Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T06:30:20.488Z Has data issue: false hasContentIssue false

12 - Optogenetics for Neurological Disorders: What Is the Path to the Clinic?

from Part III - Optogenetics in Neurobiology, Brain Circuits, and Plasticity

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 169 - 180
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergey, G. K., Morrell, M. J., et al., (2015). Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology 84(8): 810817.CrossRefGoogle ScholarPubMed
Berndt, A., Lee, S. Y., et al., (2014). Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344(6182): 420424.CrossRefGoogle ScholarPubMed
Boyden, E. S., Zhang, F., et al., (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9): 12631268.CrossRefGoogle ScholarPubMed
Carr, F. B. and Zachariou, V. (2014). Nociception and pain: lessons from optogenetics. Front Behav Neurosci 8: 69.CrossRefGoogle ScholarPubMed
Cavanaugh, J., Monosov, I. E., et al., (2012). Optogenetic inactivation modifies monkey visuomotor behavior. Neuron 76(5): 901907.CrossRefGoogle ScholarPubMed
Chiang, C. C., Ladas, T. P., et al., (2014). Seizure suppression by high frequency optogenetic stimulation using in vitro and in vivo animal models of epilepsy. Brain Stimul 7(6): 890899.CrossRefGoogle ScholarPubMed
Gerits, A., Farivar, R., et al., (2012). Optogenetically induced behavioral and functional network changes in primates. Curr Biol 22(18): 17221726.CrossRefGoogle Scholar
Gerits, A. and Vanduffel, W. (2013). Optogenetics in primates: a shining future? Trends Genet 29(7): 403411.CrossRefGoogle ScholarPubMed
Gradinaru, V., Mogri, M., et al., (2009). Optical deconstruction of Parkinsonian neural circuitry. Science 324(5925): 354359.CrossRefGoogle ScholarPubMed
Gradinaru, V., Zhang, F., et al., (2010). Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141(1): 154165.CrossRefGoogle ScholarPubMed
Gunaydin, L. A., Yizhar, O., et al., (2010). Ultrafast optogenetic control. Nat Neurosci 13(3): 387392.CrossRefGoogle ScholarPubMed
Han, X. (2012). Optogenetics in the nonhuman primate. Prog Brain Res 196: 215233.CrossRefGoogle ScholarPubMed
Han, X., Chow, B. Y., et al., (2011). A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci 5: 18.CrossRefGoogle ScholarPubMed
Jazayeri, M., Lindbloom-Brown, Z., et al., (2012). Saccadic eye movements evoked by optogenetic activation of primate V1. Nat Neurosci 15(10): 13681370.CrossRefGoogle Scholar
Jin, X., Tecuapetla, F., et al., (2014). Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat Neurosci 17(3): 423430.CrossRefGoogle Scholar
Krook-Magnuson, E., Armstrong, C., et al., (2013). On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun 4: 1376.CrossRefGoogle ScholarPubMed
Krook-Magnuson, E. and Soltesz, I. (2015). Beyond the hammer and the scalpel: selective circuit control for the epilepsies. Nat Neurosci 18(3): 331338.CrossRefGoogle Scholar
Krook-Magnuson, E., Szabo, G. G., et al., (2014). Cerebellar directed optogenetic intervention inhibits spontaneous hippocampal seizures in a mouse model of temporal lobe epilepsy. eNeuro 1(1): e.2014.CrossRefGoogle Scholar
Kros, L., Rooda, O. H. Eelkman, et al., (2015). Cerebellar output controls generalized spike-and-wave discharge occurrence. Ann Neurol 77(6): 10271049.CrossRefGoogle Scholar
Lammel, S., Tye, K. M., et al., (2014). Progress in understanding mood d isorders: optogenetic dissection of neural circuits. Genes Brain Behav 13(1): 3851.CrossRefGoogle Scholar
Montgomery, K. L., Yeh, A. J., et al., (2015). Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods 12(10): 969974.CrossRefGoogle ScholarPubMed
Nature Video. (2010). Method of the Year 2010: Optogenetics. from https://www.youtube.com/watch?v=I64X7vHSHOE.Google Scholar
Ozden, I., Wang, J., et al., (2013). A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates. J Neurosci Methods 219(1): 142154.CrossRefGoogle ScholarPubMed
Paz, J. T., Davidson, T. J., et al., (2013). Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 16(1): 6470.CrossRefGoogle ScholarPubMed
Raimondo, J. V., Kay, L., et al., (2012). Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission. Nat Neurosci 15(8): 11021104.CrossRefGoogle ScholarPubMed
Tonnesen, J., Sorensen, A. T., et al., (2009). Optogenetic control of epileptiform activity. Proc Natl Acad Sci U S A 106(29): 1216212167.CrossRefGoogle ScholarPubMed
Wykes, R. C., Heeroma, J. H., et al., (2012). Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med 4(161): 161ra152.CrossRefGoogle Scholar
Zemelman, B. V., Lee, G. A., et al., (2002). Selective photostimulation of genetically chARGed neurons. Neuron 33(1): 1522.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×