Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-20T21:24:51.970Z Has data issue: false hasContentIssue false

4 - Instability and Transition

Published online by Cambridge University Press:  16 February 2021

Tapan K. Sengupta
Affiliation:
Indian Institute of Technology (ISM) Dhanbad
Get access

Summary

Introduction

In Chapter 1, we have discussed the historical development of the field of instability and receptivity. Helmholtz [177] first provided some theoretical ideas regarding hydrodynamic instability. About a decade later, the works of Reynolds [365], Rayleigh [350, 351] and Kelvin [224] produced experimental and theoretical results that laid the foundation of stability theory. According to Betchov and Criminale [28], stability is defined as the property of the flow describing its resistance to grow due to small imposed disturbances. We note that the background disturbances do not have to be small (as noted experimentally by Reynolds [365]); we will also see in this chapter that the growth noted experimentally in [405] for the zero pressure gradient boundary layer occurs over a short streamwise distance. The original question of transition to turbulence was not addressed directly in theoretical studies, as most of these were related to finding conditions for growth of background disturbances by developing the linear stability theory. This theory investigated the ability of an equilibrium state to retain its undisturbed laminar state for stability.

Instability studies began by a linear theory resulting in Rayleigh's stability equation and a corresponding theorem, [351, 353, 356], with focus on inviscid temporal instability. This theorem was based on an incorrect assumption that viscous action in fluid flow is dissipative and can be neglected to obtain a more critical instability limit. It was strange for fluid dynamicists to accept this, as researchers in other disciplines of mechanics and electrical sciences, geophysics and engineering were aware of the role of resistive instability, which can arise in fluid flow only by viscous action. Viscous action can give rise to phase shift or time delay. A basic oscillator is governed by an equation with time delay as. This is equivalent to providing anti-diffusion as noted in, with the second term destabilizing the oscillator via the time delay, τ. Despite this rudimentary observation, only when scientists failed to explain disturbance growth for zero pressure gradient boundary layer, were alternatives sought [321, 495] via the Orr–Sommerfeld equation, which has viscous diffusion included for disturbance equations.

Although we understand the importance of viscous diffusion, we begin by describing inviscid instability, as it demonstrates the logic behind Rayleigh's early works and his theorem to explain the concept of flow instability.

Type
Chapter
Information
Transition to Turbulence
A Dynamical System Approach to Receptivity
, pp. 114 - 154
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×