Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T23:44:37.212Z Has data issue: false hasContentIssue false

Part 4 - Failure of Pattern Recognition

Published online by Cambridge University Press:  03 November 2020

Keith Josephs
Affiliation:
Mayo Clinic Alzheimer’s Disease Research Center
Federico Rodriguez-Porcel
Affiliation:
Medical University of South Carolina
Rhonna Shatz
Affiliation:
University of Cincinnati
Daniel Weintraub
Affiliation:
University of Pennsylvania
Alberto Espay
Affiliation:
University of Cincinnati
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alladi, S. et al. 2007. Focal cortical presentations of Alzheimer’s disease. Brain 130(Pt 10) 26362645.CrossRefGoogle ScholarPubMed
Forman, M. S. et al. 2006. Frontotemporal dementia: clinicopathological correlations. Ann Neurol 59(6) 952962.Google Scholar
Josephs, K. A. et al. 2011. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol 122(2) 137153.Google Scholar
Leger, G. C. and Banks, S. J. 2014. Neuropsychiatric symptom profile differs based on pathology in patients with clinically diagnosed behavioral variant frontotemporal dementia. Dement Geriatr Cogn Disord 37(1–2) 104112.Google Scholar
Mendez, M. F. et al. 2013. Clinicopathologic differences among patients with behavioral variant frontotemporal dementia. Neurology 80(6) 561568.Google Scholar
Ossenkoppele, R. et al. 2015. The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain 138(9) 27322749.Google Scholar
Peters, M. E. et al. 2015. Neuropsychiatric symptoms as predictors of progression to severe Alzheimer’s dementia and death: the cache county dementia progression study. Am J Psychiatry 172(5) 460465.CrossRefGoogle ScholarPubMed
Rascovsky, K. et al. 2011. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134(Pt 9) 24562477.CrossRefGoogle ScholarPubMed
Steinberg, M. et al. 2008. Point and 5-year period prevalence of neuropsychiatric symptoms in dementia: the Cache County Study. Int J Geriatr Psychiatry 23(2) 170177.CrossRefGoogle ScholarPubMed
Warren, J. D., Fletcher, P. D. and Golden, H. L. 2012. The paradox of syndromic diversity in Alzheimer disease. Nat Rev Neurol 8(8) 451464.CrossRefGoogle ScholarPubMed

References

Bettcher, B. M. et al. 2014. More than memory impairment in voltage-gated potassium channel complex encephalopathy. Eur J Neurol 21(10) 13011310.CrossRefGoogle ScholarPubMed
Butler, C. R. et al. 2014. Persistent anterograde amnesia following limbic encephalitis associated with antibodies to the voltage-gated potassium channel complex. J Neurol Neurosurg Psychiatry 85(4) 387391.CrossRefGoogle Scholar
Dahm, L. et al. 2014. Seroprevalence of autoantibodies against brain antigens in health and disease. Ann Neurol 76(1) 8294.CrossRefGoogle ScholarPubMed
Edler, J. et al. 2009. Movement disturbances in the differential diagnosis of Creutzfeldt–Jakob disease. Mov Disord 24(3) 350356.CrossRefGoogle ScholarPubMed
Gastaldi, M., Thouin, A. and Vincent, A. 2016. Antibody-mediated autoimmune encephalopathies and immunotherapies. Neurotherapeutics 13(1) 147162.Google Scholar
Geschwind, M. D. et al. 2008. Voltage-gated potassium channel autoimmunity mimicking Creutzfeldt–Jakob disease. Arch Neurol 65(10) 13411346.Google Scholar
Irani, S. R. et al. 2011. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol 69(5) 892900.CrossRefGoogle ScholarPubMed
Irani, S. R., Gelfand, J. M., Al-Diwani, A. and Vincent, A. 2014. Cell-surface central nervous system autoantibodies: clinical relevance and emerging paradigms. Ann Neurol 76(2) 168184.CrossRefGoogle ScholarPubMed
Irani, S. R. and Vincent, A. 2016. Voltage-gated potassium channel-complex autoimmunity and associated clinical syndromes. Handb Clin Neurol 133 185197.CrossRefGoogle ScholarPubMed
Iranzo, A. et al. 2006. Rapid eye movement sleep behavior disorder and potassium channel antibody-associated limbic encephalitis. Ann Neurol 59(1) 178181.CrossRefGoogle ScholarPubMed
Leypoldt, F., Armangue, T. and Dalmau, J. 2015. Autoimmune encephalopathies. Ann N Y Acad Sci 1338 94114.CrossRefGoogle ScholarPubMed
McKeon, A. et al. 2007. Potassium channel antibody associated encephalopathy presenting with a frontotemporal dementia like syndrome. Arch Neurol 64(10) 15281530.CrossRefGoogle ScholarPubMed
Newey, C. R., Appleby, B. S., Shook, S. and Sarwal, A. 2013. Patient with voltage-gated potassium-channel (VGKC) limbic encephalitis found to have Creutzfeldt–Jakob disease (CJD) at autopsy. J Neuropsychiatry Clin Neurosci 25(3) E0507.CrossRefGoogle ScholarPubMed
Somers, K. J. et al. 2011. Psychiatric manifestations of voltage-gated potassium-channel complex autoimmunity. J Neuropsychiatry Clin Neurosci 23(4) 425433.CrossRefGoogle ScholarPubMed
van Sonderen, A. et al. 2016. Anti-LGI1 encephalitis: clinical syndrome and long-term follow-up. Neurology 87(14) 14491456.Google Scholar
Vitali, P. et al. 2011. Diffusion-weighted MRI hyperintensity patterns differentiate CJD from other rapid dementias. Neurology 76(20) 17111719.CrossRefGoogle ScholarPubMed

References

Demily, C. and Sedel, F. 2014. Psychiatric manifestations of treatable hereditary metabolic disorders in adults. Ann Gen Psychiatry 13 27.CrossRefGoogle ScholarPubMed
Eyler Zorrilla, L. T. et al. 2000. Cross-sectional study of older outpatients with schizophrenia and healthy comparison subjects: no differences in age-related cognitive decline. Am J Psychiatry 157(8) 13241326.CrossRefGoogle ScholarPubMed
Gervin, M. and Barnes, T. R. E. 2000. Assessment of drug-related movement disorders in schizophrenia. Adv Psychiatr Treatment 6(5) 332341.CrossRefGoogle Scholar
Gray, R. G. et al. 2000. Inborn errors of metabolism as a cause of neurological disease in adults: an approach to investigation. J Neurol Neurosurg Psychiatry 69(1) 512.Google Scholar
Harvey, P. D. 2012. Cognitive impairment in schizophrenia: profile, course, and neurobiological determinants. Handb Clin Neurol 106 433445.CrossRefGoogle ScholarPubMed
Josephs, K. A., Van Gerpen, M. W. and Van Gerpen, J. A. 2003. Adult onset Niemann–Pick disease type C presenting with psychosis. J Neurol Neurosurg Psychiatry 74(4) 528529.CrossRefGoogle ScholarPubMed
Karson, C. et al. 2016. Long-term outcomes of antipsychotic treatment in patients with first-episode schizophrenia: a systematic review. Neuropsychiatr Dis Treat 12 5767.CrossRefGoogle ScholarPubMed
Kelley, B. J., Boeve, B. F. and Josephs, K. A. 2008. Young-onset dementia: demographic and etiologic characteristics of 235 patients. Arch Neurol 65(11) 15021508.CrossRefGoogle ScholarPubMed
Klarner, B. et al. 2007. Neuropsychological profile of adult patients with Niemann–Pick C1 (NPC1) mutations. J Inherit Metab Dis 30(1) 6067.Google Scholar
Kuruppu, D. K. and Matthews, B. R. 2013. Young-onset dementia. Semin Neurol 33(4) 365385.CrossRefGoogle ScholarPubMed
Love, S., Bridges, L. R. and Case, C. P. 1995. Neurofibrillary tangles in Niemann–Pick disease type C. Brain 118 (Pt 1) 119129.CrossRefGoogle ScholarPubMed
Mengel, E. et al. 2013. Niemann–Pick disease type C symptomatology: an expert-based clinical description. Orphanet J Rare Dis 8 166.Google Scholar
Nia, S. 2014. Psychiatric signs and symptoms in treatable inborn errors of metabolism. J Neurol 261(Suppl 2) S559568.CrossRefGoogle ScholarPubMed
Pastores, G. M. and Maegawa, G. H. 2013. Clinical neurogenetics: neuropathic lysosomal storage disorders. Neurol Clin 31(4) 10511071.Google Scholar
Sedel, F. 2012. Inborn errors of metabolism in adults: a diagnostic approach to neurological and psychiatric presentations. In Saudubray, J.-M., van den Berghe, G, and Walter, J. H., eds., Inborn Metabolic Diseases: Diagnosis and Treatment. Berlin: Springer, pp. 5574.CrossRefGoogle Scholar
Sedel, F. et al. 2007. Psychiatric manifestations revealing inborn errors of metabolism in adolescents and adults. J Inherit Metab Dis 30(5) 631641.Google Scholar
Sedel, F. et al. 2008. Movement disorders and inborn errors of metabolism in adults: a diagnostic approach. J Inherit Metab Dis 31(3) 308318.Google Scholar
Sedel, F. et al. 2008. Leukoencephalopathies associated with inborn errors of metabolism in adults. J Inherit Metab Dis 31(3) 295307.CrossRefGoogle ScholarPubMed
Sevin, M. et al. 2007. The adult form of Niemann–Pick disease type C. Brain 130(Pt 1) 120133.CrossRefGoogle ScholarPubMed
Staretz-Chacham, O. et al. 2010. Psychiatric and behavioral manifestations of lysosomal storage disorders. Am J Med Genet B Neuropsychiatr Genet 153B(7) 12531265.CrossRefGoogle ScholarPubMed
Vanier, M. T. 2010. Niemann–Pick disease type C. Orphanet J Rare Dis 5 16.Google Scholar
Whitty, P. F., Owoeye, O. and Waddington, J. L. 2009. Neurological signs and involuntary movements in schizophrenia: intrinsic to and informative on systems pathobiology. Schizophr Bull 35(2) 415424.CrossRefGoogle ScholarPubMed
Wijburg, F. A. et al. 2012. Development of a suspicion index to aid diagnosis of Niemann–Pick disease type C. Neurology 78(20) 15601567.Google Scholar
Yanjanin, N. M. et al. 2010. Linear clinical progression, independent of age of onset, in Niemann–Pick disease, type C. Am J Med Genet B Neuropsychiatr Genet 153b(1) 132140.CrossRefGoogle ScholarPubMed

References

Bayulkem, K. and Lopez, G. 2010. Nonmotor fluctuations in Parkinson’s disease: clinical spectrum and classification. J Neurol Sci 289(1–2) 8992.CrossRefGoogle ScholarPubMed
Chaudhuri, K. R. and Schapira, A. H. 2009. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8(5) 464474.Google Scholar
Martinez-Fernandez, R., Schmitt, E., Martinez-Martin, P. and Krack, P. 2016. The hidden sister of motor fluctuations in Parkinson’s disease: a review on nonmotor fluctuations. Mov Disord 31(8) 10801094.CrossRefGoogle ScholarPubMed
Stacy, M. et al. 2005. Identification of motor and nonmotor wearing-off in Parkinson’s disease: comparison of a patient questionnaire versus a clinician assessment. Mov Disord 20(6) 726733.CrossRefGoogle ScholarPubMed
Storch, A. et al. 2013. Nonmotor fluctuations in Parkinson disease: severity and correlation with motor complications. Neurology 80(9) 800809.CrossRefGoogle ScholarPubMed
Witjas, T. et al. 2002. Nonmotor fluctuations in Parkinson’s disease: frequent and disabling. Neurology 59(3) 408413.CrossRefGoogle ScholarPubMed

References

American Psychological Association. 2013. Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: American Psychological Association.Google Scholar
Ducharme, S., Bajestan, S., Dickerson, B. C. and Voon, V. 2017. Psychiatric presentations of C9orf72 mutation: what are the diagnostic implications for clinicians? J Neuropsychiatry Clin Neurosci 29(3) 195205.CrossRefGoogle ScholarPubMed
Ffytche, D. H. et al. 2017. The psychosis spectrum in Parkinson disease. Nat Rev Neurol 13(2) 8195.CrossRefGoogle ScholarPubMed
Josephs, K. A. 2007. Capgras syndrome and its relationship to neurodegenerative disease. Arch Neurol 64(12) 17621766.Google Scholar
Lanctôt, K. L. et al. 2017. Neuropsychiatric signs and symptoms of Alzheimer’s disease: new treatment paradigms. Alzheimers Dement 3(3) 440449.Google Scholar
Perini, G. et al. 2016. Misidentification delusions: prevalence in different types of dementia and validation of a structured questionnaire. Alzheimer Dis Assoc Disord 30(4) 331337.CrossRefGoogle ScholarPubMed
Reeves, S. J., Gould, R. L., Powell, J. F. and Howard, R. J. 2012. Origins of delusions in Alzheimer’s disease. Neurosci Biobehav Rev 36(10) 22742287.CrossRefGoogle ScholarPubMed
Reinhardt, M. M. and Cohen, C. I. 2015. Late-life psychosis: diagnosis and treatment. Curr Psychiatry Rep 17(2) 1.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×