Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T06:31:20.491Z Has data issue: false hasContentIssue false

13 - Optogenetic Control of Astroglia

from Part III - Optogenetics in Neurobiology, Brain Circuits, and Plasticity

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 181 - 195
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Airan, RD, Thompson, KR, Fenno, LE, Bernstein, H, Deisseroth, K (2009) Temporally precise in vivo control of intracellular signalling. Nature 458:10251029.CrossRefGoogle ScholarPubMed
Attwell, D, Buchan, AM, Charpak, S, Lauritzen, M, Macvicar, BA, Newman, EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232243.CrossRefGoogle ScholarPubMed
Bailes, HJ, Zhuang, LY, Lucas, RJ (2012) Reproducible and sustained regulation of Galphas signalling using a metazoan opsin as an optogenetic tool. PLoS One 7:e30774.CrossRefGoogle ScholarPubMed
Bekar, LK, He, W, Nedergaard, M (2008) Locus coeruleus alpha-adrenergic-mediated activation of cortical astrocytes in vivo. Cereb Cortex 18:27892795.CrossRefGoogle ScholarPubMed
Beppu, K, Sasaki, T, Tanaka, KF, Yamanaka, A, Fukazawa, Y, Shigemoto, R, Matsui, K (2014) Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage. Neuron 81:314320.CrossRefGoogle ScholarPubMed
Berndt, A, Schoenenberger, P, Mattis, J, Tye, KM, Deisseroth, K, Hegemann, P, Oertner, TG (2011) High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc Natl Acad Sci U S A 108:75957600.CrossRefGoogle ScholarPubMed
Berndt, A, Yizhar, O, Gunaydin, LA, Hegemann, P, Deisseroth, K (2009) Bi-stable neural state switches. Nat Neurosci 12:229234.CrossRefGoogle ScholarPubMed
Chen, J, Tan, Z, Zeng, L, Zhang, X, He, Y, Gao, W, Wu, X, Li, Y, Bu, B, Wang, W, Duan, S (2013) Heterosynaptic long-term depression mediated by ATP released from astrocytes. Glia 61:178191.CrossRefGoogle ScholarPubMed
Christie, IN, Wells, JA, Southern, P, Marina, N, Kasparov, S, Gourine, AV, Lythgoe, MF (2013) fMRI response to blue light delivery in the naive brain: implications for combined optogenetic fMRI studies. Neuroimage 66:634641.CrossRefGoogle ScholarPubMed
Chuong, AS, et al. (2014) Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 17:11231129.CrossRefGoogle ScholarPubMed
Deisseroth, K, Feng, G, Majewska, AK, Miesenbock, G, Ting, A, Schnitzer, MJ (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:1038010386.CrossRefGoogle Scholar
Duale, H, Kasparov, S, Paton, JF, Teschemacher, AG (2005) Differences in transductional tropism of adenoviral and lentiviral vectors in the rat brainstem. Exp Physiol 90:7178.CrossRefGoogle ScholarPubMed
Ferrero, JJ, Alvarez, AM, Ramirez-Franco, J, Godino, MC, Bartolome-Martin, D, Aguado, C, Torres, M, Lujan, R, Ciruela, F, Sanchez-Prieto, J (2013) Beta-adrenergic receptors activate exchange protein directly activated by cAMP (Epac), translocate Munc13-1, and enhance the Rab3A–RIM1alpha interaction to potentiate glutamate release at cerebrocortical nerve terminals. J Biol Chem 288:3137031385.CrossRefGoogle ScholarPubMed
Fields, RD, Burnstock, G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423436.CrossRefGoogle ScholarPubMed
Figueiredo, M, Lane, S, Stout, RF Jr., Liu, B, Parpura, V, Teschemacher, AG, Kasparov, S (2014) Comparative analysis of optogenetic actuators in cultured astrocytes. Cell Calcium 56:208214.CrossRefGoogle ScholarPubMed
Figueiredo, M, Lane, S, Tang, F, Liu, BH, Hewinson, J, Marina, N, Kasymov, V, Souslova, EA, Chudakov, DM, Gourine, AV, Teschemacher, AG, Kasparov, S (2011) Optogenetic experimentation on astrocytes. Exp Physiol 96:4050.CrossRefGoogle ScholarPubMed
Fleischer, W, Theiss, S, Slotta, J, Holland, C, Schnitzler, A (2015) High-frequency voltage oscillations in cultured astrocytes. Physiol Rep 3:e12400.CrossRefGoogle ScholarPubMed
Gourine, AV, Kasymov, V, Marina, N, Tang, F, Figueiredo, MF, Lane, S, Teschemacher, AG, Spyer, KM, Deisseroth, K, Kasparov, S (2010) Astrocytes control breathing through pH-dependent release of ATP. Science 329:571575.CrossRefGoogle ScholarPubMed
Gradinaru, V, Mogri, M, Thompson, KR, Henderson, JM, Deisseroth, K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324:354359.CrossRefGoogle Scholar
Han, X, Chow, BY, Zhou, H, Klapoetke, NC, Chuong, A, Rajimehr, R, Yang, A, Baratta, MV, Winkle, J, Desimone, R, Boyden, ES (2011) A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 5:18.CrossRefGoogle ScholarPubMed
Hertz, L, Dringen, R, Schousboe, A, Robinson, SR (1999) Astrocytes: glutamate producers for neurons. J Neurosci Res 57:417428.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Hertz, L, Lovatt, D, Goldman, SA, Nedergaard, M (2010) Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca2+]i. Neurochem Int 57:411420.CrossRefGoogle Scholar
Hill, RA, Tong, L, Yuan, P, Murikinati, S, Gupta, S, Grutzendler, J (2015) Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87:95110.CrossRefGoogle Scholar
Huckstepp, RT, id Bihi, R, Eason, R, Spyer, KM, Dicke, N, Willecke, K, Marina, N, Gourine, AV, Dale, N (2010) Connexin hemichannel-mediated CO2-dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity. J Physiol 588:39013920.CrossRefGoogle ScholarPubMed
Ji, ZG, Wang, H (2015) Optogenetic control of astrocytes: is it possible to treat astrocyte-related epilepsy? Brain Res Bull 110:2025.CrossRefGoogle Scholar
Kleinlogel, S, Feldbauer, K, Dempski, RE, Fotis, H, Wood, PG, Bamann, C, Bamberg, E (2011) Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. Nat Neurosci 14:513518.CrossRefGoogle ScholarPubMed
Latour, I, Hamid, J, Beedle, AM, Zamponi, GW, Macvicar, BA (2003) Expression of voltage-gated Ca2+ channel subtypes in cultured astrocytes. Glia 41:347353.CrossRefGoogle ScholarPubMed
Li, D, Agulhon, C, Schmidt, E, Oheim, M, Ropert, N (2013) New tools for investigating astrocyte-to-neuron communication. Front Cell Neurosci 7:193.CrossRefGoogle ScholarPubMed
Li, D, Herault, K, Isacoff, EY, Oheim, M, Ropert, N (2012) Optogenetic activation of LiGluR-expressing astrocytes evokes anion channel-mediated glutamate release. J Physiol 590:855873.CrossRefGoogle ScholarPubMed
Lin, JY (2011) A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp Physiol 96:1925.CrossRefGoogle ScholarPubMed
Lin, JY, Knutsen, PM, Muller, A, Kleinfeld, D, Tsien, RY (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16:14991508.CrossRefGoogle ScholarPubMed
Liu, B, Paton, JF, Kasparov, S (2008) Viral vectors based on bidirectional cell-specific mammalian promoters and transcriptional amplification strategy for use in vitro and in vivo. BMC Biotechnol 8:49.CrossRefGoogle ScholarPubMed
Liu, BH, Yang, Y, Paton, JF, Li, F, Boulaire, J, Kasparov, S, Wang, S (2006) GAL4-NF-kappaB fusion protein augments transgene expression from neuronal promoters in the rat brain. Mol Ther 14:872882.CrossRefGoogle ScholarPubMed
Marina, N, Ang, R, Machhada, A, Kasymov, V, Karagiannis, A, Hosford, PS, Mosienko, V, Teschemacher, AG, Vihko, P, Paton, JF, Kasparov, S, Gourine, AV (2015) Brainstem hypoxia contributes to the development of hypertension in the spontaneously hypertensive rat. Hypertension 65:775783.CrossRefGoogle Scholar
Marina, N, Tang, F, Figueiredo, M, Mastitskaya, S, Kasimov, V, Mohamed-Ali, V, Roloff, E, Teschemacher, AG, Gourine, AV, Kasparov, S (2013) Purinergic signalling in the rostral ventro-lateral medulla controls sympathetic drive and contributes to the progression of heart failure following myocardial infarction in rats. Basic Res Cardiol 108:317.CrossRefGoogle Scholar
Masamoto, K, Unekawa, M, Watanabe, T, Toriumi, H, Takuwa, H, Kawaguchi, H, Kanno, I, Matsui, K, Tanaka, KF, Tomita, Y, Suzuki, N (2015) Unveiling astrocytic control of cerebral blood flow with optogenetics. Sci Rep 5:11455.CrossRefGoogle ScholarPubMed
Mohanty, SK, Reinscheid, RK, Liu, X, Okamura, N, Krasieva, TB, Berns, MW (2008) In-depth activation of channelrhodopsin 2-sensitized excitable cells with high spatial resolution using two-photon excitation with a near-infrared laser microbeam. Biophys J 95:39163926.CrossRefGoogle ScholarPubMed
Nagel, G, Brauner, M, Liewald, JF, Adeishvili, N, Bamberg, E, Gottschalk, A (2005a) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:22792284.CrossRefGoogle ScholarPubMed
Nagel, G, Szellas, T, Huhn, W, Kateriya, S, Adeishvili, N, Berthold, P, Ollig, D, Hegemann, P, Bamberg, E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:1394013945.CrossRefGoogle ScholarPubMed
Nagel, G, Szellas, T, Kateriya, S, Adeishvili, N, Hegemann, P, Bamberg, E (2005b) Channelrhodopsins: directly light-gated cation channels. Biochem Soc Trans 33:863866.CrossRefGoogle ScholarPubMed
Pan, ZH, Ganjawala, TH, Lu, Q, Ivanova, E, Zhang, Z (2014) ChR2 mutants at L132 and T159 with improved operational light sensitivity for vision restoration. PLoS One 9:e98924.CrossRefGoogle ScholarPubMed
Papagiakoumou, E, Anselmi, F, Begue, A, de Sars, V, Gluckstad, J, Isacoff, EY, Emiliani, V (2010) Scanless two-photon excitation of channelrhodopsin-2. Nat Methods 7:848854.CrossRefGoogle ScholarPubMed
Perea, G, Yang, A, Boyden, ES, Sur, M (2014) Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat Commun 5:3262.CrossRefGoogle Scholar
Prakash, R, Yizhar, O, Grewe, B, Ramakrishnan, C, Wang, N, Goshen, I, Packer, AM, Peterka, DS, Yuste, R, Schnitzer, MJ, Deisseroth, K (2012) Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nat Methods 9:11711179.CrossRefGoogle ScholarPubMed
Sasaki, T, Beppu, K, Tanaka, KF, Fukazawa, Y, Shigemoto, R, Matsui, K (2012) Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation. Proc Natl Acad Sci U S A 109:2072020725.CrossRefGoogle ScholarPubMed
Steinhäuser, C, Seifert, G, Deitmer, JW (2013) Physiology of astrocytes: Ion channels and ion transporters. In: Neuroglia (Kettenmann, H, Ransom, B, eds), pp. 185196. Oxford: Oxford University Press.Google Scholar
Stierl, M, Stumpf, P, Udwari, D, Gueta, R, Hagedorn, R, Losi, A, Gartner, W, Petereit, L, Efetova, M, Schwarzel, M, Oertner, TG, Nagel, G, Hegemann, P (2011) Light-modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J Biol Chem 286:11811188.CrossRefGoogle ScholarPubMed
Suzuki, A, Stern, SA, Bozdagi, O, Huntley, GW, Walker, RH, Magistretti, PJ, Alberini, CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810823.CrossRefGoogle ScholarPubMed
Tang, F, Lane, S, Korsak, A, Paton, JF, Gourine, AV, Kasparov, S, Teschemacher, AG (2014) Lactate-mediated glia-neuronal signaling in the mammalian brain. Nat Commun 5:3284.CrossRefGoogle ScholarPubMed
Verkhratsky, A, Nedergaard, M, Hertz, L (2015) Why are astrocytes important? Neurochem Res 40:389401.CrossRefGoogle ScholarPubMed
Volgraf, M, Gorostiza, P, Numano, R, Kramer, RH, Isacoff, EY, Trauner, D (2006) Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2:4752.CrossRefGoogle ScholarPubMed
Wang, S, Benamer, N, Zanella, S, Kumar, NN, Shi, Y, Bevengut, M, Penton, D, Guyenet, PG, Lesage, F, Gestreau, C, Barhanin, J, Bayliss, DA (2013) TASK-2 channels contribute to pH sensitivity of retrotrapezoid nucleus chemoreceptor neurons. J Neurosci 33:1603316044.CrossRefGoogle ScholarPubMed
Wells, JA, Christie, IN, Hosford, PS, Huckstepp, RT, Angelova, PR, Vihko, P, Cork, SC, Abramov, AY, Teschemacher, AG, Kasparov, S, Lythgoe, MF, Gourine, AV (2015) A critical role for purinergic signalling in the mechanisms underlying generation of BOLD fMRI responses. J Neurosci 35:52845292.CrossRefGoogle ScholarPubMed
Yarkoni, O, Donlon, L, Frankel, D (2012) Creating a bio-hybrid signal transduction pathway: opening a new channel of communication between cells and machines. Bioinspir Biomim 7:046017.CrossRefGoogle ScholarPubMed
Zemelman, BV, Nesnas, N, Lee, GA, Miesenbock, G (2003) Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc Natl Acad Sci U S A 100:13521357.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×