2016;28(4):13681373. https://doi.org/10.1589/JPTS.28.1368.CrossRefGoogle ScholarPubMed
Park, JH, Park, HJ. Botulinum toxin for the treatment of neuropathic pain. Toxins (Basel). 2017;9(9):260. https://doi.org/10.3390/TOXINS9090260.CrossRefGoogle ScholarPubMed
Ward, M, Mammis, A. Deep brain stimulation for the treatment of Dejerine-Roussy syndrome. Stereotact Funct Neurosurg. 2017;95(5):298306. https://doi.org/10.1159/000479526.CrossRefGoogle ScholarPubMed
Jin, Y, Xing, G, Li, G et al. High frequency repetitive transcranial magnetic stimulation therapy for chronic neuropathic pain: A meta-analysis. Pain Physician. 2015;18(6):E1029E1046. https://doi.org/10.36076/ppj.2015/18/e1029.Google ScholarPubMed
Morishita, T, Hyakutake, K, Saita, K et al. Pain reduction associated with improved functional interhemispheric balance following transcranial direct current stimulation for post-stroke central pain: A case study. J Neurol Sci. 2015;358(1–2):484485. https://doi.org/10.1016/J.JNS.2015.08.1551.CrossRefGoogle ScholarPubMed
Bae, SH, Kim, GD, Kim, KY. Analgesic effect of transcranial direct current stimulation on central post-stroke pain. Tohoku J Exp Med. 2014;234(3):189195. https://doi.org/10.1620/TJEM.234.189.CrossRefGoogle ScholarPubMed
Yamamoto, T, Watanabe, M, Obuchi, T et al. Importance of pharmacological evaluation in the treatment of poststroke pain by spinal cord stimulation. Neuromodulation. 2016;19(7):744751. https://doi.org/10.1111/NER.12408.CrossRefGoogle ScholarPubMed
Spitoni, GF, Pireddu, G, Galati, G et al. Caloric vestibular stimulation reduces pain and somatoparaphrenia in a severe chronic central post-stroke pain patient: A case study. PLoS One. 2016;11(3):e0151213. https://doi.org/10.1371/JOURNAL.PONE.0151213.CrossRefGoogle Scholar
Liao, C, Yang, M, Liu, P, Zhong, W, Zhang, W. Thalamic pain alleviated by stellate ganglion block: A case report. Medicine. 2017;96(5):e6058. https://doi.org/10.1097/MD.0000000000006058.CrossRefGoogle ScholarPubMed

References

Sabo, CM, Grad, S, Dumitrascu, DL. Chronic abdominal pain in general practice. Dig Dis. 2021;39(6):606614. https://doi.org/10.1159/000515433.CrossRefGoogle ScholarPubMed
Lukic, S, Mijac, D, Filipovic, B et al. Chronic abdominal pain: Gastroenterologist approach. Dig Dis. 2022;40(2):181186. https://doi.org/10.1159/000516977.CrossRefGoogle ScholarPubMed
El-Metwally, A, Shaikh, Q, Aldiab, A et al. The prevalence of chronic pain and its associated factors among Saudi Al-Kharj population; a cross sectional study. BMC Musculoskelet Disord. 2019;20(1):177. https://doi.org/10.1186/S12891-019-2555-7.CrossRefGoogle ScholarPubMed
Jackson, T, Thomas, S, Stabile, V et al. Chronic pain without clear etiology in low- and middle-income countries: A narrative review. Anesth Analg. 2016;122(6):20282039. https://doi.org/10.1213/ANE.0000000000001287.CrossRefGoogle ScholarPubMed
Jackson, T, Thomas, S, Stabile, V et al. A systematic review and meta-analysis of the global burden of chronic pain without clear etiology in low- and middle-income countries: Trends in heterogeneous data and a proposal for new assessment methods. Anesth Analg. 2016;123(3):739748. https://doi.org/10.1213/ANE.0000000000001389.CrossRefGoogle Scholar
Koop, H, Koprdova, S, Schürmann, C. Chronic Abdominal Wall Pain: A Poorly Recognized Clinical Problem. Dtsch Arztebl Int. 2016;113:5157. www.aerzteblatt.de/int/archive/article/173620/Chronic-abdominal-wall-pain-a-poorly-recognized-clinical-problem.Google Scholar
Aziz, Q, Giamberardino, MA, Barke, A et al. The IASP classification of chronic pain for ICD-11: Chronic secondary visceral pain. Pain. 2019;160(1):6976. https://doi.org/10.1097/J.PAIN.0000000000001362.CrossRefGoogle ScholarPubMed
Wilson, PR. Chronic abdominal pain: An evidence-based, comprehensive guide to clinical management. Pain Med. 2015;16(12):24122413. https://doi.org/10.1111/PME.12849.CrossRefGoogle Scholar
Stemboroski, L, Schey, R. Treating chronic abdominal pain in patients with chronic abdominal pain and/or irritable bowel syndrome. Gastroenterol Clin North Am. 2020;49(3):607621. https://doi.org/10.1016/J.GTC.2020.05.001.CrossRefGoogle ScholarPubMed
Camilleri, M. Management options for irritable bowel syndrome. Mayo Clin Proc. 2018;93(12):18581872. https://doi.org/10.1016/J.MAYOCP.2018.04.032.CrossRefGoogle ScholarPubMed
Pichetshote, N, Pimentel, M. An approach to the patient with chronic undiagnosed abdominal pain. Am J Gastroenterol. 2019;114(5):726732. https://doi.org/10.14309/AJG.0000000000000130.CrossRefGoogle Scholar
Cornman-Homonoff, J, Holzwanger, DJ, Lee, KS, Madoff, DC, Li, D. Celiac plexus block and neurolysis in the management of chronic upper abdominal pain. Semin Intervent Radiol. 2017;34(4):376386. https://doi.org/10.1055/S-0037-1608861.CrossRefGoogle ScholarPubMed
Urits, I, Jones, MR, Orhurhu, V et al. A comprehensive review of the celiac plexus block for the management of chronic abdominal pain. Curr Pain Headache Rep. 2020;24(8):42. https://doi.org/10.1007/S11916-020-00878-4.CrossRefGoogle ScholarPubMed
Bahn, BM, Erdek, MA. Celiac plexus block and neurolysis for pancreatic cancer. Curr Pain Headache Rep. 2013;17(2):310. https://doi.org/10.1007/S11916-012-0310-Y.CrossRefGoogle ScholarPubMed
Dolly, A, Singh, S, Prakash, R et al. Comparative evaluation of different volumes of 70% alcohol in celiac plexus block for upper abdominal malignsancies. South Asian J Cancer. 2016;5(4):204209. https://doi.org/10.4103/2278-330X.195346.Google ScholarPubMed
Kapural, L, Nagem, H, Tlucek, H, Sessler, DI. Spinal cord stimulation for chronic visceral abdominal pain. Pain Med. 2010;11(3):347355. https://doi.org/10.1111/J.1526-4637.2009.00785.X.CrossRefGoogle ScholarPubMed
Johannesson, E, Simrén, M, Strid, H, Bajor, A, Sadik, R. Physical activity improves symptoms in irritable bowel syndrome: A randomized controlled trial. Am J Gastroenterol. 2011;106(5):915922. https://doi.org/10.1038/AJG.2010.480.CrossRefGoogle ScholarPubMed
Kichline, T, Cushing, CC, Ortega, A, Friesen, C, Schurman, JV. Associations between physical activity and chronic pain severity in youth with chronic abdominal pain. Clin J Pain. 2019;35(7):618624. https://doi.org/10.1097/AJP.0000000000000716.CrossRefGoogle ScholarPubMed
Drossman, DA. Functional gastrointestinal disorders: History, pathophysiology, clinical features and Rome IV. Gastroenterology. 2016;150(6):12621279. https://doi.org/10.1053/J.GASTRO.2016.02.032.CrossRefGoogle Scholar

References

Grinberg, K, Sela, Y, Nissanholtz-Gannot, R. New insights about chronic pelvic pain syndrome (CPPS). Int J Environ Res Public Health. 2020;17(9):3005. https://doi.org/10.3390/ijerph17093005.CrossRefGoogle ScholarPubMed
Clemens, JQ, Mullins, C, Ackerman, AL et al. Urologic chronic pelvic pain syndrome: Insights from the MAPP research network. Nat Rev Urol. 2019;16(3):187200. https://doi.org/10.1038/s41585-018-0135-5.CrossRefGoogle ScholarPubMed
Ahangari, A. Prevalence of chronic pelvic pain among women: An updated review. Pain Physician. 2014;17:141147.CrossRefGoogle ScholarPubMed
Pena, VN, Engel, N, Gabrielson, AT, Rabinowitz, MJ, Herati, AS. Diagnostic and management strategies for patients with chronic prostatitis and chronic pelvic pain syndrome. Drugs Aging. 2021;38(10):845886. https://doi.org/10.1007/s40266-021-00890-2.CrossRefGoogle ScholarPubMed
Lee, SWH, Liong, ML, Yuen, KH et al. Adverse impact of sexual dysfunction in chronic prostatitis/chronic pelvic pain syndrome. Urology. 2008;71(1):7984.CrossRefGoogle ScholarPubMed
Collins, MM, Pontari, MA, O’Leary, MP et al. Quality of life is impaired in men with chronic prostatitis: The chronic prostatitis collaborative research network. J Gen Intern Med. 2001;16(10):656662.CrossRefGoogle Scholar
Rees, J, Abrahams, M, Doble, A, Cooper, A, Prostatitis Expert Reference Group (PERG). Diagnosis and treatment of chronic bacterial prostatitis and chronic prostatitis/chronic pelvic pain syndrome: A consensus guideline. BJU Int. 2015;116(4):509525. https://doi.org/10.1111/bju.13101.CrossRefGoogle ScholarPubMed
Hou, DS, Long, WM, Shen, J et al. Characterisation of the bacterial community in expressed prostatic secretions from patients with chronic prostatitis/chronic pelvic pain syndrome and infertile men: A preliminary investigation. Asian J Androl. 2012;14(4):566573. https://doi.org/10.1038/aja.2012.30.CrossRefGoogle Scholar
Weidner, W, Schiefer, HG, Krauss, H et al. Chronic prostatitis: A thorough search for etiologically involved microorganisms in 1,461 patients. Infection. 1991;19(Suppl 3):S119S125. https://doi.org/10.1007/BF01643680.CrossRefGoogle Scholar
Pontari, MA, McNaughton-Collins, M, O’Leary, MP et al. A case-control study of risk factors in men with chronic pelvic pain syndrome. BJU Int. 2005;96(4):559565.CrossRefGoogle ScholarPubMed
Alexander, RB, Brady, F, Ponniah, S. Autoimmune prostatitis: Evidence of T cell reactivity with normal prostatic proteins. Urology. 1997;50(6):893899. https://doi.org/10.1016/S0090-4295(97)00456-1.CrossRefGoogle ScholarPubMed
Pontari, MA, Ruggieri, MR. Mechanisms in prostatitis/chronic pelvic pain syndrome. J Urol. 2004;172(3):839845. https://doi.org/10.1097/01.ju.0000136002.76898.04.CrossRefGoogle ScholarPubMed
Ishigooka, M, Zermann, D, Doggweiler, R, Schmidt, RA. Similarity of distributions of spinal c-fos and plasma extravasation after acute chemical irritation of the bladder and the prostate. J Urol. 2000;164(5):17511756.CrossRefGoogle ScholarPubMed
Miller, LJ, Fischer, KA, Goralnick, SJ et al. Nerve growth factor and chronic prostatitis/chronic pelvic pain syndrome. Urology. 2002;59(4):603608.CrossRefGoogle ScholarPubMed
Woodworth, D, Mayer, E, Leu, K et al. Unique microstructural changes in the brain associated with urological chronic pelvic pain syndrome (UCPPS) revealed by diffusion tensor MRI, super-resolution track density imaging, and statistical parameter mapping: A MAPP network neuroimaging study. PLoS One. 2015;10(10): e0140250.CrossRefGoogle ScholarPubMed
Næss, I, , K. Pelvic floor muscle function in women with provoked vestibulodynia and asymptomatic controls. Int Urogynecol J. 2015;26(10):14671473. https://doi.org/10.1007/s00192-015-2660-6.CrossRefGoogle ScholarPubMed
Davis, SN, Morin, M, Binik, YM, Khalife, S, Carrier, S. Use of pelvic floor ultrasound to assess pelvic floor muscle function in urological chronic pelvic pain syndrome in men. J Sex Med. 2011;8(11):31733180.CrossRefGoogle ScholarPubMed
Diserio, GP, Carrizo, AE, Pacheco-Rupil, B, Nowotny, E. Effect of male accessory glands autoaggression on androgenic cytosolic and nuclear receptors of rat prostate. Cell Mol Biol. 1992;38:201207.Google ScholarPubMed
Naslund, MJ, Strandberg, JD, Coffey, DS. The role of androgens and estrogens in the pathogenesis of experimental nonbacterial prostatitis. J Urol. 1988;140(5):10491053.CrossRefGoogle ScholarPubMed
Litwin, MS, McNaughton-Collins, M, Fowler, FJ et al. The National Institutes of Health chronic prostatitis symptom index: Development and validation of a new outcome measure. J Urol. 1999;162(2):369375.CrossRefGoogle ScholarPubMed
Shoskes, DA, Nickel, JC, Rackley, RR, Pontari, MA. Clinical phenotyping in chronic prostatitis/chronic pelvic pain syndrome and interstitial cystitis: A management strategy for urologic chronic pelvic pain syndromes. Prostate Cancer Prostatic Dis. 2009;12(2):177183.CrossRefGoogle ScholarPubMed
Evliyaoğlu, Y, Burgut, R. Lower urinary tract symptoms, pain and quality of life assessment in chronic non-bacterial prostatitis patients treated with alpha-blocking agent doxazosin; versus placebo. Int Urol Nephrol. 2002;34(3):351356. https://doi.org/10.1023/a:1024487604631.CrossRefGoogle ScholarPubMed
Leskinen, M, Lukkarinen, O, Marttila, T. Effects of finasteride in patients with inflammatory chronic pelvic pain syndrome: A double-blind, placebo-controlled, pilot study. Urology. 1999;53(3):502505. https://doi.org/10.1016/s0090-4295(98)00540-8.CrossRefGoogle ScholarPubMed
Zhao, WP, Zhang, ZG, Li, XD et al. Celecoxib reduces symptoms in men with difficult chronic pelvic pain syndrome (Category IIIA). Braz J Med Biol Res. 2009;42(10):963967. https://doi.org/10.1590/s0100-879x2009005000021.CrossRefGoogle ScholarPubMed
Pontari, MA, Krieger, JN, Litwin, MS et al. Pregabalin for the treatment of men with chronic prostatitis/chronic pelvic pain syndrome: A randomized controlled trial. Arch Intern Med. 2010;170(17):15861593. https://doi.org/10.1001/archinternmed.2010.319.CrossRefGoogle ScholarPubMed
Anderson, RU, Wise, D, Sawyer, T, Chan, C. Integration of myofascial trigger point release and paradoxical relaxation training treatment of chronic pelvic pain in men. J Urol. 2005;174(1):155160.CrossRefGoogle ScholarPubMed
Anderson, RU, Wise, D, Sawyer, T, Chan, CA. Sexual dysfunction in men with chronic prostatitis/chronic pelvic pain syndrome: Improvement after trigger point release and paradoxical relaxation training. J Urol. 2006;176(4 Pt 1):15341539. https://doi.org/10.1016/j.juro.2006.06.010.CrossRefGoogle ScholarPubMed

References

Charipova, K, Gress, K, Berger, AA et al. A comprehensive review and update of post-surgical cutaneous nerve entrapment. Curr Pain Headache Rep. 2021; 25(2):11. Published online 1916. https://doi.org/10.1007/s11916-020-00924-1/Published.CrossRefGoogle Scholar
Bay-Nielsen, M, Perkins, FM, Kehlet, H. Pain and functional impairment 1 year after inguinal herniorrhaphy: A nationwide questionnaire study. Ann Surg. 2001;233(1):17. https://doi.org/10.1097/00000658-200101000-00001.CrossRefGoogle ScholarPubMed
Poobalan, AS, Bruce, J, King, PM et al. Chronic pain and quality of life following open inguinal hernia repair. Br J Surg. 2002;88(8):11221126. https://doi.org/10.1046/J.0007-1323.2001.01828.X.CrossRefGoogle Scholar
Madura, JA, Madura, JA, Copper, CM, Worth, RM. Inguinal neurectomy for inguinal nerve entrapment: An experience with 100 patients. Am J Surg. 2005;189(3):283287. https://doi.org/10.1016/j.amjsurg.2004.11.015.CrossRefGoogle ScholarPubMed
Kifer, T, Mišak, Z, Jadrešin, O, Hojsak, I. Anterior cutaneous nerve entrapment syndrome in children: A prospective observational study. Clin J Pain. 2018;34(7):670673. https://doi.org/10.1097/AJP.0000000000000573.CrossRefGoogle ScholarPubMed
Luijendijk, RW, Jeekel, J, Storm, RK et al. The low transverse Pfannenstiel incision and the prevalence of incisional hernia and nerve entrapment. Ann Surg. 1997;225(4):365369. doi: 10.1097/00000658-199704000-00004.CrossRefGoogle ScholarPubMed
Melville, K, Schultz, EA, Dougherty, JM. Ilionguinal-iliohypogastric nerve entrapment. Ann Emerg Med. 1990;19(8):925929. https://doi.org/10.1016/S0196-0644(05)81572-0.CrossRefGoogle ScholarPubMed
Liszka, T, Dellon, A, Manson, P. Iliohypogastric nerve entrapment following abdominoplasty. Plast Reconstr Surg. 1994;93(1):181184. https://doi.org/10.1097/00006534-199401000-00030.CrossRefGoogle ScholarPubMed
Chrona, E, Kostopanagiotou, G, Damigos, D, Batistaki, C. Anterior cutaneous nerve entrapment syndrome: Management challenges. J Pain Res. Published online 2017;10;145156. https://doi.org/10.2147/JPR.S99337.CrossRefGoogle ScholarPubMed
Fanelli, RD, DiSiena, MR, Lui, FY, Gersin, KS. Cryoanalgesic ablation for the treatment of chronic postherniorrhaphy neuropathic pain. Surg Endosc. 2003;17(2):196200. https://doi.org/10.1007/S00464-002-8840-8.CrossRefGoogle ScholarPubMed
Xu, Z, Tu, L, Zheng, Y et al. Fine architecture of the fascial planes around the lateral femoral cutaneous nerve at its pelvic exit: An epoxy sheet plastination and confocal microscopy study. Lab Invest J Neurosurg. 2019;131:18601868. https://doi.org/10.3171/2018.7.JNS181596.Google Scholar
Kifer, T, Mišak, Z, Jadrešin, O, Hojsak, I. Anterior cutaneous nerve entrapment syndrome in children: A prospective observational study. Clin J Pain. 2018;34(7):670673. https://doi.org/10.1097/AJP.0000000000000573.CrossRefGoogle ScholarPubMed
Giger, U, Wente, MN, Büchler, MW et al. Endoscopic retroperitoneal neurectomy for chronic pain after groin surgery. Br J Surg. 2009;96(9):10761081. https://doi.org/10.1002/BJS.6623.CrossRefGoogle ScholarPubMed
Lee, CH, Dellon, AL. Surgical management of groin pain of neural origin. J Am Coll Surg. 2000;191(2):137142. https://doi.org/10.1016/S1072-7515(00)00319-7.CrossRefGoogle ScholarPubMed
Starling, JR, Harms, BA. Diagnosis and treatment of genitofemoral and ilioinguinal neuralgia. World J Surg. 1989;13(5):586591. https://doi.org/10.1007/BF01658875.CrossRefGoogle ScholarPubMed
Aszmann, OC, Korak, KJ, Rab, M et al. Neuroma prevention by end-to-side neurorraphy: An experimental study in rats. J Hand Surg. 2003;28(6):10221028. https://doi.org/10.1016/S0363-5023(03)00379-4.CrossRefGoogle ScholarPubMed
Yüksel, F, Kişlaoğlu, E, Durak, N, Uçar, C, Karacaoğlu, E. Prevention of painful neuromas by epineural ligatures, flaps and grafts. Br J Plast Surg. 1997;50;182185.CrossRefGoogle ScholarPubMed

References

Cherny, NI. The management of cancer pain. CA Cancer J Clin. 2000;50(2):2070.CrossRefGoogle ScholarPubMed
Li, X-M, Xiao, W-H, Yang, P, Zhao, H-X. Psychological distress and cancer pain: Results from a controlled cross-sectional survey in China. Sci Rep. 2017;7(1):39397. https://doi.org/10.1038/srep39397.CrossRefGoogle ScholarPubMed
Breivik, H, Cherny, N, Collett, B et al. Cancer-related pain: A pan-European survey of prevalence, treatment, and patient attitudes. Ann Oncol Off J Eur Soc Med Oncol. 2009;20(8):14201433.CrossRefGoogle ScholarPubMed
World Health Organization. Cancer pain relief: With a guide to opioid availability. 2nd ed. World Health Organization; 1996. p. ita reproduced in Quaderni di Sanità Pubblica, Anno 21, febbraio 1998.Google Scholar
World Health Organization. Cancer pain relief. World Health Organization; 1986. p. 74.Google Scholar
Wolfe, J, Grier, HE, Klar, N et al. Symptoms and suffering at the end of life in children with cancer. N Engl J Med. 2000;342(5):326333. https://doi.org/10.1056/NEJM200002033420506.CrossRefGoogle ScholarPubMed
Cleeland, CS, Gonin, R, Baez, L, Loehrer, P, Pandya, KJ. Pain and treatment of pain in minority patients with cancer. The Eastern Cooperative Oncology Group Minority Outpatient Pain Study. Ann Intern Med. 1997;127(9):813816.CrossRefGoogle ScholarPubMed
Bernabei, R, Gambassi, G, Lapane, K et al. Management of pain in elderly patients with cancer. SAGE Study Group. Systematic Assessment of Geriatric Drug Use via Epidemiology. JAMA. 1998;279(23):18771882.CrossRefGoogle ScholarPubMed
Cleeland, CS, Gonin, R, Hatfield, AK et al. Pain and its treatment in outpatients with metastatic cancer. N Engl J Med. 1994;330(9):592596. https://doi.org/10.1056/NEJM199403033300902.CrossRefGoogle ScholarPubMed
Klepstad, P, Kaasa, S, Cherny, N, Hanks, G, de Conno, F. Pain and pain treatments in European palliative care units: A cross sectional survey from the European Association for Palliative Care Research Network. Palliat Med. 2005;19(6):477484.CrossRefGoogle ScholarPubMed
Weiss, SC, Emanuel, LL, Fairclough, DL, Emanuel, EJ. Understanding the experience of pain in terminally ill patients. Lancet (London, England). 2001;357(9265):13111315.CrossRefGoogle ScholarPubMed
Stewart, BW, Wild, CP. World cancer report 2014. World Health Organization; 2014.Google Scholar
Glaser, AW, Fraser, LK, Corner, J et al. Patient-reported outcomes of cancer survivors in England 1–5 years after diagnosis: A cross-sectional survey. BMJ Open. 2013;3(4):e002317. doi: 10.1136/bmjopen-2012-002317. PMID: 23578682; PMCID: PMC3641492.CrossRefGoogle ScholarPubMed
Elliott, J, Fallows, A, Staetsky, L et al. The health and well-being of cancer survivors in the UK: Findings from a population-based survey. Br J Cancer. 2011;105(Suppl 1):S11S20.CrossRefGoogle ScholarPubMed
van den Beuken-van Everdingen, MHJ, de Rijke, JM, Kessels, AG et al. Prevalence of pain in patients with cancer: A systematic review of the past 40 years. Ann Oncol Off J Eur Soc Med Oncol. 2007;18(9):14371449.CrossRefGoogle Scholar
Le Bitoux, M-A, Stamenkovic, I. Tumor-host interactions: The role of inflammation. Histochem Cell Biol. 2008;130(6):10791090.CrossRefGoogle ScholarPubMed
Magee, D, Bachtold, S, Brown, M, Farquhar-Smith, P. Cancer pain: Where are we now? Pain Manag. 2019;9(1):6379.CrossRefGoogle ScholarPubMed
Blair, JM, Zhou, H, Seibel, MJ, Dunstan, CR. Mechanisms of disease: Roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Nat Clin Pract Oncol. 2006;3(1):4149.CrossRefGoogle ScholarPubMed
Reis-Pina, P, Lawlor, PG, Barbosa, A. Cancer-related pain management and the optimal use of opioids. Acta Med Port. 2015;28(3):376381.CrossRefGoogle ScholarPubMed
Jost, LM. ESMO minimum clinical recommendations for the management of cancer pain. Ann Oncol Off J Eur Soc Med Oncol. 2005;16(Suppl 1):i83i85.CrossRefGoogle ScholarPubMed
Hucker, T, Winter, N, Chou, J. Challenges and advances in pain management for the cancer patient. Curr Anesthesiol Rep. 2015;5. doi: 10.1007/s40140-015-0120-y.CrossRefGoogle Scholar
Humble, SR, Dalton, AJ, Li, L. A systematic review of therapeutic interventions to reduce acute and chronic post-surgical pain after amputation, thoracotomy or mastectomy. Eur J Pain. 2015;19(4):451465.CrossRefGoogle ScholarPubMed
Andreae, MH, Andreae, DA. Regional anaesthesia to prevent chronic pain after surgery: A cochrane systematic review and meta-analysis. Br J Anaesth. 2013;111(5):711720.CrossRefGoogle ScholarPubMed
Seretny, M, Currie, GL, Sena, ES et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis. Pain. 2014;155(12):24612470.CrossRefGoogle ScholarPubMed
Marín, A, Martín, M, Liñán, O et al. Bystander effects and radiotherapy. Rep Pract Oncol Radiother J Gt Cancer Cent Pozn Polish Soc Radiat Oncol. 2015;20(1):1221.Google ScholarPubMed
Caraceni, A, Shkodra, M. Cancer pain assessment and classification. Cancers (Basel). 2019;11(4):510. doi: 10.3390/cancers11040510. PMID: 30974857.CrossRefGoogle ScholarPubMed
Portenoy, RK, Hagen, NA. Breakthrough pain: Definition, prevalence and characteristics. Pain. 1990;41(3):273281.CrossRefGoogle ScholarPubMed
Deandrea, S, Corli, O, Consonni, D et al. Prevalence of breakthrough cancer pain: A systematic review and a pooled analysis of published literature. J Pain Symptom Manage. 2014;47(1):5776.CrossRefGoogle Scholar
Portenoy, RK, Ahmed, E. Cancer pain syndromes. Hematol Oncol Clin North Am. 2018;32(3):371386.CrossRefGoogle ScholarPubMed
Niscola, P, Tendas, A, Scaramucci, L et al. Pain in malignant hematology. Expert Rev Hematol. 2011;4(1):8193.CrossRefGoogle ScholarPubMed
Niscola, P, Cartoni, C, Romani, C et al. Epidemiology, features and outcome of pain in patients with advanced hematological malignancies followed in a home care program: An Italian survey. Ann Hematol. 2007;86(9):671676.CrossRefGoogle Scholar
Fainsinger, RL, Nekolaichuk, C, Lawlor, P et al. An international multicentre validation study of a pain classification system for cancer patients. Eur J Cancer. 2010;46(16):28962904.CrossRefGoogle ScholarPubMed
Knudsen, AK, Brunelli, C, Klepstad, P et al. Which domains should be included in a cancer pain classification system? Analyses of longitudinal data. Pain. 2012;153(3):696703.CrossRefGoogle Scholar
Knudsen, AK, Brunelli, C, Kaasa, S et al. Which variables are associated with pain intensity and treatment response in advanced cancer patients? Implications for a future classification system for cancer pain. Eur J Pain. 2011;15(3):320327.CrossRefGoogle ScholarPubMed
Fainsinger, RL, Nekolaichuk, CL. A “TNM” classification system for cancer pain: The edmonton classification system for cancer pain (ECS-CP). Support Care Cancer Off J Multinatl Assoc Support Care Cancer. 2008;16(6):547555.Google Scholar
Capelli, G, De Vincenzo, RI, Addamo, A et al. Which dimensions of health-related quality of life are altered in patients attending the different gynecologic oncology health care settings? Cancer. 2002;95(12):25002507.CrossRefGoogle ScholarPubMed
Korfage, IJ, Essink-Bot, M-L, Mols, F et al. Health-related quality of life in cervical cancer survivors: A population-based survey. Int J Radiat Oncol Biol Phys. 2009;73(5):15011509.CrossRefGoogle ScholarPubMed
Kumar, SP. Utilization of brief pain inventory as an assessment tool for pain in patients with cancer: A focused review. Indian J Palliat Care. 2011;17(2):108115.CrossRefGoogle Scholar
Ngamkham, S, Vincent, C, Finnegan, L et al. The McGill Pain Questionnaire as a multidimensional measure in people with cancer: An integrative review. Pain Manag Nurs Off J Am Soc Pain Manag Nurses. 2012;13(1):2751.CrossRefGoogle ScholarPubMed
Dworkin, RH, Turk, DC, Revicki, DA et al. Development and initial validation of an expanded and revised version of the short-form McGill Pain Questionnaire (SF-MPQ-2). Pain. 2009;144(1–2):3542.CrossRefGoogle ScholarPubMed
Cleeland, CS, Ryan, KM. Pain assessment: Global use of the brief pain inventory. Ann Acad Med Singapore. 1994;23(2):129138.Google ScholarPubMed
de Wit, R, van Dam, F, Abu-Saad, HH et al. Empirical comparison of commonly used measures to evaluate pain treatment in cancer patients with chronic pain. J Clin Oncol Off J Am Soc Clin Oncol. 1999;17(4):1280. doi: 10.1200/JCO.1999.17.4.1280. PMID: 10561190.CrossRefGoogle ScholarPubMed
Grond, S, Zech, D, Diefenbach, C, Radbruch, L, Lehmann, KA. Assessment of cancer pain: A prospective evaluation in 2266 cancer patients referred to a pain service. Pain. 1996;64(1):107114.CrossRefGoogle ScholarPubMed
Hwang, SS, Chang, VT, Fairclough, DL, Kasimis, B. Development of a cancer pain prognostic scale. J Pain Symptom Manage. 2002;24(4):366378.CrossRefGoogle ScholarPubMed
Portenoy, RK. Treatment of cancer pain. Lancet (London, England). 2011;377(9784):22362247.CrossRefGoogle ScholarPubMed
Miguel, R. Interventional treatment of cancer pain: The fourth step in the World Health Organization analgesic ladder? Cancer Control. 2000;7(2):149156.CrossRefGoogle ScholarPubMed
Vayne-Bossert, P, Afsharimani, B, Good, P, Gray, P, Hardy, J. Interventional options for the management of refractory cancer pain: What is the evidence? Support Care Cancer Off J Multinatl Assoc Support Care Cancer. 2016;24(3):14291438.Google ScholarPubMed
Urits, I, Jones, MR, Orhurhu, V et al. A comprehensive review of the celiac plexus block for the management of chronic abdominal pain. Curr Pain Headache Rep. 2020;24(8):42.CrossRefGoogle ScholarPubMed
Liu, WC, Zheng, ZX, Tan, KH, Meredith, GJ. Multidimensional treatment of cancer pain. Curr Oncol Rep. 2017;19(2):10.CrossRefGoogle ScholarPubMed
Hu, C, Zhang, H, Wu, W et al. Acupuncture for pain management in cancer: A systematic review and meta-analysis. Evid Based Complement Alternat Med. 2016;2016:1720239.CrossRefGoogle Scholar
Anekar, AA, Cascella, M. WHO analgesic ladder. World Health Organization; 2021.Google Scholar
Caraceni, A, Hanks, G, Kaasa, S et al. Use of opioid analgesics in the treatment of cancer pain: Evidence-based recommendations from the EAPC. Lancet Oncol. 2012;13(2):e58e68.CrossRefGoogle ScholarPubMed
Caraceni, A, Davies, A, Poulain, P et al. Guidelines for the management of breakthrough pain in patients with cancer. J Natl Compr Canc Netw. 2013;11(Suppl 1):S29S36.CrossRefGoogle ScholarPubMed
Fallon, M, Giusti, R, Aielli, F et al. Management of cancer pain in adult patients: ESMO clinical practice guidelines. Ann Oncol Off J Eur Soc Med Oncol. 2018;29(Suppl 4):iv166–iv191.Google ScholarPubMed
Gunnarsdottir, S, Donovan, HS, Serlin, RC, Voge, C, Ward, S. Patient-related barriers to pain management: The barriers questionnaire II (BQ-II). Pain. 2002;99(3):385396.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Misc
  • Edited by Omar Viswanath, Creighton University, Omaha, Ivan Urits, Southcoast Brain & Spine Center, Wareham
  • Book: Cambridge Handbook of Pain Medicine
  • Online publication: 01 December 2023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Misc
  • Edited by Omar Viswanath, Creighton University, Omaha, Ivan Urits, Southcoast Brain & Spine Center, Wareham
  • Book: Cambridge Handbook of Pain Medicine
  • Online publication: 01 December 2023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Misc
  • Edited by Omar Viswanath, Creighton University, Omaha, Ivan Urits, Southcoast Brain & Spine Center, Wareham
  • Book: Cambridge Handbook of Pain Medicine
  • Online publication: 01 December 2023
Available formats
×