Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-18T02:50:27.023Z Has data issue: false hasContentIssue false

Oxidation of Al–Au intermetallics and its consequences studied by x-ray photoelectron spectroscopy

Published online by Cambridge University Press:  31 January 2011

T. Sritharan*
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
Y.B. Li
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; and Center for Composite Materials, School of Astronautics, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
C. Xu
Affiliation:
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
S. Zhang
Affiliation:
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
*
a)Address all correspondence to this author. e-mail: assritharan@ntu.edu.sg
Get access

Abstract

Three common Al–Au intermetallics, Al2Au, AlAu2, and AlAu4, were oxidized in the air and characterized using x-ray photoelectron spectroscopy in terms of the elemental chemical state. It was found that there is an increasing trend of oxidation in these intermetallics as the Au content increases. AlAu4 shows the greatest tendency to oxidize with two extra peaks appearing on the Au 4f spectra after long exposure time in air. The surface of AlAu2, although fully oxidized, reveals only one Au 4f peak shift as depth increases. Al2Au was the least oxidizing compound, and the oxide is thin. The binding energies of Al 2p and Au 4f peaks were measured and reported. The Au atoms trapped in the oxide layers exhibit higher binding energy emissions compared to those of elemental Au.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Campisano, S.U., Foti, G., Rimini, E., Lau, S.S.Mayer, J.W.: Kinetics of phase formulation in Au–Al thin films. Philos. Mag. 31, 903 1975CrossRefGoogle Scholar
2Majni, G., Nobili, C., Ottaviani, G.Costato, M.: Gold-aluminum thin-film interactions and compound formation. J. Appl. Phys. 52, 4047 1981CrossRefGoogle Scholar
3Xu, C., Sritharan, T.Mhaisalkar, S.G.: Thin film aluminum–gold interface interactions. Scripta Mater. 56, 549 2007CrossRefGoogle Scholar
4Xu, C., Sritharan, T.Mhaisalkar, S.G.: Interface transformations in thin film aluminum-gold diffusion couples. Thin Solid Films 515, 5454 2007CrossRefGoogle Scholar
5Karpel, A., Gur, G., Atzmon, Z.Kaplan, W.D.: TEM microstructural analysis of as-bonded Al–Au wire-bonds. J. Mater. Sci. 42, 2334 2007CrossRefGoogle Scholar
6Karpel, A., Gur, G., Atzmon, Z.Kaplan, W.D.: Microstructural evolution of gold-aluminum wire-bonds. J. Mater. Sci. 42, 2347 2007CrossRefGoogle Scholar
7Zhang, X.Tee, T.Y.: Numerical and experimental correlation of high temperature reliability of gold wire bonding to intermetallics (Au/Al) uniformity. Thin Solid Films 504, 355 2006CrossRefGoogle Scholar
8Chang, H.S., Hsieh, K.C., Martens, T.Yang, A.: Wire-bond void formation during high temperature aging. IEEE Trans. Compon. Packag. Technol. 27, 155 2004CrossRefGoogle Scholar
9Ji, H.J., Li, M.Y., Wang, C.Q., Bang, H.S.Bang, H.S.: Comparison of interface evolution of ultrasonic aluminum and gold wire wedge bonds during thermal aging. Mater. Sci. Eng., A 447, 111 2007CrossRefGoogle Scholar
10Hiroshi, K.: Volume change due to intermetallic compound formation at the Al–Au bond in semiconductor devices. Jpn. J. Appl. Phys. 25, 934 1986Google Scholar
11Noolu, N.J., Murdeshwar, N.M., Ely, K.J., Lippold, J.C.Baeslack, W.A.: Degradation and failure mechanisms in thermally exposed Au–Al ball bonds. J. Mater. Res. 19, 1374 2004CrossRefGoogle Scholar
12Piao, H., Fuller, M.S., Miller, D.McIntyre, N.S.: A study of thin film Au–Al alloy oxidation in ambient air by x-ray photoelectron spectroscopy (XPS), x-ray absorption near edge structure (XANES), and secondary-ion mass spectrometry (SIMS). Appl. Surf. Sci. 187, 266 2002CrossRefGoogle Scholar
13Piao, H.McIntyre, N.S.: High resolution XPS studies of thin film gold–aluminum alloy structures. Surf. Sci. 421, 171 1999CrossRefGoogle Scholar
14Piao, H.McIntyre, N.S.: High-resolution valence band XPS studies of thin film Au–Al alloys. J Electron Spectrosc. Relat. Phenom. 119, 29 2001CrossRefGoogle Scholar
15Piao, H., McIntyre, N.S.Beamson, G.: Electronic structures of Au–Al thin-film alloys by high-energy XPS and XANES. J Electron Spectrosc. Relat. Phenom. 125, 35 2002CrossRefGoogle Scholar
16Constitution of Binary Alloys, edited by M. Hansen and K. Anderko McGraw-Hill New York 1958 68Google Scholar
17Fuggle, J.C., Kallne, E., Watson, L.M.Fabian, D.J.: Electronic structure of aluminum and aluminum-noble-metal alloys studied by soft-x-ray and x-ray photoelectron spectroscopies. Phys. Rev. B 16, 750 1977CrossRefGoogle Scholar
18Strohmeier, B.R.: An ESCA method for determining the oxide thickness on aluminum alloys. Surf. Interface Anal. 15, 51 1990CrossRefGoogle Scholar
19Koslowski, B., Boyen, H.G., Wilderotter, C.Kastle, G.: Oxidation of preferentially (111)-oriented Au films in an oxygen plasma investigated by scanning tunneling microscopy and photoelectron spectroscopy. Surf. Sci. 475, 1 2001CrossRefGoogle Scholar
20Perez, P., Lopez, M.F., Jimenez, J.A.Adeva, P.: Oxidation behaviour of Al-alloyed ZrSi2 at 700 °C. Intermetallics 8, 1393 2000CrossRefGoogle Scholar
21Boyen, H.G., Kastle, G., Weigl, F.Koslowski, B.: Oxidation-resistant gold-55 clusters. Science 297, 1533 2002CrossRefGoogle ScholarPubMed
22Parker, D.H.Koel, B.E.: Chemisorption of high coverages of atomic oxygen on the Pt(111), Pd(111), and Au(111) surfaces. J. Vac. Sci. Technol., A 8, 2585 1990CrossRefGoogle Scholar
23King, D.E.: Oxidation of gold by ultraviolet light and ozone at 25 °C. J. Vac. Sci. Technol., A 13, 1247 1995CrossRefGoogle Scholar
24Saliba, N., Parker, D.H.Koel, B.E.: Adsorption of oxygen on Au(111) by exposure to ozone. Surf. Sci. 410, 270 1998CrossRefGoogle Scholar
25Eley, D.D.Moore, P.B.: Adsorption of oxygen on gold. Surf. Sci. 76, 599 1978CrossRefGoogle Scholar
26Pireaux, J.J., Liehr, M., Thiry, P.A.Delrue, J.P.: Electron spectroscopic characterization of oxygen adsorption on gold surfaces: II. Production of gold oxide in oxygen DC reactive sputtering. Surf. Sci. 141, 221 1984CrossRefGoogle Scholar
27Juodkazis, K., Juodkazyte, J., Jasulaitiene, V.Lukinskas, A.: XPS studies on the gold oxide surface layer formation. Electrochem. Comm. 2, 503 2000CrossRefGoogle Scholar
28Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F.Muilenberg, G.E.: Handbook of X-ray Photoelectron Spectroscopy Perkin-Elmer Minneapolis, MN 1978 190Google Scholar
29Jaffe, J.E., Drouban, T.C.Chambers, S.A.: Oxygen vacancies and ferromagnetism in CoxTi1–xO2–x y. J. Appl. Phys. 97, 073908 2005CrossRefGoogle Scholar
30Chen, J., Rulis, P., Ouyang, L., Satpathy, S.Ching, W.Y.: Vacancy-enhanced ferromagnetism in Fe-doped rutile TiO2. Phys. Rev. B 74, 235207 2006CrossRefGoogle Scholar
31Park, J.W., Pedraza, A.J.Allen, W.R.: The interface between sputter-deposited gold thin films and ion-bombarded sapphire substrates. Appl. Surf. Sci. 103, 39 1996CrossRefGoogle Scholar
32Bruesch, P., Kotz, R., Neff, H.Pietronero, L.: Vibrational properties of Al2O3 films on gold, aluminum and silicon. Phys. Rev. B 29, 4691 1984CrossRefGoogle Scholar
33Gillet, M., Mohammad, A.A., Masek, K.Gillet, E.: Influence of surface structure on the growth of Au on α–Al2O3 (-1012). Thin Solid Films 374, 134 2002CrossRefGoogle Scholar
34Serrano, J.G.Pal, U.: Synthesis and characterization of Au nanoparticles in Al2O3 matrix. Int. J. Hydrogen Energy 28, 637 2003CrossRefGoogle Scholar
35Ishizaka, T., Muto, S.Kurokawa, Y.: Nonlinear optical and XPS properties of Au and Ag nanometer-size particle-doped alumina films prepared by the sol-gel method. Opt. Commun. 190, 385 2001CrossRefGoogle Scholar
36Mallya, N.Young, V.: Angular distribution XPS studies on recoil-implanted substrates: Au in Al2O3. J. Electron Spectrosc. Relat. Phenom. 24, 43 1981CrossRefGoogle Scholar
37Serrano, J.G., Galindo, A.G.Pal, U.: Au-Al2O3 nanocomposites: XPS and FTIR spectroscopic studies. Sol. Energy Mater. Sol. Cells 82, 291 2004CrossRefGoogle Scholar
38Nguyen, T.P., Ip, J., Rendu, P.L.Lahmar, A.: Improved adhesion of gold coatings on ceramic substrates by thermal treatment. Surf. Coat. Technol. 141, 108 2001CrossRefGoogle Scholar
39Atsuko, T., Kaoru, M., Tomohiro, U.Kohei, T.: Effects of Al2O3 films on the reliability of Au/Al joint. Nippon Steel Technical Report 72, 95 1997Google Scholar
40Briggs, D.Seah, M.P.Practical Surface Analysis, Vol. 1, 2nd ed.Wiley New York 1993Google Scholar