Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T05:44:04.641Z Has data issue: false hasContentIssue false

2 - Multiple Mechanisms of Transient Heating Events in the Protoplanetary Disk

Evidence from Precursors of Chondrules and Igneous Ca, Al-Rich Inclusions

from Part I - Observations of Chondrules

Published online by Cambridge University Press:  30 June 2018

Sara S. Russell
Affiliation:
Natural History Museum, London
Harold C. Connolly Jr.
Affiliation:
Rowan University, New Jersey
Alexander N. Krot
Affiliation:
University of Hawaii, Manoa
Get access

Summary

In this chapter, we summarize our current knowledge of the mineralogy, petrography, oxygen-isotope compositions, and trace element abundances of precursors of chondrules and igneous Ca,Al-rich inclusions (CAIs), which provide important constraints on the mechanisms of transient heating events in the protoplanetary disk. We infer that porphyritic chondrules, the dominant textural type of chondrules in most chondrite groups, largely formed by incomplete melting of isotopically diverse solid precursors, including refractory inclusions (CAIs and amoeboid olivine aggregates (AOAs)), fragments of chondrules from earlier generations, and fine-grained matrix-like material during highly-localized transient heating events in dust-rich disk regions characterized by 16O-poor average compositions of dust (Δ17O ~ ‒5‰ to +3‰). These observations preclude formation of the majority of porphyritic chondrules by splashing of differentiated planetesimals; instead, they are consistent with melting of dustballs during localized transient heating events, such as bow shocks and magnetized turbulence in the protoplanetary disk, and, possibly, by collisions between chondritic planetesimals. Like porphyritic chondrules, igneous CAIs formed by incomplete melting of isotopically diverse solid precursors during localized transient heating events. These precursors, however, consisted exclusively of refractory inclusions, and the melting occurred in an 16O-rich gas (Δ17O ~ ‒24‰) of approximately solar composition, most likely near the protosun. The U-corrected Pb–Pb absolute and Al–Mg relative chronologies of igneous CAIs in CV chondrites indicate that these melting events started contemporaneously with condensation of CAI precursors (4567.3 ± 0.16 Ma) and lasted up to 0.3 Ma, providing evidence for the earliest transient heating events capable of melting refractory dustballs in the innermost part of the disk. There is no evidence that chondrules were among the precursors of igneous CAIs, which is consistent with an age gap between CAIs and chondrules. In contrast to typical (non–metal-rich) chondrites, the CB metal-rich carbonaceous chondrites contain exclusively magnesian nonporphyritic chondrules formed during a single-stage event ~5 Ma after CV CAIs, most likely in an impact-generated gas–melt plume. Bulk chemical compositions of CB chondrules and equilibrium thermodynamic calculations suggest that at least one of the colliding bodies was differentiated. The uniformly 16O-depleted igneous CAIs in CB chondrites most likely formed by complete melting of preexisting refractory inclusions that was accompanied by gas–melt interaction in the plume. CH metal-rich carbonaceous chondrites represent a mixture of the CB-like materials (magnesian skeletal olivine and cryptocrystalline chondrules and uniformly 16O-depleted igneous CAIs) formed in an impact plume and the typical chondritic materials (magnesian, ferroan, and Al-rich porphyritic chondrules, uniformly 16O-rich CAIs, and chondritic lithic clasts) that appear to have largely predated the impact plume event. We conclude that there are multiple mechanisms of transient heating events that operated in the protoplanetary disk during its entire lifetime and resulted in formation of chondrules and igneous CAIs.

Type
Chapter
Information
Chondrules
Records of Protoplanetary Disk Processes
, pp. 11 - 56
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, N., and Brearley, A. J. (2010). Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177. Geochim. Cosmochim. Acta, 74, 11461171.CrossRefGoogle Scholar
Aléon, J., El Goresy, A., and Zinner, A. (2007). Oxygen isotope heterogeneities in the earliest protosolar gas recorded in a meteoritic calcium–aluminum-rich inclusion. Earth Planet. Sci. Lett., 263, 114127.CrossRefGoogle Scholar
Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science, 320, 16171619.CrossRefGoogle ScholarPubMed
Alexander, C. M. O’D., and Ebel, D. S. (2012). Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved? Meteorit. Planet. Sci., 47, 11571175.CrossRefGoogle Scholar
Asphaug, E., Jutzi, M., and Movshovitz, M. (2011). Chondrule formation during planetesimal accretion. Earth Planet. Sci. Lett., 308, 369379.CrossRefGoogle Scholar
Becker, M., Hezel, D. C., Schulz, T., Elfers, B. -M., and Münker, C. (2015). The age of CV chondrites from component specific Hf–W systematics. Earth Planet. Sci. Lett., 432, 472482.CrossRefGoogle Scholar
Bigolski, J. N., Weisberg, M. K., Connolly, H. C., and Ebel, D. S. (2016). Microchondrules in three unequilibrated ordinary chondrites. Meteorit. Planet. Sci., 51, 235260.CrossRefGoogle Scholar
Bischoff, A., and Keil, K. (1983a). Ca-Al-rich chondrules and inclusions in ordinary chondrites. Nature, 303, 588592.CrossRefGoogle Scholar
Bischoff, A., and Keil, K. (1983b). Catalog of Al-Rich Chondrules, Inclusions, and Fragments in Ordinary Chondrites. Albuquerque, NM: Department of Geology and Institute of Meteoritics, University of New Mexico.Google Scholar
Bischoff, A., and Keil, K. (1984). Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochim. Cosmochim. Acta, 48, 693709.CrossRefGoogle Scholar
Bischoff, A., Palme, H., and Spettel, B. (1989). Al-rich chondrules from the Ybbsitz H4-chondrite: Evidence for formation by collision and splashing. Earth Planet. Sci. Lett., 93, 170180.CrossRefGoogle Scholar
Bischoff, A., Palme, H., Schultz, L., et al. (1993). Acfer 182 and paired samples, an iron-rich carbonaceous chondrite: Similarities with ALH85085 and relationship to CR chondrites. Geochim. Cosmochim. Acta, 57, 26312648.CrossRefGoogle Scholar
Bischoff, A., Wurm, G., Chaussidon, M., et al. (2017). The Allende multicompound chondrule (ACC) – Chondrule formation in a local super-dense region of the early solar system. Meteorit. Planet. Sci., 52, 906924.CrossRefGoogle Scholar
Bizzarro, M., Wiellandt, D., Haugbølle, T., Nordlund, Å., and Connelly, J. N. (2017). Nucleosynthetic diversity of chondrules – tracking disk mass transport and the formation of large-scale Solar System reservoirs. 27 th Goldschmidt Conf., abstract.Google Scholar
Bland, P. A., Alard, O., Benedix, G. K., et al. (2005). Volatile fractionation in the early solar system and chondrule/matrix complementarity. Proc. Nat. Acad. Sci., 102, 1375513760.CrossRefGoogle ScholarPubMed
Bodénan, J.- D., Starkey, N. A., Russell, S. S., Wright, I. P., and Franchi, I. A. (2014). An oxygen isotope study of Wark-Lovering rims on Type A CAIs in primitive carbonaceous chondrites. Earth Planet. Sci. Lett., 401, 327336.CrossRefGoogle Scholar
Bollard, J., Connelly, J., and Bizzarro, M. (2015). Pb-Pb dating of individual chondrules from the CBa chondrite Gujba: Assessment of the impact plume formation model. Meteorit. Planet. Sci., 50, 11971216.CrossRefGoogle ScholarPubMed
Brearley, A. J. (1996). Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules. In Hewins, R., Jones, R., and Scott, E. (Eds.), Chondrules and the Protoplanetary Disk, 137151. Cambridge, UK: Cambridge University Press.Google Scholar
Brearley, A. J., and Krot, A. N. (2012). Metasomatism in the early solar system: The record from chondritic meteorites. In Harlov, D. and Austrheim, H. (Eds.), Metasomatism and the Chemical Transformation of Rock – Lecture Notes in Earth System Sciences, 659789. New York, NY: Springer.Google Scholar
Brownlee, D., Tsou, P., Aléon, J., et al. (2006). Comet 81P/Wild 2 under a microscope. Science, 314, 17111716.CrossRefGoogle ScholarPubMed
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016a). Tungsten isotopic constraints on the age and origin of chondrules. Proc. Nat. Acad. Sci., 113, 28862891.CrossRefGoogle ScholarPubMed
Budde, G., Kleine, T., Kruijer, T. S., et al. (2016b). Isotopic complementarity of chondrules and matrix. 26 th Goldschmidt Conference, abstract #2316.Google Scholar
Bullock, E. S., MacPherson, G. J., Nagashima, K., et al. (2012). Forsterite-bearing type B refractory inclusions from CV3 chondrites: From aggregates to volatilized melt droplets. Meteorit. Planet. Sci., 47, 21282147.CrossRefGoogle Scholar
Bunch, T. E., Keil, K., and Snetsinger, K. G. (1967). Chromite composition in relation to chemistry and texture of ordinary chondrites. Geochim. Cosmochim. Acta, 31, 15691582.CrossRefGoogle Scholar
Campbell, A. J., Humayun, M., Meibom, A., Krot, A. N., and Keil, K. (2001). Origin of zoned metal in the QUE 94411 chondrite. Geochim. Cosmochim. Acta, 65, 163180.CrossRefGoogle Scholar
Campbell, A. J., Humayun, M., and Weisberg, M. K. (2002). Siderophile element constraints on the formation of metal in the metal-rich chondrites Bencubbin, Weatherford and Gujba. Geochim. Cosmochim. Acta, 66, 647660.CrossRefGoogle Scholar
Cohen, B. A., Hewins, R. H., and Alexander, C. M. O’D. (2004). The formation of chondrules by open-system melting of nebular condensates. Geochim. Cosmochim. Acta, 68, 16611675.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.CrossRefGoogle ScholarPubMed
Connolly, H. C. Jr., and Jones, R. H. (2016). Chondrules: The canonical and noncanonical views. J. Geophys. Res.: Planets, 121, 18851899.CrossRefGoogle Scholar
Ciesla, F. J. (2010). The distributions and ages of refractory objects in the solar nebula. Icarus, 208, 455467.CrossRefGoogle Scholar
Clayton, R. N., Mayeda, T. K., Olsen, E. J., and Goswami, J. N. (1991). Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta, 55, 23172337.CrossRefGoogle Scholar
Cuzzi, J. N., and Alexander, C. M. O’D. (2006). Chondrule formation in particle-rich nebular regions at least hundreds of kilometers across. Nature, 441, 483485.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., Hogan, R. C., and Bottke, W. F. (2010). Towards initial mass functions for asteroids and Kuiper Belt Objects. Icarus, 208, 518538.CrossRefGoogle Scholar
Desch, S. J., Ciesla, F. J., Hood, L. L., and Nakamoto, T. (2005) Heating of chondritic materials in Solar nebula shocks. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 849872. ASP Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Dobrica, E., and Brearley, A. J. (2016). Microchondrules in two unequilibrated ordinary chondrites: Evidence for formation by splattering from chondrules during stochastic collisions in the solar nebula. Meteorit. Planet. Sci., 51, 884905.CrossRefGoogle Scholar
Ebel, D. S., Brunner, C., Konrad, K., et al. (2016). Abundance, major element composition and size of components and matrix in CV, CO and Acfer 094 chondrites. Geochim. Cosmochim. Acta, 172, 322356.CrossRefGoogle Scholar
Ebert, S., and Bischoff, A. (2016). Genetic relationship between Na-rich chondrules and Ca, Al-rich inclusions? – Formation of Na-rich chondrules by melting of refractory and volatile precursors in the solar nebula. Geochim. Cosmochim. Acta, 177, 182204.CrossRefGoogle Scholar
Fedkin, A. V., Grossman, L., Humayun, M., Simon, S. B., and Campbell, A. J. (2015). Condensates from vapor made by impacts between metal-, silicate-rich bodies: Comparison with metal and chondrules in CB chondrites. Geochim. Cosmochim. Acta, 164, 236261.CrossRefGoogle Scholar
Friend, P., Hezel, D. C., and Mucerschi, D. (2016). The conditions of chondrule formation, Part II: Open system. Geochim. Cosmochim. Acta, 173, 198209.CrossRefGoogle Scholar
Georges, P., Libourel, G., and Deloule, E. (2000). Experimental constraints on alkali condensation in chondrule formation. Meteorit. Planet. Sci., 35, 11831188.CrossRefGoogle Scholar
Gerber, S., Burkhardt, C., Budde, G., Metzler, K., and Kleine, T. (2017). Mixing and transport of dust in the early solar nebula as inferred from titanium isotope variations among chondrules. Astrophys. J., 841, L17.CrossRefGoogle Scholar
Goldberg, A. Z., Jacquet, E., and Owen, J. E. (2016). Chondrule transport in the early solar system. 79 th Ann. Meteorit. Soc. Meet., abstract #6012.Google Scholar
Gounelle, M., Krot, A. N., Nagashima, K., and Kearsley, A. (2009). Extreme 16O-enrichment in refractory inclusions from the Isheyevo meteorite: Implication for oxygen isotope composition of the Sun. Astrophys. J., 698, L18L22.CrossRefGoogle Scholar
Greshake, A. (1997). The primitive matrix components of the unique carbonaceous chondrite Acfer 094: A TEM study. Geochim. Cosmochim. Acta, 61, 437452.CrossRefGoogle ScholarPubMed
Grossman, J. N., and Brearley, A. J. (2005). The onset of metamorphism in ordinary and carbonaceous chondrites. Meteorit. Planet. Sci., 40, 87122.CrossRefGoogle Scholar
Grossman, J. N., Rubin, A. E., Nagahara, H., and King, E. A. (1988). Properties of chondrules. In Kerridge, J. and Matthews, M. (Eds.), Meteorites and the Early Solar System, 619660. Tucson, AZ: University of Arizona Press.Google Scholar
Grossman, L., Fedkin, A. V., and Simon, S. B. (2012). Formation of the first oxidized iron in the solar system. Meteorit. Planet. Sci., 75, 21602169.CrossRefGoogle Scholar
Han, J., Keller, L. P., Needham, A. W., Messenger, S., and Simon, J. I. (2015). Microstructural investigation of a Wark-Lovering rim on a Vigarano CAI. 78 th Ann. Meteorit. Soc. Meet., abstract #5243.Google Scholar
Herbst, W., and Greenwood, J. P. (2016). A new mechanism for chondrule formation: Radiative heating by hot planetesimals. Icarus, 267, 364367.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2007). The conditions of chondrule formation, Part I: Closed system. Geochim. Cosmochim. Acta, 71, 40924107.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2008). Constraints for chondrule formation from Ca-Al distribution in carbonaceous chondrites. Earth Planet. Sci. Lett., 265, 716725.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2010). The chemical relationship between chondrules and matrix and the chondrule-matrix complementarity. Earth Planet. Sci. Lett., 294, 8593.CrossRefGoogle Scholar
Hezel, D. C., Russell, S. S., Ross, A. J., and Kearsley, A. T. (2008). Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations. Meteorit. Planet. Sci., 43, 18791894.CrossRefGoogle Scholar
Hewins, R. H. (1997). Chondrules. Ann. Rev. Earth Planet. Sci., 25, 6183.CrossRefGoogle Scholar
Hewins, R. H., and Zanda, B. (2012). Chondrules: Precursors and interactions with the nebular gas. Meteorit. Planet. Sci., 47, 11201138.CrossRefGoogle Scholar
Hewins, R. H., Zanda, B., and Bendersky, C. (2012). Evaporation and recondensation of sodium in Semarkona Type II chondrules. Geochim. Cosmochim. Acta, 78, 117.CrossRefGoogle Scholar
Imae, N., and Isobe, H. (2017). An experimental study of chondrule formation from chondritic precursors via evaporation and condensation in Knudsen cell: Shock heating model of dust aggregates. Earth Planet. Sci. Lett., 473, 256268.CrossRefGoogle Scholar
Itoh, S., and Yurimoto, H. (2003). Contemporaneous formation of chondrules and refractory inclusions in the early solar system. Nature, 423, 728731.CrossRefGoogle ScholarPubMed
Ivanova, M. A., Kononkova, N. N., Greenwood, R. C., et al. (2008). The Isheyevo meteorite: Mineralogy, petrography, bulk chemistry, oxygen, nitrogen, carbon isotopic compositions and Ar-Ar ages. Meteorit. Planet. Sci., 43, 915941.CrossRefGoogle Scholar
Ivanova, M. A., Nagashima, K., Krot, A. N., and MacPherson, G. J. (2012). Calcium-aluminum-rich inclusions with relict ultra-refractory inclusions rich in Zr, Y and Sc from Efremovka and North West Africa 3118 CV3 carbonaceous chondrites: Evidence for multistage formation in oxygen isotopic reservoirs of variable composition. Meteorit. Planet. Sci., 47, 21072127.CrossRefGoogle Scholar
Ivanova, M. A., Lorenz, C. A., Shuvalov, V. V., et al. (2014). Plastically-deformed igneous calcium-aluminum-rich inclusions from CV carbonaceous chondrites: Clues to a nature of CAI melting events. LPSC #45, abstract #2166.Google Scholar
Ivanova, M. A., Lorenz, C. A., Krot, A. N., and MacPherson, G. J. (2015). A compound Ca-, Al-rich inclusion from CV3 chondrite North West Africa 3118: Implications for understanding processes during CAI formation. Meteorit. Planet. Sci., 50, 15121528.CrossRefGoogle Scholar
Jacobsen, B., Yin, Q.-Z., Moynier, F., et al. (2008). 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth Planet. Sci. Lett., 272, 353364.CrossRefGoogle Scholar
Jacquet, E. (2014). Transport of solids in protoplanetary disks: Comparing meteorites and astrophysical models. Comptes rendus – Geoscience, 346, 312.CrossRefGoogle Scholar
Jacquet, E., Froman, S., and Gounelle, M. (2011). Radial transport of refractory inclusions and their preservation in the dead zone. Astron. Astrophys., 526, L8.CrossRefGoogle Scholar
Jacquet, E., Alard, O., and Gounelle, M. (2012). Chondrule trace element geochemistry at the mineral scale. Meteorit. Planet. Sci., 47, 16951714.CrossRefGoogle Scholar
Jacquet, E., Alard, O., and Gounelle, M. (2015). Trace element geochemistry of ordinary chondrite chondrules: The type I/type II chondrule dichotomy. Geochim. Cosmochim. Acta, 155, 4767.CrossRefGoogle Scholar
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. (2014). Impact jetting as the origin of chondrules. Nature, 517, 339341.CrossRefGoogle Scholar
Jones, R. H. (1996). Relict grains in chondrules: Evidence for chondrule recycling. In Hewins, R., Jones, R., and Scott, E. (Eds.), Chondrules and the Protoplanetary Disk, 163172. Cambridge, UK: Cambridge University Press.Google Scholar
Jones, R. H. (2012). Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk. Meteorit. Planet. Sci., 47, 11761190.CrossRefGoogle Scholar
Jones, R. H., and Danielson, L. R. (1997). A chondrule origin of dusty relict olivine in unequilibrated chondrites. Meteorit. Planet. Sci., 32, 753760.CrossRefGoogle Scholar
Jones, R. H., Leshin, L. A., Guan, Y., et al. (2004). Oxygen isotope heterogeneity in chondrules from the Mokoia CV3 carbonaceous chondrite. Geochim. Cosmochim. Acta, 68, 34232106.CrossRefGoogle Scholar
Jones, R. H., Grossman, J. N., and Rubin, A. E. (2005). Chemical, mineralogical and isotopic properties of chondrules: Clues to their origin. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 251286. ASP Conf. Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Keil, K., Zucolotto, M. E., Krot, A. N., et al. (2015). The Vicência meteorite fall: A new unshocked (S1) weakly metamorphosed (3.2) LL chondrite. Meteorit. Planet. Sci., 50, 10891111.CrossRefGoogle Scholar
Kimura, M., El Goresy, A., Palme, H., and Zinner, E. (1993). Ca-Al-rich inclusions in the unique chondrite ALH 85085 − Petrology, chemistry and isotopic compositions. Geochim. Cosmochim. Acta, 57, 23292359.CrossRefGoogle Scholar
Kita, N. T., Nagahara, H., Tachibana, S., et al. (2010). High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation. Geochim. Cosmochim. Acta, 74, 66106635.CrossRefGoogle Scholar
Kita, N. T., and Ushikubo, T. (2012). Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteorit. Planet. Sci., 47, 11081119.CrossRefGoogle Scholar
Kita, N. T., Yin, Q.- Z., MacPherson, G. J., et al. (2013). 26Al-26Mg isotope systematics of the first solids in the early solar system. Meteorit. Planet. Sci., 48, 13831400.CrossRefGoogle Scholar
Krot, A. N., and Rubin, A. E. (1993). Chromite-rich mafic silicate chondrules in ordinary chondrites: Formation by impact melting. Lunar Planet. Sci., 24, 827829.Google Scholar
Krot, A. N., and Rubin, A. E. (1994). Glass-rich chondrules in ordinary chondrites. Meteorit. Planet. Sci., 29, 697707.Google Scholar
Krot, A. N., and Wasson, J. T. (1995). Igneous rims on FeO-rich and FeO-poor chondrules in ordinary chondrites. Geochim. Cosmochim. Acta, 59, 49514966.CrossRefGoogle Scholar
Krot, A. N., and Rubin, A. E. (1996). Microchondrule-bearing chondrule rims: Constraints on chondrule formation. In Hewins, R., Jones, R., and Scott, E. (Eds.), Chondrules and the Protoplanetary Disk, 181184. Cambridge, UK: Cambridge University Press.Google Scholar
Krot, A. N., Ivanova, M. A., and Wasson, J. T. (1993). The origin of chromitic chondrules and the volatility of Cr under a range of nebular conditions. Earth Planet. Sci. Letters, 119, 569584.CrossRefGoogle Scholar
Krot, A. N., McKeegan, K. D., Russell, S. S., et al. (2001a). Refractory Ca, Al-rich inclusions and Al-diopside-rich chondrules in the metal-rich chondrites Hammadah al Hamra 237 and QUE 94411. Meteorit. Planet. Sci., 36, 11891217.CrossRefGoogle Scholar
Krot, A. N., Meibom, A., Russell, S. S., et al. (2001b). A new astrophysical setting for chondrule formation. Science, 291, 17761779.CrossRefGoogle ScholarPubMed
Krot, A. N., Meibom, A., Weisberg, M. K., and Keil, K. (2002). The CR chondrite clan: Implications for early solar system processes. Meteorit. Planet. Sci., 37, 14511490.CrossRefGoogle Scholar
Krot, A. N., Petaev, M. I., Russell, S. S., et al. (2004a). Amoeboid olivine aggregates in carbonaceous chondrites: Records of nebular and asteroidal processes. Chem. Erde, 64, 185239.CrossRefGoogle Scholar
Krot, A. N., Libourel, G., Goodrich, C. A., and Petaev, M. I. (2004b). Silica-rich igneous rims around magnesian chondrules in CR carbonaceous chondrites: Evidence for fractional condensation during chondrule formation. Meteorit. Planet. Sci., 39, 19311955.CrossRefGoogle Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005a). Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature, 436, 989992.CrossRefGoogle Scholar
Krot, A. N., Yurimoto, H., Hutcheon, I. D., and MacPherson, G. J. (2005b). Relative chronology of CAI and chondrule formation: Evidence from chondrule-bearing igneous CAIs. Nature, 434, 9981001.CrossRefGoogle Scholar
Krot, A. N., Fagan, T. J., Yurimoto, H., and Petaev, M. I. (2005c). Origin of low-Ca pyroxene in amoeboid olivine aggregates: Evidence from oxygen isotopic compositions. Geochim. Cosmochim. Acta, 69, 18731881.CrossRefGoogle Scholar
Krot, A. N., Libourel, G., and Chaussidon, M. (2006a). Oxygen isotope compositions of chondrules in CR chondrites. Geochim. Cosmochim. Acta, 70, 767779.CrossRefGoogle Scholar
Krot, A. N., McKeegan, K. D., Huss, G. R., et al. (2006b). Aluminum-magnesium and oxygen isotope study of relict Ca-Al-rich inclusions in chondrules. Astrophys. J., 629, 12271237.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., Bizzarro, M., et al. (2008). Multiple generations of refractory inclusions in the metal-rich carbonaceous chondrites Acfer 182/214 and Isheyevo. Astrophys. J., 672, 713721.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., Yoshitake, M., and Yurimoto, H. (2010). Oxygen isotope compositions of chondrules from the metal-rich chondrites Isheyevo (CH/CBb), MAC 02675 (CBb) and QUE 94627 (CBb). Geochim. Cosmochim. Acta, 74, 21902211.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., and Petaev, M. I. (2012). Isotopically uniform, 16O-depleted calcium, aluminum-rich inclusions in CH and CB carbonaceous chondrites. Geochim. Cosmochim. Acta, 83, 159178.CrossRefGoogle Scholar
Krot, A. N., Keil, K., Goodrich, C., Weisberg, M. K., and Scott, E. R. D. (2014). Classification of meteorites. In Davis, A. M. (Ed.), Meteorites and Cosmochemical Processes. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 163. Oxford, UK: Elsevier.Google Scholar
Krot, A. N., Nagashima, K., Ma, C., and Wasserburg, G. J. (2015). Forsterite-bearing Type B CAI with a relict eringaite-bearing ultra-refractory CAI. 78 th Ann. Meteorit. Soc. Meet., abstract #5308.Google Scholar
Krot, A. N., Nagashima, K., van Kooten, E. M. M., and Bizzarro, M. (2017a). Calcium-aluminum-rich inclusions recycled during formation of porphyritic chondrules from CH carbonaceous chondrites. Geochim. Cosmochim. Acta, 201, 185223.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., van Kooten, E. M. M., and Bizzarro, M. (2017b). High-temperature rims around calcium-aluminum-rich inclusions from the CR, CB and CH carbonaceous chondrites. Geochim. Cosmochim. Acta, 201, 155184.CrossRefGoogle Scholar
Kunihiro, T., Rubin, A. E., McKeegan, K. D., and Wasson, J. T. (2004). Oxygen-isotopic compositions of relict and host grains in chondrules in the Yamato 81020 CO3.0 chondrite. Geochim. Cosmochim. Acta, 68, 35993606.CrossRefGoogle Scholar
Kunihiro, T., Rubin, A. E., and Wasson, J. T. (2005). Oxygen-isotopic compositions of low-FeO relicts in high-FeO host chondrules in Acfer 094, a type 3.0 carbonaceous chondrite closely related to CM. Geochim. Cosmochim. Acta, 69, 38313840.CrossRefGoogle Scholar
Larsen, K., Trinquier, A., Paton, C., et al. (2011). Evidence for magnesium-isotope heterogeneity in the solar protoplanetary disk. Astrophys. J., 735, L37L40.CrossRefGoogle Scholar
Leitch, C., and Smith, J. (1982). Petrography, mineral chemistry and origin of Type I enstatite chondrites. Geochim. Cosmochim. Acta, 46, 20832097.CrossRefGoogle Scholar
Leroux, H., Libourel, G., Lemelle, L., and Guyot, F. (2003). Experimental study and TEM characterization of dusty olivines in chondrites: Evidence for formation by in situ reduction. Meteorit. Planet. Sci., 38, 8194.CrossRefGoogle Scholar
Leshin, L. A., Rubin, A. E., and McKeegan, K. D. (1997). The oxygen isotopic composition of olivine and pyroxene from CI chondrites. Geochim. Cosmochim. Acta, 61, 835845.CrossRefGoogle Scholar
Libourel, G., and Krot, A. N. (2006). Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin. Earth Planet. Sci. Lett., 254, 18.CrossRefGoogle Scholar
Libourel, G., Krot, A. N., and Tissandier, L. (2006). Role of gas-melt interaction during chondrule formation. Earth Planet. Sci. Lett., 251, 232240.CrossRefGoogle Scholar
Libourel, G., Michel, P., Delbo, M., et al. (2017). Primitive matter in the solar system. Icarus, 282, 375379.CrossRefGoogle Scholar
Liffman, K., Cuello, N., and Paterson, D. A. (2016). A unified framework for producing CAI melting, Wark-Lovering rims and bowl-shaped CAIs. Monthly Notices of the Royal Astronomical Society, 462, 11371163.CrossRefGoogle Scholar
MacPherson, G. J. (2014). Calcium-aluminum-rich inclusions in chondritic meteorites. In Davis, A. M. (Ed.), Meteorites, Comets and Planets. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 139179. Oxford, UK: Elsevier.Google Scholar
MacPherson, G. J., and Huss, G. R. (2005). Petrogenesis of Al-rich chondrules: Evidence from bulk compositions and phase equilibria. Geochim. Cosmochim. Acta, 69, 30993127.CrossRefGoogle Scholar
MacPherson, G. J., Kita, N. T., Ushikubo, T., Bullock, E. S., and Davis, A. M. (2012). Well-resolved variations in the formation ages for Ca-Al-rich inclusions in the early Solar System. Earth Planet. Sci. Lett., 331, 4354.CrossRefGoogle Scholar
Makide, K., Nagashima, K., Krot, A. N., et al. (2009). Oxygen − and magnesium-isotope compositions of calcium−aluminum-rich inclusions from CR2 carbonaceous chondrites. Geochim. Cosmochim. Acta, 73, 50185051.CrossRefGoogle Scholar
Maruyama, S., and Yurimoto, H. (2003). Relationship among O, Mg isotopes and the petrography of two spinel-bearing compound chondrules. Geochim. Cosmochim. Acta, 67, 39433957.CrossRefGoogle Scholar
Mathieu, R. (2009). Solubilite du sodium dans les silicates fondues. PhD thesis, INPL-CRPG Nancy.Google Scholar
Mathieu, R., Libourel, G., Deloule, E., et al. (2011). Na2O-solubility in molten CaO–MgO–SiO2 system. Geochim. Cosmochim. Acta, 75, 608628.CrossRefGoogle Scholar
Matzel, J. E. P., Simon, J. I., Hutcheon, I. D., et al. (2013). Oxygen isotope measurements of a rare Murchison Type A CAI and its rim. LPSC #44, abstract #2632.Google Scholar
McKeegan, K. D., Chaussidon, M., and Robert, F. (2000). Incorporation of short-lived 10Be in a calcium–aluminum-rich inclusion from the Allende meteorite. Science, 289, 13341337.CrossRefGoogle Scholar
McKeegan, K. D., Kallio, A. P. A., Heber, V. S., et al. (2011). The oxygen isotopic composition of the Sun inferred from captured solar wind. Science, 332, 15281532.CrossRefGoogle ScholarPubMed
McNally, C. P., Hubbard, A., Mac Low, M.- M., et al. (2013). Mineral processing by short circuits in protoplanetary disks. Astrophys. J. Lett., 767, L2.CrossRefGoogle Scholar
Mendybaev, R. A., Richter, F. M., and Davis, A. M. (2006). Crystallization of melilite from CMAS-liquids and the formation of the melilite mantle of Type B1 CAIs: Experimental simulations. Geochim. Cosmochim. Acta, 70, 26222642.CrossRefGoogle Scholar
Misawa, K. A., and Fujita, T. (1994). A relict refractory inclusion in a ferromagnesian chondrule from the Allende meteorite. Nature, 369, 163165.CrossRefGoogle Scholar
Meibom, A., Desch, S. J., Krot, A. N., et al. (2000). Large scale thermal events in the solar nebula: Evidence from FeNi metal grains in primitive meteorites. Science, 288, 839841.CrossRefGoogle Scholar
Miller, K. E., Lauretta, D. S., Connolly, H. C., et al. (2017). Formation of unequilibrated R chondrite chondrules and opaque phases. Geochim. Cosmochim. Acta, 209, 2450.CrossRefGoogle Scholar
Misawa, K., and Nakamura, N. (1988). Highly fractionated rare-earth elements in ferromagnesian chondrules from the Felix (CO3) meteorite. Nature, 334, 4750.CrossRefGoogle Scholar
Morris, M. A., Boley, A. C., Desch, S. J., and Athanassiadou, T. (2012). Chondrule formation in bow shocks around eccentric planetary embryos. Astrophys. J. Lett., 752, L27.CrossRefGoogle Scholar
Morris, M. A., Garvie, L. A. J., and Knauth, L. P. (2015). New insight into the Solar System’s transition disk phase provided by the metal-rich carbonaceous chondrite Isheyevo. Astrophys. J. Lett., 801, L22.CrossRefGoogle ScholarPubMed
Nagashima, K., Kunihiro, T., Takayanagi, I., et al. (2001). Output characteristics of stacked CMOS type pixel sensor for charged particles. Surf. Interface Anal., 31, 131137.CrossRefGoogle Scholar
Nagashima, K., Krot, A. N., Libourel, G., and Huss, G. R. (2013). Magnesian porphyritic chondrules surrounded by ferroan igneous rims from CR chondrite GRA 95229. LPSC #44, abstract #1780.Google Scholar
Nagashima, K., Krot, A. N., and Libourel, G. (2014). Type I chondrules with ferroan igneous rims from Yamato 81020 CO3 and Acfer 094 ungrouped type 3 carbonaceous chondrites. 77 th Ann. Meet. Meteorit. Soc., abstract #5424.Google Scholar
Nagashima, K., Krot, A. N., and Park, C. (2015a). An amoeboid olivine aggregate surrounded by an igneous ferroan olivine-rich rim from CO3.0 chondrite DOM 08006. LPSC #46, abstract #2477.Google Scholar
Nagashima, K., Krot, A. N., and Huss, G. R. (2015b). Oxygen-isotope compositions of chondrule silicates and matrix grains in Kakangari K-grouplet chondrite. Geochim. Cosmochim. Acta, 151, 4967.CrossRefGoogle Scholar
Nagashima, K., Krot, A., Libourel, G., and Schrader, D. (2016). 16O-rich olivine abundances in FeO-rich chondrules and their igneous rims from CR chondrites. 26 th Goldschmidt Conference, abstract #2210.Google Scholar
Oulton, J., Humayun, M., Fedkin, A., and Grossman, L. (2016). Chemical evidence for differentiation, evaporation and recondensation from silicate clasts in Gujba. Geochim. Cosmochim. Acta, 177, 254274.CrossRefGoogle Scholar
Palme, H., Spettel, B., and Hezel, D. C. (2014). Siderophile elements in chondrules of CV chondrites. Chem. Erde – Geochemistry, 74, 507516.CrossRefGoogle Scholar
Palme, H., Hezel, D. C., and Ebel, D. S. (2015). The origin of chondrules: Constraints from matrix composition and matrix-chondrule complementarity. Earth Planet. Sci. Lett., 411, 1119.CrossRefGoogle Scholar
Rambaldi, E. R. (1981). Relict grains in chondrules. Nature, 293, 558561.CrossRefGoogle Scholar
Rambaldi, E. R., and Wasson, J. T. (1982). Fine, nickel-poor Fe-Ni grains in the olivine of unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta, 46, 929939.CrossRefGoogle Scholar
Rambaldi, E. R., Rajan, R. S., Wang, D., and Housley, R. M. (1983). Evidence for relict grains in chondrules of Qingzhen, an E3 type enstatite chondrite. Earth Planet. Sci. Lett., 66, 1124.CrossRefGoogle Scholar
Ramdohr, P. (1967). Chromite and chromite chondrules in meteorites. Geochim. Cosmochim. Acta, 31, 19611967.CrossRefGoogle Scholar
Rubin, A. E. (2003). Chromite-plagioclase assemblages as a new shock indicator: Implications for the shock and thermal histories of ordinary chondrites. Geochim. Cosmochim. Acta, 67, 26952709.CrossRefGoogle Scholar
Rubin, A. E. (2010). Physical properties of chondrules in different chondrite groups: Implications for multiple melting events in dusty environments. Geochim. Cosmochim. Acta, 74, 48074828.CrossRefGoogle Scholar
Rubin, A. E., and Wasson, J. T. (1987). Chondrules, matrix and coarse-grained chondrule rims in the Allende meteorite – Origin, interrelationships and possible precursor components. Geochim. Cosmochim. Acta, 51, 19231937.CrossRefGoogle Scholar
Rubin, A. E., and Krot, A. N. (1996). Multiple heating of chondrules. In Hewins, R. H., Jones, R. H., and Scott, E. (Eds.), Chondrules and the Protoplanetary Disk, 173180. Cambridge, UK: Cambridge University Press.Google Scholar
Russell, S. S., MacPherson, G. J., Leshin, L. A., and McKeegan, K. D (2000). 16O enrichments in aluminum-rich chondrules from ordinary chondrites. Earth Planet. Sci. Lett., 184, 5774.CrossRefGoogle Scholar
Russell, S. S., Krot, A. N., MacPherson, G. J., et al. (2005). Genetic relationship between refractory inclusions and chondrules. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 317353. ASP Conf. Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Ruzicka, A. (2012). Chondrule formation by repeated evaporative melting and condensation in collisional debris clouds around planetesimals. Meteorit. Planet. Sci., 47, 22182236.CrossRefGoogle Scholar
Sanders, I. S., and Scott, E. R. D. (2013). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteorit. Planet. Sci., 47, 21702192.CrossRefGoogle Scholar
Schrader, D. L., Connolly, H. C., Lauretta, D. S., et al. (2013). The formation and alteration of the Renazzo-like carbonaceous chondrites II: Linking O-isotope composition and oxidation state of chondrule olivine. Geochim. Cosmochim. Acta, 101, 302327.CrossRefGoogle Scholar
Schrader, D. L., Nagashima, K., Krot, A. N., Ogliore, R. C., and Hellebrand, E. (2014). Variations in the O-isotope composition of gas during the formation of chondrules from the CR chondrites. Geochim. Cosmochim. Acta, 132, 5074.CrossRefGoogle Scholar
Scott, E. R. D., and Krot, A. N. (2014). Chondrites and their components. In Davis, A. M. (Ed.), Meteorites and Cosmochemical Processes. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 65137. Oxford, UK: Elsevier.Google Scholar
Simon, S. B., Sutton, S. R., and Grossman, L. (2016). The valence and coordination of titanium in ordinary and enstatite chondrites. Geochim. Cosmochim. Acta, 189, 377390.CrossRefGoogle Scholar
Snetsinger, K. G., and Keil, K. (1969). Ilmenite in ordinary chondrites. Amer. Mineral., 54, 780786.Google Scholar
Sokol, A. K., Bischoff, A., Marhas, K. K., Mezger, K., and Zinner, E. (2007). Late accretion and lithification of chondritic parent bodies: Mg isotope studies on fragments from primitive chondrites and chondritic breccias. Meteorit. Planet. Sci., 42, 12911308.CrossRefGoogle Scholar
Sossi, P. A., Moynier, F., Chaussidon, M., et al. (2017). Early Solar System irradiation quantified by linked vanadium and beryllium isotope variations in meteorites. Nature Astronomy, 1, id. 0055.CrossRefGoogle Scholar
Soulié, C., Libourel, G., Tissandier, L., and Hiver, J.- M. (2012). Kinetics of olivine dissolution in chondrule melts: An experimental study. LPSC #43, abstract #1840.Google Scholar
Soulié, C., Libourel, G., and Tissandier, L. (2017). Olivine dissolution in molten silicates: Applications to chondrule formation. Meteorit. Planet. Sci., 52, 225250.CrossRefGoogle Scholar
Steele, I. M. (1988). Primitive materials surviving in chondrites: Mineral grains. In Kerridge, J. and Matthews, M. (Eds.), Meteorites and the Early Solar System, 808818. Tucson, AZ: University of Arizona Press.Google Scholar
Stolper, E. (1982). Crystallization sequence of Ca-Al-rich inclusions from Allende: An experimental study. Geochim. Cosmochim. Acta, 46, 21592180.CrossRefGoogle Scholar
Tenner, T. J., Ushikubo, T., Kurahashi, E., Kita, N. T., and Nagahara, H. (2013). Oxygen isotope systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020: Evidence for two distinct oxygen isotope reservoirs. Geochim. Cosmochim. Acta, 102, 226245.CrossRefGoogle Scholar
Tenner, T. J., Nakashima, D., Ushikubo, T., Kita, N. T., and Weisberg, M. K. (2015). Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation. Geochim. Cosmochim. Acta, 148, 228250.CrossRefGoogle Scholar
Testi, L., Birnstiel, T., Ricci, L., et al. (2014). Dust evolution in protoplanetary disks. In Beuther, H., Klessen, R., Dullemond, C., and Henning, T. (Eds.), Protostars and Planets VI, 339361. Tucson, AZ: University of Arizona Press.Google Scholar
Tomeoka, K., and Itoh, D. (2004). Sodium-metasomatism in chondrules in CO3 chondrites: Relationship to parent body thermal metamorphism. Meteorit. Planet. Sci., 39, 13591373.CrossRefGoogle Scholar
Toppani, A., Paque, J. M., Burnett, D. S., et al. (2006). Wark-Lovering rims at the nanometer scale: A transmission electron microscopy study. LPSC #37, abstract #2030.Google Scholar
Ushikubo, T., Kimura, M., Kita, N. T., and Valley, J. W. (2012). Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite. Geochim. Cosmochim. Acta, 90, 242264.CrossRefGoogle Scholar
Vacher, L. G., Marrocchi, Y., Verdier-Paoletti, M. J., Villeneuve, J., and Gounelle, M. (2016). Inward radial mixing of interstellar water Ices in the solar protoplanetary disk. Astrophys. J. Lett., 827, L1.CrossRefGoogle Scholar
Van Kooten, E. M. M. E., Wielandt, D., Schiller, M., et al. (2016). Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. Proc. Nat. Acad. Sci., 113, 20112016.CrossRefGoogle ScholarPubMed
Villeneuve, J., Libourel, G., and Soulié, C. (2015). Relationships between type I and type II chondrules: Implications on chondrule formation processes. Geochim. Cosmochim. Acta., 160, 277305.CrossRefGoogle Scholar
Wakaki, S., Itoh, S., Tanaki, T., and Yurimoto, H. (2013). Petrology, trace element abundances and oxygen isotopic compositions of a compound CAI-chondrule object from Allende. Geochim. Cosmochim. Acta., 102, 261279.CrossRefGoogle Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. (2011). A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.CrossRefGoogle ScholarPubMed
Wasson, J. T., and Kallemeyn, G. W. (1990). Allan Hills 85085 – A subchondritic meteorite of mixed nebular and regolithic heritage. Earth Planet. Sci. Lett., 101, 148161.CrossRefGoogle Scholar
Wasson, J. T., Krot, A. N., Lee, M. S., and Rubin, A. E. (1994). Compound chondrules in ordinary chondrites: Evidence for multiple heating events and for large-scale heterogenieties in the nebula. Geochim. Cosmochim. Acta, 59, 18471869.CrossRefGoogle Scholar
Wasson, J. T., and Rubin, A. E. (2009). Composition of matrix in the CR chondrite LAP 02342. Geochim. Cosmochim. Acta, 73, 14361460.CrossRefGoogle Scholar
Weber, D., and Bischoff, A. (1994). The occurrence of grossite (CaAl4O7) in chondrites. Geochim. Cosmochim. Acta, 18, 38553877.CrossRefGoogle Scholar
Weber, D., Zinner, E., and Bischoff, A. (1995). Trace element abundances and magnesium, calcium, and titanium isotopic compositions of grossite-containing inclusions from the carbonaceous chondrite Acfer 182. Geochim. Cosmochim. Acta, 59, 803823.CrossRefGoogle Scholar
Weidenschilling, S., Marzari, F., and Hood, L. (1998). The origin of chondrules at jovian resonances. Science, 279, 681684.CrossRefGoogle ScholarPubMed
Weinbruch, S., Palme, H., and Spettel, B. (2000). Refractory forsterite in primitive meteorites: Condensates from the solar nebula? Meteorit. Planet. Sci., 35, 161171.CrossRefGoogle Scholar
Weisberg, M. K., Prinz, M., and Fogel, R. A. (1994). The evolution of enstatite and chondrules in unequilibrated enstatite chondrites: Evidence from iron-rich pyroxene. Meteoritics, 29, 362373.CrossRefGoogle Scholar
Weisberg, M. K., Ebel, D. S., Nakashima, D., Kita, N. T., and Humayun, M. (2015). Petrology and geochemistry of chondrules and metal in NWA 5492 and GRO 95551: A new type of metal-rich chondrite. Geochim. Cosmochim. Acta., 167, 269285.CrossRefGoogle Scholar
Westphal, A. J., Fakra, S. C., Gainsforth, Z., et al. (2009). Mixing fraction of inner solar system material in Comet 81P/Wild2. Astrophys. J., 694, 18.CrossRefGoogle Scholar
Whattam, S. A., Hewins, R. H., Cohen, B. A., Seaton, N. C., and Prior, D. J. (2008). Granoblastic olivine aggregates in magnesian chondrules: Planetesimal fragments or thermally annealed solar nebula condensates? Earth Planet. Sci. Lett., 269, 200211.CrossRefGoogle Scholar
Wlotzka, F. (2005). Cr-spinel and chromite as petrogenetic indicators in ordinary chondrites: Equilibration temperatures of petrologic types 3.7 to 6. Meteorit. Planet. Sci., 40, 16731702.CrossRefGoogle Scholar
Yurimoto, H., and Wasson, J. T. (2002). Extremely rapid cooling of a carbonaceous-chondrite chondrule containing very 16O-rich olivine and a 26Mg-excess. Geochim. Cosmochim. Acta., 66, 43554363.CrossRefGoogle Scholar
Yurimoto, H., Krot, A. N., Choi, B. -G., et al. (2008). Oxygen isotopes of chondritic components. Rev. Mineral. Geochem., 68, 141187.CrossRefGoogle Scholar
Zanda, B., Humayun, M., and Hewins, R. H. (2012). Chemical composition of matrix and chondrules in carbonaceous chondrites: Implications for disk transport. LPSC #43, abstract #2413.Google Scholar
Zhang, A. -C., Itoh, S., Sakamoto, N., Wang, R. -C., and Yurimoto, H. (2014). Origins of Al-rich chondrules: Clues from a compound Al-rich chondrule in the Dar al Gani 978 carbonaceous chondrite. Geochim. Cosmochim. Acta., 130, 7892.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×