We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let
$(A,\mathfrak m)$
be an excellent two-dimensional normal local domain. In this paper, we study the elliptic and the strongly elliptic ideals of A with the aim to characterize elliptic and strongly elliptic singularities, according to the definitions given by Wagreich and Yau. In analogy with the rational singularities, in the main result, we characterize a strongly elliptic singularity in terms of the normal Hilbert coefficients of the integrally closed
$\mathfrak m$
-primary ideals of A. Unlike
$p_g$
-ideals, elliptic ideals and strongly elliptic ideals are not necessarily normal and necessary, and sufficient conditions for being normal are given. In the last section, we discuss the existence (and the effective construction) of strongly elliptic ideals in any two-dimensional normal local ring.
This is a general study of twisted Calabi–Yau algebras that are
$\mathbb {N}$
-graded and locally finite-dimensional, with the following major results. We prove that a locally finite graded algebra is twisted Calabi–Yau if and only if it is separable modulo its graded radical and satisfies one of several suitable generalizations of the Artin–Schelter regularity property, adapted from the work of Martinez-Villa as well as Minamoto and Mori. We characterize twisted Calabi–Yau algebras of dimension 0 as separable k-algebras, and we similarly characterize graded twisted Calabi–Yau algebras of dimension 1 as tensor algebras of certain invertible bimodules over separable algebras. Finally, we prove that a graded twisted Calabi–Yau algebra of dimension 2 is noetherian if and only if it has finite GK dimension.
This paper examines Euler characteristics and characteristic classes in the motivic setting. We establish a motivic version of the Becker–Gottlieb transfer, generalizing a construction of Hoyois. Making calculations of the Euler characteristic of the scheme of maximal tori in a reductive group, we prove a generalized splitting principle for the reduction from $\operatorname{GL}_{n}$ or $\operatorname{SL}_{n}$ to the normalizer of a maximal torus (in characteristic zero). Ananyevskiy’s splitting principle reduces questions about characteristic classes of vector bundles in $\operatorname{SL}$-oriented, $\unicode[STIX]{x1D702}$-invertible theories to the case of rank two bundles. We refine the torus-normalizer splitting principle for $\operatorname{SL}_{2}$ to help compute the characteristic classes in Witt cohomology of symmetric powers of a rank two bundle, and then generalize this to develop a general calculus of characteristic classes with values in Witt cohomology.