Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T12:40:00.547Z Has data issue: false hasContentIssue false

9 - 26Al–26Mg Systematics of Chondrules

from Part I - Observations of Chondrules

Published online by Cambridge University Press:  30 June 2018

Sara S. Russell
Affiliation:
Natural History Museum, London
Harold C. Connolly Jr.
Affiliation:
Rowan University, New Jersey
Alexander N. Krot
Affiliation:
University of Hawaii, Manoa
Get access

Summary

The 26Al–26Mg systematics of chondrules from ordinary and carbonaceous chondrites and their implications are reviewed. The initial 26Al/27Al ratios [(26Al/27Al)0] based on in situ analyses of chondrules from the least metamorphosed chondrites range from unresolved from zero to ~1.2 × 10‒5 and thus no chondrules have A26l/A27l0Internal ratios corresponding to the canonical level (~5.2 × 10‒5) recorded by CAIs. Assuming homogeneous distribution of 26Al in the protoplanetary disk at the canonical level, these observations suggest chondrule formation started ~1.5 million years after CAIs and lasted over a few million years. The 26Al–26Mg systematics of bulk chondrules could have recorded A26l/A27l0Bulk ratios of chondrule precursors and may suggest that Al–Mg fractionation recorded by chondrule precursors started contemporaneously with CAIs and lasted over ~1.5 million years. The comparisons of formation ages of different meteorites and their components have been made with 26Al–26Mg, 182Hf–182W, and 206Pb–207Pb systematics. While the ages determined by 26Al–26Mg and 182Hf–182W systematics are generally consistent, those determined by 26Al–26Mg and 206Pb–207Pb systematics are largely inconsistent. The homogeneous versus heterogeneous distribution of 26Al in the protoplanetary disk remains controversial.

Type
Chapter
Information
Chondrules
Records of Protoplanetary Disk Processes
, pp. 247 - 275
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science, 320, 16171619.CrossRefGoogle ScholarPubMed
Amelin, Y. (2008a). U-Pb ages of angrites. Geochim. Cosmochim. Acta, 72, 221232.CrossRefGoogle Scholar
Amelin, Y. (2008b). The U-Pb systematics of angrite Sahara 99555. Geochim. Cosmochim. Acta, 72, 48744885.CrossRefGoogle Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D., and Ulyanov, A. A. (2002). Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science, 297, 16781683.CrossRefGoogle ScholarPubMed
Amelin, Y., and Krot, A. N. (2007). Pb isotopic age of the Allende chondrules. Meteorit. Planet. Sci., 42, 13211335.CrossRefGoogle Scholar
Becker, M., Hezel, D. C., Schulz, T., Elfers, B.-M., and Münker, C. (2015). Formation timescales of CV chondrites from component specific Hf–W systematics. Earth Planet Sci. Lett., 432, 472482.CrossRefGoogle Scholar
Bizzarro, M., Baker, J. A., and Haack, H. (2004). Contemporaneous formation of chondrules and refractory inclusions. Nature, 431, 275278.CrossRefGoogle ScholarPubMed
Bland, P. A., Collins, G. S., Davison, T. M., et al. (2014). Pressure–temperature evolution of primordial Solar System solids during impact- induced compaction. Nat. Commun., 5, 5451.CrossRefGoogle ScholarPubMed
Bollard, J., Connelly, J. N., and Bizzarro, M. (2014). The absolute chronology of the early Solar System revisited. Meteorit. Planet. Sci., 77, abstract #5234.Google Scholar
Bollard, J., Kawasaki, N., Sakamoto, N., et al. (2015). Early disk dynamics inferred from isotope systematics of individual chondrules. Meteorit. Planet. Sci., 78, abstract #5211.Google Scholar
Bonal, L., Quirico, E., Bourot-Denise, M., and Montagnac, G. (2006). Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochim. Cosmochim. Acta, 70, 18491863.CrossRefGoogle Scholar
Bouvier, A., Brennecka, G. A., and Wadhwa, M. (2011). Absolute chronology of the first solids in the Solar System. Workshop on Formation of the First Solids in the Solar System abstract #9054.Google Scholar
Budde, G., Burkhardt, C., Brennecka, G. A., et al. (2016a). Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth Planet Sci. Lett., 454, 293303.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016b). Tungsten isotopic constraints on the age and origin of chondrules. Proc. Natl. Acad. Sci. USA, 113, 28862891.CrossRefGoogle ScholarPubMed
Budde, G., Kruijer, T. S., and Kleine, T. (2017). Hafnium-tungsten chronology of CR chondrites. Lunar Planet. Sci., 48, abstract #1886.Google Scholar
Busemann, H., Alexander, C. M. O’D., and Nittler, L. R. (2007). Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy. Meteorit. Planet. Sci., 42, 13871416.CrossRefGoogle Scholar
Brearley, A. J., and Krot, A. N. (2012). Metasomatism in the early Solar System: The record from chondritic meteorites. In Harlov, D. E. and Austrheim, H. (Eds.), Metasomatism and the Chemical Transformation of Rock – Lecture Notes in Earth System Sciences, 659789. New York NY: Springer-Verlag.Google Scholar
Brennecka, G. A., Budde, G., and Kleine, T. (2015). Uranium isotopic composition and absolute ages of Allende chondrules. Meteorit. Planet Sci., 50, 19952002.CrossRefGoogle Scholar
Brennecka, G. A., and Wadhwa, M. (2011). Uranium isotope compositions of mineral separates from a single refractory inclusion. 74th Meteorit. Soc. Meet., abstract #5030.Google Scholar
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., et al. (2011). Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proc. Natl. Acad. Sci. USA, 108, 63866389.CrossRefGoogle Scholar
Cherniak, D. J. (2010). Cation diffusion in feldspars. Rev. Min. Geochem., 72, 691733.CrossRefGoogle Scholar
Claydon, J. L., Lai, Y.-J., Coath, C. D., et al. (2014). The Al-Mg system in chondrules: A two-pronged approach. Meteorit. Planet. Sci., 77, abstract #5164.Google Scholar
Claydon, J. L., Elliott, T., Coath, C. D., et al. (2015). A chondrule from the Mokoia (CV3) chondrite with anomalously low 26Mg*: Evidence for a multi-stage history. Meteorit. Planet. Sci., 78, abstract #5250.Google Scholar
Cody, G. D., Alexander, C. M. O’D., Yabuta, H., et al. (2008). Organic thermometry for chondritic parent bodies. Earth Planet. Sci. Lett., 272, 446455.CrossRefGoogle Scholar
Connelly, J. N., Amelin, Y., Krot, A. N., and Bizzarro, M. (2008). Chronology of the Solar System’s oldest solids. Astrophys. J. Lett., 675, L121.CrossRefGoogle Scholar
Connelly, J. N., and Bizzarro, M. (2009). Pb–Pb dating of chondrules from CV chondrites by progressive dissolution. Chem. Geol., 259, 143151.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.CrossRefGoogle ScholarPubMed
Connelly, J. N., Bollard, J., and Bizzarro, M. (2017). Pb-Pb chronometry and the early Solar System. Geochim. Cosmochim. Acta, 201, 345363.CrossRefGoogle Scholar
Cuzzi, J. N., Hogan, R. C., and Bottke, W. F. (2010). Towards initial mass functions for asteroids and Kuiper Belt Objects. Icarus, 208, 518538.CrossRefGoogle Scholar
Doyle, P. M., Jogo, K., Nagashima, K., et al. (2015). Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nat. Commun., 6, 110.CrossRefGoogle ScholarPubMed
Elkins-Tanton, L. T., Weiss, B. P., and Zuber, M. T. (2011). Chondrites as samples of differentiated planetesimals. Earth Planet. Sci. Lett., 305, 110.CrossRefGoogle Scholar
Faak, K., Chakraborty, S., and Coogan, L. A. (2013). Mg in plagioclase: Experimental calibration of a new geothermometer and diffusion coefficients. Geochim. Cosmochim. Acta, 123, 195217.CrossRefGoogle Scholar
Galy, A., Young, E. D., Ash, R. D., and O’nions, R. K. (2000). The formation of chondrules at high gas pressures in the solar nebula. Science, 290, 17511753.CrossRefGoogle ScholarPubMed
Gattacceca, J., Weiss, B. P., Gounelle, M., Lima, E. A., and Rochette, P. (2013). More evidence for a partially differentiated CV parent body from the meteorite Kaba. Lunar Planet. Sci., 44, abstract #1721.Google Scholar
Grossman, J. N., and Brearley, A. J. (2005). The onset of metamorphism in ordinary and carbonaceous chondrites. Meteorit. Planet. Sci., 40, 87122.CrossRefGoogle Scholar
Hayakawa, A., Fukuda, K., Iizuka, T., and Hiyagon, H. (2017). High precision magnesium isotopic measurements for CV chondrite CAIs and LL3.15 chondrite chondrules. Lunar Planet. Sci., 48, abstract #1923.Google Scholar
Holst, J. C., Olsen, M. B., Paton, C., et al. (2013). 182Hf–182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System. Proc. Natl. Acad. Sci. USA, 110, 88198823.CrossRefGoogle ScholarPubMed
Huss, G. R., MacPherson, G. J., Wasserburg, G. J., Russell, S. S., and Srinivasan, G. (2001). Aluminum-26 in calcium-aluminum-rich inclusions and chondrules from unequilibrated ordinary chondrites. Meteorit. Planet. Sci., 36, 975997.CrossRefGoogle Scholar
Huss, G. R., Rubin, A. E., and Grossman, J. N. (2006). Thermal Metamorphism in Chondrites. In Lauretta, D. and McSween, H. (Eds.), Meteorites and the Early Solar System II, 567586. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Hutcheon, I. D., and Hutchison, R. (1989). Evidence from the Semarkona ordinary chondrite for 26Al heating of small planets. Nature, 337, 238241.CrossRefGoogle Scholar
Hutcheon, I. D., Marhas, K. K., Krot, A. N., Goswami, J. N., and Jones, R. H. (2009). 26Al in plagioclase-rich chondrules in carbonaceous chondrites: Evidence for an extended duration of chondrule formation. Geochim. Cosmochim. Acta, 73, 50805099.CrossRefGoogle Scholar
Huyskens, M. H., Yin, Q. -Z., Sanborn, M. E., et al. (2016). Possible uranium isotopic heterogeneity in Allende chondrules and its impact on Pb-Pb ages: A first case of U and Pb isotopes from a single chondrule. Lunar Planet. Sci., 47, abstract #2727.Google Scholar
Ireland, T. R. (1990). Presolar isotopic and chemical signatures in hibonite-bearing refractory inclusions from the Murchison carbonaceous chondrite. Geochim. Cosmochim. Acta, 54, 32193237.CrossRefGoogle Scholar
Ito, M., and Messenger, S. (2010). Thermal metamorphic history of a Ca, Al-rich inclusion constrained by high spatial resolution Mg isotopic measurements with NanoSIMS 50L. Meteorit. Planet. Sci., 45, 583595.CrossRefGoogle Scholar
Jacobsen, B., Yin, Q.-Z., Moynier, F., et al. (2008). 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth Planet. Sci. Lett., 272, 353364.CrossRefGoogle Scholar
Jilly, C. E., Huss, G. R., Nagashima, K., and Schrader, D. L. (2014). Oxygen isotopes and geothermometry of secondary minerals in CR chondrite. Meteorit. Planet. Sci., 77, abstract #5395.Google Scholar
Johansen, A., and Klahr, H. (2011). Planetesimal formation through streaming and gravitational instabilities. Earth, Moon, and Planets, 108, 3943.CrossRefGoogle Scholar
Kimura, M., and Ikeda, Y. (1998). Hydrous and anhydrous alterations of chondrules in Kaba and Mokoia CV chondrites. Meteorit. Planet. Sci., 33, 11391146.CrossRefGoogle Scholar
Kimura, M., Grossman, J. N., and Weisberg, M. K. (2008). Fe-Ni metal in primitive chondrites: Indicators of classification and metamorphic conditions for ordinary and CO chondrites. Meteorit. Planet. Sci., 43, 11611177.CrossRefGoogle Scholar
Kita, N. T., Huss, G. R., Tachibana, S., et al. (2005). Constraints on the origin of chondrules and CAIs from short-lived and long-lived radionucleides. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 558588. ASP Conf. Ser. 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Kita, N. T., Nagahara, H., Togashi, S., and Morshita, Y. (2000). A short duration of chondrule formation in the solar nebula: Evidence from 26Al in Semarkona ferromagnesian chondrules. Geochim. Cosmochim. Acta, 64, 39133922.CrossRefGoogle Scholar
Kita, N. T., Tenner, T. J., Ushikubo, T., et al. (2015). Why do U-Pb ages of chondrules and CAIs have more spread than their 26Al ages? Meteorit. Planet. Sci., 78, abstract #5360.Google Scholar
Kita, N. T., and Ushikubo, T. (2012). Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteorit. Planet. Sci., 47, 11081119.CrossRefGoogle Scholar
Kita, N. T., Yin, Q. -Z., MacPherson, G. J., et al. (2013). 26Al-26Mg isotope systematics of the first solids in the early Solar System. Meteorit. Planet. Sci., 48, 13831400.CrossRefGoogle Scholar
Kleine, T., Hans, U., Irving, A. J., and Bourdon, B. (2012). Chronology of the angrite parent body and implications for core formation in protoplanets. Geochim. Cosmochim. Acta, 84, 186203.CrossRefGoogle Scholar
Kleine, T., Mezger, K., Palme, H., Scherer, E., and Münker, C. (2005). Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites. Geochim. Cosmochim. Acta, 69, 58055818.CrossRefGoogle Scholar
Komatsu, M., Fagan, T. J., Mikouchi, T., and Yamaguchi, A. (2014). Alteration sequence of CV3 chondrites: Matrix textures and Raman spectroscopy. 5th Symp. Polar Science, National Inst. Polar Res. Abstract #370.Google Scholar
Krot, A. N., Amelin, Y., Bland, P., et al. (2009). Origin and chronology of chondritic components: A review. Geochim. Cosmochim. Acta, 73, 49634997.CrossRefGoogle Scholar
Krot, A. N., Anders, M., Weisberg, M. K., and Keil, K. (2002). Invited Review: The CR chondrite clan: Implications for early Solar System processes. Meteorit. Planet. Sci., 37, 14511490.CrossRefGoogle Scholar
Krot, A. N., and Hutcheon, I. D. (1997). Highly oxidized and metamorphosed chondritic or igneous (?) clasts in the CV3 carbonaceous chondrite Mokoia: Excavated material from the interior of the CV3 asteroid or previously unsampled asteroid. Lunar Planet. Sci., 28, abstract #767.Google Scholar
Krot, A. N., and Keil, K. (2002). Anorthite-rich chondrules in CR and CH carbonaceous chondrites: Genetic link between Ca,Al-rich inclusions and ferromagnesian chondrules. Meteorit. Planet. Sci., 37, 91111.CrossRefGoogle Scholar
Krot, A. N., Keil, K., Goodrich, C., Weisberg, M. K., and Scott, E. R. D. (2014a). Classification of meteorites. In Davis, A. M. (Ed.), Meteorites and Cosmochemical Processes. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry, 1, 163. Oxford, UK: Elsevier.Google Scholar
Krot, A. N., and Nagashima, K. (2017). Constraints on mechanisms of chondrule formation from chondrule precursors and chronology of transient heating events in the protoplanetary disk. Geochem. J., 51, 4568.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., Bizzarro, M. (2014b). Aluminum-magnesium isotope systematics of porphyritic chondrules and plagioclase fragments in CH carbonaceous chondrites. Lunar Planet. Sci., 45, abstract #2142.Google Scholar
Krot, A. N., Nagashima, K., Bizzarro, M., et al. (2008). Multiple generations of refractory inclusions in the metal-rich carbonaceous chondrites Acfer 182/214 and Isheyevo. Astrophys. J. 672, 713721.CrossRefGoogle Scholar
Krot, A. N., Petaev, M. I., Scott, E. R. D., et al. (1998a). Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteorit. Planet. Sci., 33, 10651085.CrossRefGoogle Scholar
Krot, A. N., Petaev, M. I., Zolensky, M. E., et al. (1998b). Secondary calcium-iron-rich minerals in the Bali-like and Allende-like oxidized CV3 chondrites and Allende dark inclusions. Meteorit. Planet. Sci., 33, 623645.CrossRefGoogle Scholar
Kruijer, T. S., Kleine, T., Fischer-Godde, M., Burkhardt, C., and Wieler, R. (2014). Nucleosynthetic W isotope anomalies and the Hf–W chronometry of Ca–Al-rich inclusions. Earth Planet. Sci. Lett., 403, 317327.CrossRefGoogle Scholar
Kunihiro, T., Rubin, A. E., McKeegan, K. D., and Wasson, J. T. (2004). Initial 26Al/27Al in carbonaceous-chondrite chondrules: Too little 26Al to melt asteroids. Geochim. Cosmochim. Acta, 68, 29472957.CrossRefGoogle Scholar
Kurahashi, E., Kita, N. T., Nagahara, H., and Morishita, Y. (2008). Al-26-Mg-26 systematics and petrological study of chondrules in CR chondrites. Geochim. Cosmochim. Acta, 72, abstract #504.Google Scholar
Kurahashi, E., Kita, N. T., Nagahara, H., and Morishita, Y. (2008). 26Al-26Mg systematics of chondrules in a primitive CO chondrite. Geochim. Cosmochim. Acta, 72, 38653882.CrossRefGoogle Scholar
Larsen, K. K., Trinquier, A., Paton, C., et al. (2011). Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophys. J., 735, L37.CrossRefGoogle Scholar
LaTourrette, T., and Wasserburg, G. J. (1998). Mg diffusion in anorthite: Implications for the formation of early Solar System planetesimals. Earth Planet. Sci. Lett., 158, 91108.CrossRefGoogle Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. (1976). Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys. Res. Lett., 3 (1), 4144.CrossRefGoogle Scholar
Libourel, G., Krot, A. N., and Tissandier, L. (2006). Role of gas-melt interaction during chondrule formation. Earth Planet. Sci. Lett., 251, 232240.CrossRefGoogle Scholar
Lugaro, M., Heger, A., Osrin, D., et al. (2014). Stellar origin of the 182Hf cosmochronometer and the presolar history of Solar System matter. Science, 345, 650653.CrossRefGoogle ScholarPubMed
Luu, T. -H., Young, E. D., Gounelle, M., and Chaussidon, M. (2015). Short time interval for condensation of high-temperature silicates in the solar accretion disk. Proc. Natl. Acad. Sci. USA, 112, 12981303.CrossRefGoogle ScholarPubMed
Luu, T. -H., Hin, R. C., Coath, C. D., and Elliott, T. (2016). High precision mg-isotope measurements of bulk chondrites and the homogeneity of 26Al in the solar nebula. Meteorit. Planet. Sci., 79, abstract #6485.Google Scholar
MacPherson, G. J., Bullock, E. S., Janney, P. E., et al. (2010). Early solar nebula condensates with canonical, not supracanonical, initial 26Al/27Al ratios. Astrophys. J., 711 L117L121.CrossRefGoogle Scholar
MacPherson, G. J., Davis, A. M., and Zinner, E. K. (1995). The Distribution of 26Al in the early Solar-System – A reappraisal. Meteoritics, 30, 365386.CrossRefGoogle Scholar
MacPherson, G. J., Kita, N. T., Ushikubo, T., Bullock, E. S., and Davis, A. M. (2012). Well-resolved variations in the formation ages for Ca-Al-rich inclusions in the early Solar System. Earth Planet. Sci. Lett., 331, 4354.CrossRefGoogle Scholar
McKeegan, K. D., Greenwood, J. P., Leshin, L. A., and Cosarinsky, M. (2000). Abundance of 26Al in ferromagnesian chondrules of unequilibrated ordinary chondrites. Lunar Planet. Sci., 31, abstract #2009.Google Scholar
Makide, K., Nagashima, K., Krot, A. N., et al. (2009). Oxygen- and magnesium-isotope compositions of calcium-aluminum-rich inclusions from CR2 carbonaceous chondrites. Geochim. Cosmochim. Acta, 73, 50185050.CrossRefGoogle Scholar
Mostefaoui, S., Kita, N. T., Togashi, S., et al. (2002). The relative formation ages of ferromagnesian chondrules inferred from their initial aluminum-26/aluminum-27 ratios. Meteorit. Planet. Sci., 37, 421438.CrossRefGoogle Scholar
Nagahara, H., Kita, N. T., Ozawa, K., and Morishita, Y. (2008). Condensation of major elements during chondrule formation and its implication to the origin of chondrules. Geochim. Cosmochim. Acta, 72, 14421465.CrossRefGoogle Scholar
Nagashima, K., Krot, A. N., and Huss, G. R. (2014). 26Al in chondrules from CR2 chondrites. Geochem. J., 48, 561570.CrossRefGoogle Scholar
Nagashima, K., Krot, A. N., and Komatsu, M. (2017). 26Al-26Mg systematics in chondrules from Kaba and Yamato 980145 CV3 carbonaceous chondrites. Geochim. Cosmochim. Acta, 201, 303319.CrossRefGoogle Scholar
Nakashima, D., Ishida, H., Tenner, T. J., Kita, N. T., and Nakamura, T. (2016). Al-Mg chronology of chondrules in the RBT 04143 CV3 chondrite. Goldschmidt Abstracts, 2016 #2236.Google Scholar
Nishiizumi, K. (2004). Preparation of 26Al AMS standards. Nucl. Instr. Meth. Phys. Res. B., 223–224, 388392.CrossRefGoogle Scholar
Norris, T. L., Gancarz, A. J., Rokop, D. J., and Thomas, K. W. (1983). Half-life of 26Al. J. Geophys. Res., 88, B331B333.CrossRefGoogle Scholar
Olsen, M. B., Schiller, M., Krot, A. N., and Bizzarro, M. (2013). Magnesium isotope evidence for single stage formation of CB chondrules by colliding planetesimals. Astrophys. J., 776, L1.CrossRefGoogle Scholar
Olsen, M. B., Wielandt, D., Schiller, M., van Kooten, E. M. M. E., and Bizzarro, M. (2016). Magnesium and 54Cr isotope compositions of carbonaceous chondrite chondrules – Insights into early disk processes. Geochim. Cosmochim. Acta, 191, 118138.CrossRefGoogle ScholarPubMed
Pringle, E. A., Savage, P. S., Jackson, M. G., Barrat, J.-A., and Moynier, F. (2013). Si isotope homogeneity of the solar nebula. Astrophys. J., 779, L123.CrossRefGoogle Scholar
Reisener, R., Meibom, A., Krot, A. N., Goldstein, H. I., and Keil, K. (2000). Microstructure of condensate Fe-Ni metal particles in the CH chondrite PAT 91546. Lunar Planet. Sci. 31, abstract #1445.Google Scholar
Rudraswami, N. G., Goswami, J. N., Chattopadhyay, B., Sengupta, S. K., and Thapliyal, A. P. (2008). Al-26 records in chondrules from unequilibrated ordinary chondrites: II. Duration of chondrule formation and parent body thermal metamorphism. Earth Planet. Sci. Lett., 274, 93102.CrossRefGoogle Scholar
Sanders, I. S., and Scott, E. R. D. (2012). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteorit. Planet. Sci., 47, 21702192.CrossRefGoogle Scholar
Sano, Y., Takada, M., Takahata, N., Fujiya, W., and Sugiura, N. (2014). Ion microprobe Al-Mg dating of single plagioclase grains in an Efremovka chondrule. Geochem. J., 48, 133144.CrossRefGoogle Scholar
Schrader, D. L., Nagashima, K., Krot, A. N., et al. (2017). Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochim. Cosmochim. Acta, 201, 275302.CrossRefGoogle Scholar
Schiller, M., Baker, J. A., and Bizzarro, M. (2010). 26Al–26Mg dating of asteroidal magmatism in the young Solar System. Geochim. Cosmochim. Acta, 74, 48444864.CrossRefGoogle Scholar
Schiller, M., Connelly, J. N., Aslaug, G. C., Mikouchi, T., and Bizzarro, M. (2015). Early accretion of protoplanets inferred from a reduced inner Solar System 26Al inventory. Earth Planet. Sci. Lett., 420, 4554.CrossRefGoogle ScholarPubMed
Spivak-Birndorf, L., Wadhwa, M., and Janney, P. (2009). 26Al–26Mg systematics in D’Orbigny and Sahara 99555 angrites: Implications for high-resolution chronology using extinct chronometers. Geochim. Cosmochim. Acta, 73, 52025211.CrossRefGoogle Scholar
Srinivasan, G., Huss, G. R., and Wasserburg, G. J. (2000). A petrographic, chemical, and isotopic study of calcium-aluminum-rich inclusions and aluminum-rich chondrules from the Axtell (CV3) chondrite. Meteorit. Planet. Sci., 35, 13331354.CrossRefGoogle Scholar
Sugiura, N. and Fujiya, W. (2014). Correlated accretion ages and epsilon Cr-54 of meteorite parent bodies and the evolution of the solar nebula. Meteorit. Planet. Sci., 49, 772787.CrossRefGoogle Scholar
Tachibana, S., Nagahara, H., Mostefaoui, S., and Kita, N. T. (2003). Correlation between relative ages inferred from 26Al and bulk compositions of ferromagnesian chondrules in least equilibrated ordinary chondrites. Meteorit. Planet. Sci., 38, 939962.CrossRefGoogle Scholar
Tarduno, J. A., O’Brien, T. M., and Smirnov, A. V. (2016). Does the magnetization of CV meteorites record a parent body core dynamo? Lunar Planet. Sci., 47, abstract #2609.Google Scholar
Tenner, T. J., Ushikubo, T., Nakashima, D., Kita, N. T., and Weisberg, M. K. (2013). 26Al in chondrules from the CR3.0 chondrite Queen Alexandra Range 99177: A link with O isotopes. Lunar Planet. Sci., 44, abstract #2010.Google Scholar
Tenner, T. J., Ushikubo, T., Nakashima, D., et al. (2014). Silica excess in anorthitic plagioclase from type 3.00 chondrite chondrules: Evidence for retaining primary 26Al-26Mg systematics. Lunar Planet. Sci., 45, abstract #1187.Google Scholar
Tissandier, L., Libourel, G., and Robert, F. (2002). Gas-melt interactions and their bearing on chondrule formation. Meteorit. Planet. Sci., 37, 13771389.CrossRefGoogle Scholar
Trinquier, A., Elliott, T., Ulfbeck, D., et al. (2009). Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science, 324, 374376.CrossRefGoogle ScholarPubMed
Ushikubo, T., Nakashima, D., Kimura, M., Tenner, T. J., and Kita, N. T. (2013). Contemporaneous formation of chondrules in distinct oxygen isotope reservoirs. Geochim. Cosmochim. Acta, 109, 280295.CrossRefGoogle Scholar
van Kooten, E. M. M. E., Wielandt, D., Schiller, M., et al. (2016). Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. Proc. Natl. Acad. Sci. USA, 113, 20112016.CrossRefGoogle ScholarPubMed
Van Orman, J. A., Cherniak, D. J., and Kita, N. T. (2014). Magnesium diffusion in plagioclase: Dependence on composition, and implications for thermal resetting of the 26Al–26Mg early Solar System chronometer. Earth Planet. Sci. Lett., 385, 7988.CrossRefGoogle Scholar
Villeneuve, J., Chaussidon, M., and Libourel, G. (2009). Homogeneous distribution of Al-26 in the Solar System from the Mg isotopic composition of chondrules. Science, 325, 985988.CrossRefGoogle Scholar
Wasserburg, G. J., Lee, T., and Papanastassiou, D. A. (1977). Correlated O and Mg isotopic anomalies in Allende inclusions: II. Magnesium. Geophys. Res. Lett., 4, 299302.CrossRefGoogle Scholar
Wasserburg, G. J., Wimpenny, J., and Yin, Q. -Z. (2012). Mg isotopic heterogeneity, Al-Mg isochrons, and canonical 26Al/27Al in the early Solar System. Meteorit. Planet. Sci., 47, 19801997.CrossRefGoogle Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., et al. (1995). The CR chondrite clan. Proc. NIPR Symposium, 8, 1132.Google Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., and Mayeda, T. K. (1997). CV3 chondrites: Three subgroups, not two. Meteorit. Planet. Sci., 32, abstract #139.Google Scholar
Youdin, A. N., and Shu, F. (2002). Planetesimal formation by gravitational instability. Astrophys. J., 580, 494505.CrossRefGoogle Scholar
Yurimoto, H., Koike, O., Nagahara, H., Morioka, M., and Nagasawa, H. (2000). Heterogeneous distribution of Mg isotopes in anorthite single crystal from Type-B CAIs in Allende meteorite. Lunar Planet. Sci., 31, abstract #1593.Google Scholar
Yurimoto, H., and Wasson, J. T. (2002). Extremely rapid cooling of a carbonaceous-chondrite chondrule containing very 16O-rich olivine and a 26Mg-excess. Geochim. Cosmochim. Acta, 66, 43554363.CrossRefGoogle Scholar
Zolotov, M. Y., Mironenko, M. V., and Shock, E. L. (2006). Thermodynamic constraints on fayalite formation on parent bodies of chondrites. Meteorit. Planet. Sci. 41, 17751796.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×