Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-23T06:42:05.093Z Has data issue: false hasContentIssue false

6 - Dynamical System Theory of Linear Receptivity

Published online by Cambridge University Press:  16 February 2021

Tapan K. Sengupta
Affiliation:
Indian Institute of Technology (ISM) Dhanbad
Get access

Summary

Introduction

One of the principal tenets in developing a dynamical system theory is to study the relationship between cause and effects. This is true for a fluid dynamical system characterized by a large number of degrees of freedom, as compared to other dissipative dynamical systems in many fields of physics. Experimental verification of any theory is imperative, and in this respect, theories of instabilities are difficult propositions. This is because instability theories rely on omnipresent imperceptible ambient disturbances as input to produce response, specifically in the limit of vanishingly small input that is needed in the dynamical system approach. Mathematically, the instability problem involves seeking the output of a system governed by a homogeneous differential equation, subject to a homogeneous boundary and initial conditions. Implicit in this is the requirement of an equilibrium state whose instability is studied, and for which imperceptible omnipresent disturbance resides and draws energy for its growth. For example, flow past a circular cylinder displays unsteadiness above a critical Reynolds number (based on oncoming flow speed and diameter of the cylinder), even when one is considering uniform flow over a perfectly smooth cylinder. Whereas this can be rationalized for experimental investigation where the presence of background disturbances cannot be ruled out, the situation is far from straightforward for computational efforts. Roles of various numerical sources of error triggering instability for uniform flow past a smooth circular cylinder is complicated. This issue has been dealt with in [469]. Inability to compute the equilibrium flow past a circular cylinder at relatively high Reynolds numbers is due to the presence of adverse pressure gradient experienced by the flow on the lee side of the cylinder. The situation is equally difficult for the flow over a very long flat plate. As the equilibrium flow is obtained with significant precision, it is possible to study the flow past a flat plate as a receptivity problem, as has been done experimentally to study the existence of TS waves by Schubauer and Skramstad [405], where the disturbances were created by a vibrating ribbon inside the boundary layer.

We have already identified a few drawbacks of the linear instability theory formulated by a homogeneous governing equation with homogeneous boundary conditions, in search of eigenvalues to explain growth of disturbances.

Type
Chapter
Information
Transition to Turbulence
A Dynamical System Approach to Receptivity
, pp. 194 - 211
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×