Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T00:49:11.478Z Has data issue: false hasContentIssue false

A strategy for imaging-guided cocktail cancer therapy using dual-colored polymeric drug carriers with amplified aggregation-induced emission behavior by donor–acceptor/Förster resonance energy transfer adjustment

Published online by Cambridge University Press:  12 November 2020

Mengxia Hua
Affiliation:
School of Mathematics and Statistics, Nanyang Normal University, Nanyang473061, PR China
Yi Zhou
Affiliation:
Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou215123, PR China State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Soochow University, Suzhou215123, PR China
Ziyu Wang
Affiliation:
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Soochow University, Suzhou215123, PR China
Cheng Wang
Affiliation:
College of Pharmaceutical Science, Zhejiang University, Hangzhou310058, PR China
Lu Wang
Affiliation:
State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Soochow University, Suzhou215123, PR China
Hong Yuan*
Affiliation:
College of Pharmaceutical Science, Zhejiang University, Hangzhou310058, PR China
Daoben Hua*
Affiliation:
Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou215123, PR China State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X), Soochow University, Suzhou215123, PR China
*
a)Address all correspondence to these authors. e-mail: yuanhong70@zju.edu.cn
Get access

Abstract

Nowadays, theranostics drug delivery systems (DDSs) with imaging and therapy bi-functions have been regarded as a future orientation for imaging-guided cancer therapy. To achieve high imaging quality, a donor–acceptor (D–A)/Förster resonance energy transfer (FRET) bi-adjustment strategy is carried out for designing dual-colored DDSs with amplified aggregation-induced emission (AIE) behavior for imaging-guided cocktail cancer therapy in this study. In detail, four AIE-active conjugated polymers P-1 to P-4 are synthesized via the Suzuki reaction. Noteworthily, the D–A-type structure is applied in tuning the fluorescence color from orange (P-1) to far-red/near-infrared (P-2), while the intramolecular FRET process further enhanced the fluorescence signal for six times (P-3). Afterwards, P-3-based amphipathic polymer P-4 further acts as a drug carrier in preparing doxorubicin (Dox)- and curcumin (Cur)-loaded polymer dots (Pdots) (Dox-loaded Pdots as PDox and Cur-loaded Pdots as PCur). PDox + PCur DDS is successfully applied in imaging-guided cocktail cancer therapy to give obviously higher in vivo anticancer efficacy compared with single PDox or PCur. In addition, the drug-loaded Pdots also exhibit higher biocompatibility compared with free drugs. This work provides a novel D–A/FRET bi-adjustment strategy for developing high efficiency imaging-guided cocktail DDSs in cancer therapy.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

These authors contributed equally to this work.

References

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J. Clin. 68, 394424 (2018).CrossRefGoogle ScholarPubMed
Lin, C.J., Kuan, C.H., Wang, L.W., Wu, H.C., Chen, Y., Chang, C.W., Huang, R.Y., and Wang, T.W.: Integrated self-assembling drug delivery system possessing dual responsive and active targeting for orthotopic ovarian cancer theranostics. Biomaterials 90, 1226 (2016).CrossRefGoogle ScholarPubMed
Modak, A., Barui, A.K., Patra, C.R., and Bhaumik, A.: A luminescent nanoporous hybrid material based drug delivery system showing excellent theranostics potential for cancer. Chem. Commun. 49, 76447646 (2013).CrossRefGoogle ScholarPubMed
Hong, C., Wang, D., Liang, J.M., Guo, Y.Z., Zhu, Y., Xia, J.X., Qin, J., Zhan, H.X., and Wang, J.X.: Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer. Theranostics 9, 44374449 (2019).CrossRefGoogle ScholarPubMed
Kuthala, N., Vankayala, R., Li, Y.N., Chiang, C.S., and Hwang, K.C.: Engineering novel targeted Boron-10-enriched theranostic nanomedicine to combat against murine brain tumors via MR imaging-guided boron neutron capture therapy. Adv. Mater. 29, 1700850 (2017).CrossRefGoogle ScholarPubMed
Shan, W.J., Chen, R.H., Zhang, Q., Zhao, J., Chen, B.B., Zhou, X., Ye, S.F., Bi, S.L., Nie, L.M., and Ren, L.: Improved stable indocyanine green (ICG)-mediated cancer optotheranostics with naturalized hepatitis B core particles. Adv. Mater. 30, 1707567 (2018).CrossRefGoogle ScholarPubMed
He, H.J., Cui, Y.J., Li, B., Wang, B., Jin, C.H., Yu, J.C., Yao, L.J., Yang, Y., Chen, B.L., and Qian, G.D.: Confinement of perovskite-QDs within a single MOF crystal for significantly enhanced multiphoton excited luminescence. Adv. Mater. 8, 1806897 (2018).CrossRefGoogle Scholar
Wang, D., Lee, M.M.S., Shan, G.G., Kwok, R.T.K., Lam, J.W.Y., Su, H.F., Cai, Y.C., and Tang, B.Z.: Highly efficient photosensitizers with far-red/near-infrared aggregation-induced emission for in vitro and in vivo cancer theranostics. Adv. Mater. 30, 1802105 (2018).CrossRefGoogle ScholarPubMed
Mei, J., Leung, N.L.C., Kwok, R.T.K., Lam, J.W.Y., and Tang, B.Z.: Aggregation-induced emission: Together We Shine, United We Soar!. Chem. Rev. 115, 1171811940 (2015).CrossRefGoogle ScholarPubMed
Gao, H., Zhang, N., Li, Y., Zhao, W., Quan, Y.W., Cheng, Y.X., Chen, H.Y., and Xu, J.J.: Trace Ir(III) complex enhanced electrochemiluminescence of AIE-active Pdots in aqueous media. Sci. China Chem. 63, 715721 (2020).CrossRefGoogle Scholar
Tsujimoto, H., Ha, D.G., Markopoulos, G., Chae, H.S., Baldo, M.A., and Swager, T.M.: Thermally activated delayed fluorescence and aggregation induced emission with through-space charge transfer. J. Am. Chem. Soc. 139, 48944900 (2017).CrossRefGoogle ScholarPubMed
Qu, H., Tang, X., Wang, X.C., Li, Z.H., Huang, Z.Y., Zhang, H., Tian, Z.Q., and Cao, X.Y.: Chiral molecular face-rotating sandwich structures constructed through restricting the phenyl flipping of tetraphenylethylene. Chem. Sci. 9, 88148818 (2018).CrossRefGoogle ScholarPubMed
Gu, X.G., Kwok, R.T.K., Lam, J.W.Y., and Tang, B.Z.: AIEgens for biological process monitoring and disease theranostics. Biomaterials 146, 115135 (2017).CrossRefGoogle ScholarPubMed
Lv, X.J., Li, W.J., Ouyang, M., Zhang, Y.J., Wright, D.S., and Zhang, C.: Polymeric electrochromic materials with donor–acceptor structures. J. Mater. Chem. C 5, 1228 (2017).CrossRefGoogle Scholar
Omer, K.M., Ku, S.Y., Cheng, J.Z., Chou, S.H., Wong, K.T., and Bard, A.J.: Electrochemistry and electrogenerated chemiluminescence of a spirobifluorene-based donor (triphenylamine)−acceptor (2,1,3-benzothiadiazole) molecule and its organic nanoparticles. J. Am. Chem. Soc. 133, 54925499 (2011).CrossRefGoogle ScholarPubMed
Yoshii, R., Hirose, A., Tanaka, K., and Chujo, Y.: Functionalization of boron diiminates with unique optical properties: Multicolor tuning of crystallization-induced emission and introduction into the main chain of conjugated polymers. J. Am. Chem. Soc. 136, 1813118139 (2014).CrossRefGoogle ScholarPubMed
Wang, Z., Wang, C., Gan, Q., Cao, Y., Yuan, H., and Hua, D.: Donor-acceptor-type conjugated polymer-based multicolored drug carriers with tunable aggregation-induced emission behavior for self-illuminating cancer therapy. ACS Appl. Mater. Interfaces 11, 41853 (2019).CrossRefGoogle ScholarPubMed
Wang, D., Su, H.F., Kwok, R.T.K., Shan, G.G., Leung, A.C.S., Lee, M.M.S., Sung, H.H.Y., Williams, I.D., Lam, J.W.Y., and Tang, B.Z.: Facile synthesis of Red/NIR AIE Luminogens with simple structures, bright emissions, and high photostabilities, and their applications for specific imaging of lipid droplets and image-guided photodynamic therapy. Adv. Funct. Mater. 27, 1704039 (2017).CrossRefGoogle Scholar
Zhang, X.J., Hu, Y., Yang, X.T., Tang, Y.Y., Han, S.Y., Kang, A., Deng, H.S., Chi, Y.M., Zhu, D., and Lu, Y.: FÖrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens. Bioelectron. 138, 111314 (2019).CrossRefGoogle ScholarPubMed
Wang, Z.Y., Liu, S., Wang, Y.X., Quan, Y.W., and Cheng, Y.X.: Tunable AICPL of (S)-binaphthyl-based three-component polymers via FRET mechanism. Macromol. Rapid Commun. 38, 1700150 (2017).CrossRefGoogle ScholarPubMed
Fang, J.H., Lai, Y.H., Chiu, T.L., Chen, Y.Y., Hu, S.H., and Chen, S.Y.: Magnetic core–shell nanocapsules with dual-targeting capabilities and co-delivery of multiple drugs to treat brain gliomas. Adv. Healthc. Mater. 3, 12501260 (2014).CrossRefGoogle ScholarPubMed
Duan, J.H., Mansour, H.M., Zhang, Y.D., Deng, X.M., Chen, Y.X., Wang, J.W., Pan, Y.F., and Zhao, J.F.: Reversion of multidrug resistance by co-encapsulation of doxorubicin and curcumin in chitosan/poly(butyl cyanoacrylate) nanoparticles. Int. J. Pharm. 426, 193201 (2016).CrossRefGoogle Scholar
Zhang, Y.M., Yang, C.H., Wang, W.W., Liu, J.J., Liu, Q., Huang, F., Chu, L.P., Gao, H.L., Li, C., Kong, D.L., Liu, Q., and Liu, J.F.: Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci. Rep. 6, 21225 (2016).CrossRefGoogle ScholarPubMed
Ding, A.X., Tan, Z.L., Shi, Y.D., Song, L., Gong, B., and Lu, Z.L.: Gemini-type tetraphenylethylene amphiphiles containing [12]aneN3 and long hydrocarbon chains as nonviral gene vectors and gene delivery monitors. ACS Appl. Mater. Interfaces 9, 1154611556 (2017).CrossRefGoogle ScholarPubMed
Dai, C.H., Yang, D.L., Fu, X., Chen, Q.M., Zhu, C.J., Cheng, Y.X., and Wang, L.H.: A study on tunable AIE (AIEE) of boron ketoiminate-based conjugated polymers for live cell imaging. Polym. Chem. 6, 50705076 (2015).CrossRefGoogle Scholar
Zhao, P., Wang, L.J., Wu, Y.S., Yang, T., Ding, Y., Yang, H.G., and Hu, A.G.: Hyperbranched conjugated polymer dots: The enhanced photocatalytic activity for visible light-driven hydrogen production. Macromolecules 52, 43764384 (2019).CrossRefGoogle Scholar
Cardona, C.M., Li, W., Kaifer, A.E., Stockdale, D., and Bazan, G.C.: Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv. Mater. 23, 23672371 (2011).CrossRefGoogle ScholarPubMed
Li, Y.F., Cao, Y., Gao, J., Wang, D.L., Yu, G., and Heeger, A.J.: Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells. Synth. Met. 99, 243248 (1999).CrossRefGoogle Scholar
Wang, Z.Y., Feng, Y.Q., Wang, N.N., Cheng, Y.X., Quan, Y.W., and Ju, H.X.: Donor–acceptor conjugated polymer dots for tunable electrochemiluminescence activated by aggregation-induced emission-active moieties. J. Phys. Chem. Lett. 9, 52965302 (2018).CrossRefGoogle ScholarPubMed
Hu, J.J., Youssefian, S., Obayemi, J., Malatesta, K., Rahbar, N., and Soboyejo, W.: Investigation of adhesive interactions in the specific targeting of Triptorelin-conjugated PEG-coated magnetite nanoparticles to breast cancer cells. Acta Biomater. 71, 363378 (2018).CrossRefGoogle ScholarPubMed
Stefaniak, K.R., Epley, C.C., Novak, J.J., McAndrew, M.L., Cornell, H.D., Zhu, J., McDaniel, D.K., Davis, J.L., Allen, I.C., Morris, A.J., and Grove, T.Z.: Photo-triggered release of 5-fluorouracil from a MOF drug delivery vehicle. Chem. Commun. 54, 76177620 (2018).CrossRefGoogle Scholar
Lv, L., Qiu, K.F., Yu, X.X., Chen, C.X., Qin, F.C., Shi, Y.H., Ou, J.B., Zhang, T., Zhu, H., Wu, J.W., Liu, C.X., and Li, G.C.: Amphiphilic copolymeric micelles for doxorubicin and curcumin co-delivery to reverse multidrug resistance in breast cancer. J. Biomed. Nanotechnol. 12, 973985 (2016).CrossRefGoogle ScholarPubMed
Shao, S.H., Zhu, Y., Meng, T.T., Liu, Y.P., Hong, Y., Yuan, M., Yuan, H., and Hu, F.Q.: Targeting high expressed α5β1 integrin in liver metastatic lesions to resist metastasis of colorectal cancer by RPM peptide-modified chitosan-stearic micelles. Mol. Pharmaceut. 15, 16531663 (2018).CrossRefGoogle ScholarPubMed
Li, X.Y., Pan, L.M., and Shi, J.L.: Nuclear-targeting MSNs-based drug delivery system: Global gene expression analysis on the MDR-overcoming mechanisms. Adv. Healthc. Mater. 4, 26412648 (2015).CrossRefGoogle ScholarPubMed
Wang, C., Wang, Z.Y., Zhao, X., Yu, F.Y., Quan, Y.W., Cheng, Y.X., and Yuan, H.: DOX loaded aggregation-induced emission active polymeric nanoparticles as a fluorescence resonance energy transfer traceable drug delivery system for self-indicating cancer therapy. Acta Biomater. 85, 218228 (2019).CrossRefGoogle ScholarPubMed
Wang, C., Chen, S.Q., Wang, Y.X., Liu, X.R., Hu, F.Q., Sun, J.H., and Yuan, H.: Lipase-triggered water-responsive “Pandora's Box” for cancer therapy: Toward induced neighboring effect and enhanced drug penetration. Adv. Mater. 30, 1706407 (2018).CrossRefGoogle ScholarPubMed
Yong, T.Y., Zhang, X.Q., Bie, N.N., Zhang, H.B., Zhang, X.T., Li, F.Y., Hakeem, A., Hu, J., Gan, L., Santos, H.A., and Yang, X.L.: Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun. 10, 3838 (2019).CrossRefGoogle ScholarPubMed
Wang, C., Yu, F.Y., Liu, X.R., Chen, S.Q., Wu, R., Zhao, R., Hu, F.Q., and Yuan, H.: Cancer-specific therapy by artificial modulation of intracellular calcium concentration. Adv. Healthc. Mater. 8, 1900501 (2019).CrossRefGoogle ScholarPubMed
Supplementary material: File

Hua et al. supplementary material

Hua et al. supplementary material

Download Hua et al. supplementary material(File)
File 15 MB