Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T22:51:10.773Z Has data issue: false hasContentIssue false

Structural and chemical characterization of the hardening phase in biodegradable Fe–Mn–Pd maraging steels

Published online by Cambridge University Press:  12 May 2014

F. Moszner
Affiliation:
Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
S.S.A. Gerstl
Affiliation:
Electron Microscopy ETH Zurich (EMEZ), ETH Zurich, 8093 Zurich, Switzerland
P.J. Uggowitzer
Affiliation:
Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
J.F. Löffler*
Affiliation:
Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
*
a)Address all correspondence to this author. e-mail: joerg.loeffler@mat.ethz.ch
Get access

Abstract

Fe–Mn–Pd alloys are promising candidates as biodegradable material for use in temporary implant applications. In this study, the hardening phase of Fe-rich martensitic alloys containing 1, 3, and 6 wt.% Pd and a fixed Mn content of 10 wt.% was investigated. All of these alloys show considerable age-hardening upon isothermal aging at 500 °C, exhibiting a behavior characteristic of maraging steels. Atom probe tomography (APT) and x-ray diffraction (XRD) measurements were performed to characterize the composition and crystallography of nanometer-sized precipitates forming in the overaged region of the Fe–Mn–Pd alloys. The precipitates consist mainly of Mn and Pd and the peaks of the intermetallic particles observed in the XRD spectra can be ascribed to the face-centered tetragonal β1-MnPd phase. The precipitation sequence for Fe–Mn–Pd is revealed to be similar to that reported for Fe–Mn–Ni and Fe–Mn–Pt maraging steels.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hermawan, H., Dube, D., and Mantovani, D.: Development of degradable Fe-35Mn alloy for biomedical application. In 5th International Conference on Processing and Manufacturing of Advanced Materials (Thermec 2006 Supplement), Chandra, T., Tsuzaki, K., Militzer, M., and Ravindran, C. ed.; Trans Tech Publications Ltd: Zurich, 2007; p. 107.Google Scholar
Schinhammer, M., Hänzi, A.C., Löffler, J.F., and Uggowitzer, P.J.: Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater. 6(5), 1705 (2010).Google Scholar
Peuster, M., Wohlsein, P., Brugmann, M., Ehlerding, M., Seidler, K., Fink, C., Brauer, H., Fischer, A., and Hausdorf, G.: A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal - results 6-18 months after implantation into New Zealand white rabbits. Heart 86(5), 563 (2001).Google Scholar
Peuster, M., Hesse, C., Schloo, T., Fink, C., Beerbaum, P., and von Schnakenburg, C.: Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27(28), 4955 (2006).Google Scholar
Waksman, R., Pakala, R., Baffour, R., Seabron, R., Hellinga, D., and Tio, F.O.: Short-term effects of biocorrodible iron stents in porcine coronary arteries. J. Interv. Cardiol. 21(1), 15 (2008).Google Scholar
Hermawan, H., Purnama, A., Dube, D., Couet, J., and Mantovani, D.: Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies. Acta Biomater. 6(5), 1852 (2010).Google Scholar
Huang, T., Cheng, J., and Zheng, Y.F.: In vitro degradation and biocompatibility of Fe–Pd and Fe–Pt composites fabricated by spark plasma sintering. Mater. Sci. Eng. C 35(0), 43 (2014).Google Scholar
Schinhammer, M., Gerber, I., Hänzi, A.C., and Uggowitzer, P.J.: On the cytocompatibility of biodegradable Fe-based alloys. Mater. Sci. Eng. C 33(2), 782 (2013).Google Scholar
Decker, R.F. and Floreen, S.: Maraging steels - The first 30 years. In Maraging Steels: Recent Developments and Applications, TMS-AIME, Warrendale, 1988; p. 1.Google Scholar
Moszner, F., Sologubenko, A.S., Schinhammer, M., Lerchbacher, C., Hänzi, A.C., Leitner, H., Uggowitzer, P.J., and Löffler, J.F.: Precipitation hardening of biodegradable Fe-Mn-Pd alloys. Acta Mater. 59(3), 981 (2011).Google Scholar
Kardonskii, V.M. and Perkas, M.D.: Aging of martensite in Fe−Ni−Mn steels. Met. Sci. Heat Treat. 8(4), 254 (1966).CrossRefGoogle Scholar
Tanaka, M. and Suzuki, T.: On the age-hardening of Fe-Pt-Mn alloys. J. Jpn. Inst. Met. 35(10), 974 (1971).Google Scholar
Squires, D.R. and Wilson, E.A.: Aging and brittleness in an Fe-Ni-Mn alloy. Metall. Trans. 3(2), 575 (1972).Google Scholar
Yodogawa, M.: Precipitation behavior in Fe-Ni-Mn martensitic alloys. Trans. Jpn. Inst. Met. 17(12), 799 (1976).CrossRefGoogle Scholar
Shiang, L.T. and Wayman, C.M.: Maraging behavior in an Fe–19.5Ni–5Mn alloy. 1. Precipitation characteristics. Metallography 21(4), 399 (1988).CrossRefGoogle Scholar
Basu, S.N. and Kumar, A.N.: Enhanced tensile ductility in Fe-Mn-Ni base maraging alloys. Mater. Sci. Eng. A 122(2), L5 (1989).CrossRefGoogle Scholar
Kim, S-J. and Wayman, C.M.: Electron microscopy study of precipitates in Fe-Ni-Mn maraging alloys. Mater. Sci. Eng. A 136, 121 (1991).Google Scholar
Hossein Nedjad, S., Nili Ahmadabadi, M., Furuhara, T., and Maki, T.: High resolution transmission electron microscopy study on the nano-scale twinning of θ-NiMn precipitates in an Fe–Ni–Mn maraging alloy. Physica Status Solidi A 203(9), 2229 (2006).Google Scholar
Nedjad, S.H., Garabagh, M.R.M., Ahmadabadi, M.N., and Shirazi, H.: Effect of further alloying on the microstructure and mechanical properties of an Fe-10Ni-5Mn maraging steel. Mater. Sci. Eng. A 473(1–2), 249 (2008).Google Scholar
Ray, R.K. and Seal, A.K.: Structure and strength of 2 age-hardenable Fe-Mn-Ni alloys. Scr. Metall. 10(11), 971 (1976).CrossRefGoogle Scholar
Heo, N.H.: Ductile-brittle-ductile transition and grain boundary segregation of Mn and Ni in an Fe-6Mn-12Ni alloy. Scr. Mater. 34(10), 1517 (1996).Google Scholar
Singh, J. and Wayman, C.M.: Age-hardening characteristics of a martensitic Fe-Ni-Mn alloy. Mater. Sci. Eng. 94, 233 (1987).Google Scholar
Suzuki, T.: Precipitation hardening in maraging steels - martensitic ternary iron-alloys. Trans. Iron Steel Inst. Jpn. 14(2), 67 (1974).Google Scholar
Moszner, F., Gerstl, S.S.A., Uggowitzer, P.J., and Löffler, J.F.: Atomic-scale characterization of prior austenite grain boundaries in an Fe–Mn-based maraging steel using site-specific atom-probe tomography. Acta Mater. (2014). DOI: 10.1016/j.actamat.2014.04.009.Google Scholar
EN 10002–10011: Standard Metallic Materials - Tensile Testing - Part 1: Method of Testing at Ambient Temperature (DIN, Berlin, 2001).Google Scholar
Miller, M.K. and Forbes, R.G.: Atom probe tomography. Mater. Charact. 60(6), 461 (2009).Google Scholar
Larson, D., Prosa, T., Ulfig, R., Geiser, B., and Kelly, T.: Local Electrode Atom Probe Tomography (Springer, New York, 2013).Google Scholar
Roberts, M.J.: Effect of transformation substructure on strength and toughness of Fe-Mn alloys. Metall. Trans. 1(12), 3287 (1970).Google Scholar
Bolton, J.D. and Petty, E.R.: The transformation behaviour of low-carbon iron-manganese alloys. Met. Sci. J. 5, 166 (1971).Google Scholar
Püttgen, W., Hallstedt, B., Bleck, W., and Uggowitzer, P.J.: On the microstructure formation in chromium steels rapidly cooled from the semi-solid state. Acta Mater. 55(3), 1033 (2007).Google Scholar
Schumann, H. and Oettel, H.: Metallography (Wiley-VCH, Weinheim, 2005), p. 665.Google Scholar
Hellman, O.C., Vandenbroucke, J.A., Rusing, J., Isheim, D., and Seidman, D.N.: Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc. Microanal. 6(5), 437 (2000).Google Scholar
Okamoto, H.: Mn-Pd (manganese-palladium). J. Phase Equilib. 14(5), 654 (1993).Google Scholar
Schnitzer, R., Radis, R., Nöhrer, M., Schober, M., Hochfellner, R., Zinner, S., Povoden-Karadeniz, E., Kozeschnik, E., and Leitner, H.: Reverted austenite in PH 13-8 Mo maraging steels. Mater. Chem. Phys. 122(1), 138 (2010).Google Scholar
Servant, C. and Lacombe, P.: Structural transformations produced during tempering of Fe-Ni-Co-Mo alloys. J. Mater. Sci. 12(9), 1807 (1977).Google Scholar
Schumann, H.: Martensitic transformations in low carbon manganese steels. Arch. Eisenhüttenwes. 38(8), 647 (1967).Google Scholar
Martínez, J., Cotes, S.M., Cabrera, A.F., Desimoni, J., and Fernández Guillermet, A.: On the relative fraction of ε martensite in γ-Fe–Mn alloys. Mater. Sci. Eng. A 408(1–2), 26 (2005).Google Scholar
Egorushkin, V.E., Kulkov, S.N., and Kulkova, S.E.: Electronic-structure and the theory of phase-transformations in NiMn. Physica B & C 123(1), 61 (1983).Google Scholar
Brun, K., Kjekshus, A., and Pearson, W.B.: Equiatomic transition metal alloys of manganese. I. Tetragonal PtMn phase. Philos. Mag. 10(104), 291 (1964).Google Scholar
Kjekshus, A., Mollerud, R., Andresen, A.F., and Pearson, W.B.: Equiatomic transition metal alloys of manganese. 6. Structural and magnetic properties of Pd-Mn phases. Philos. Mag. 16(143), 1063 (1967).Google Scholar