Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T21:26:49.535Z Has data issue: false hasContentIssue false

Formation of 2D transition metal dichalcogenides on TiC1−xAx surfaces (A = S, Se, Te): A theoretical study

Published online by Cambridge University Press:  13 December 2013

Krisztina Kádas*
Affiliation:
Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, SE-751 20 Uppsala, Sweden; and Institute for Solid State Physics and Optics, Wigner Research Center for Physics, H-1525 Budapest, Hungary
Jill Sundberg
Affiliation:
Department of Chemistry, Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden
Ulf Jansson
Affiliation:
Department of Chemistry, Ångström Laboratory, Uppsala University, 751 21 Uppsala, Sweden
Olle Eriksson
Affiliation:
Department of Physics and Astronomy, Division of Materials Theory, Uppsala University, SE-751 20 Uppsala, Sweden
*
a)Address all correspondence to this author. e-mail: Krisztina.Kadas@physics.uu.se
Get access

Abstract

Using first principle density functional calculations, we study the formation of 2D transition metal dichalcogenides (TMDs) on TiC1−xAx, (A = S, Se, and Te) surfaces. We examine the structural misfits between chalcogen-containing TiC and different TMDs and demonstrate that the conditions for formation of TMDs are fulfilled in TiC1−xAx. We also demonstrate the influence of chalcogens on the cohesive properties and electronic structure of the carbides. We find that they react with W and form W-dichalcogenides. In the experimentally reported Ti–C–S nanocomposite coatings, the carbide grains are embedded in an amorphous carbon matrix. We discuss here the role of this matrix in the reaction. We propose that TiC1−xTex and TiC1−xSex are the favorable sources for dichalcogenide formation and suggest an alternative way to produce 2D materials in general. Furthermore, we argue that using Ti–C–Te or Ti–C–Se in nanocomposite coatings may be more advantageous for tribological applications than that of Ti–C–S.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).Google Scholar
Podzorov, V., Gershenson, M.E., Kloc, C., Zeis, R., and Bucher, E.: High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301 (2004).Google Scholar
Ayari, A., Cobas, E., Ogundadegbe, O., and Fuhrer, M.S.: Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides. J. Appl. Phys. 101, 014507 (2007).Google Scholar
Yoon, Y., Ganapathi, K., and Salahuddin, S.: How good can monolayer MoS2 transistors be? Nano Lett. 11, 3768 (2011).CrossRefGoogle Scholar
Kuc, A., Zibouche, N., and Heine, T.: Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83, 245213 (2011).Google Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147 (2011).Google Scholar
He, Q.Y., Zeng, Z.Y., Yin, Z.Y., Li, H., Wu, S.X., Huang, X., and Zhang, H.: Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8, 2994 (2012).Google Scholar
Pu, J., Yomogida, Y., Liu, K.K., Li, L.J., Iwasa, Y., and Takenobu, T.: Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 12, 4013 (2012).CrossRefGoogle ScholarPubMed
Yin, Z.Y., Li, H., Li, H., Jiang, L., Shi, Y.M., Sun, Y.H., Lu, G., Zhang, Q., Chen, X.D., and Zhang, H.: Single-layer MoS2 phototransistors. ACS Nano 6, 74 (2012).Google Scholar
Lee, H.S., Min, S.W., Chang, Y.G., Park, M.K., Nam, T., Kim, H., Kim, J.H., Ryu, S., and Im, S.: MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 446 (2012).Google ScholarPubMed
Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).CrossRefGoogle ScholarPubMed
Coleman, J.N., Lotya, M., O’Neill, A., Bergin, S.D., King, P.J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R.J., Shvets, I.V., Arora, S.K., Stanton, G., Kim, H-Y., Lee, K., Kim, G.T., Duesberg, G.S., Hallam, T., Boland, J.J., Wang, J.J., Donegan, J.F., Grunlan, J.C., Moriarty, G., Shmeliov, A., Nicholls, R.J., Perkins, J.M., Grieveson, E.M., Theuwissen, K., McComb, D.W., Nellist, P.D., and Nicolosi, V.. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568 (2011).CrossRefGoogle ScholarPubMed
Dines, M.B.. Lithium intercalation via n-butyllithium of layered transition-metal dichalcogenides. Res. Bull. 10, 287 (1975).Google Scholar
Feldman, Y., Frey, G.L., Homyonfer, M., Lyakhovitskaya, V., Margulis, L., Cohen, H., Hodes, G., Hutchison, J.L., and Tenne, R.. Bulk synthesis of inorganic fullerene-like MS2 (M=Mo,W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 118, 5362 (1996).CrossRefGoogle Scholar
Cohen, S.R., Rapoport, L., Ponomarev, E.A., Cohen, H., Tsirlina, T., Tenne, R., and Lévy-Clément, C.: The tribological behavior of type II textured MX2 (M=Mo, W; X=S, Se) films. Thin Solid Films 324, 190 (1998).Google Scholar
Nossa, A. and Cavaleiro, A.: Mechanical behaviour of W–S–N and W–S–C sputtered coatings deposited with a Ti interlayer. Surf. Coat. Technol. 163164, 552 (2003).Google Scholar
Polcar, T., Evaristo, M., and Cavaleiro, A.: Self-lubricating W–S–C nanocomposite coatings. Plasma Processes Polym. 6, 417 (2009).CrossRefGoogle Scholar
Polcar, T., Evaristo, M., and Cavaleiro, A.: Comparative study of the tribological behavior of self-lubricating W-S-C and Mo-Se-C sputtered coatings. Wear 266, 388 (2009).CrossRefGoogle Scholar
Polcar, T., Evaristo, M., Stueber, M., and Cavaleiro, A.: Mechanical and tribological properties of sputtered Mo-Se-C coatings. Wear 266, 393 (2009).Google Scholar
Koch, T., Evaristo, M., Pauschitz, A., Roy, M., and Cavaleiro, A.: Nanoindentation and nanoscratch behaviour of reactive sputtered deposited W-S-C film. Thin Solid Films 518, 185 (2009).Google Scholar
Polcar, T. and Cavaleiro, A.: Self-adaptive low friction coatings based on transition metal dichalcogenides. Thin Solid Films 519, 4037 (2011).Google Scholar
Nyberg, H., Sundberg, J., Särhammar, E., Gustavsson, F., Kubart, T., Nyberg, T., Jansson, U., and Jacobson, S.: Extreme friction reductions during initial running-in of W–S–C–Ti low-friction coatings. Wear 302, 987 (2013).Google Scholar
Scharf, T.W., Rajendran, A., Banerjee, R., and Sequeda, F.: Growth, structure and friction behavior of titanium doped tungsten disulphide (Ti-WS2) nanocomposite thin films. Thin Solid Films 517, 5666 (2009).Google Scholar
Savan, A., Simmonds, M., Huang, Y., Constable, C., Creasey, S., Gerbig, Y., Haefke, H., and Lewis, D.: Effects of temperature on the chemistry and tribology of co-sputtered MoSx-Ti composite thin films. Thin Solid Films 489, 137 (2005).Google Scholar
Sundberg, J., Nyberg, H., Särhammar, E., Kádas, K., Wang, L., Eriksson, O., Nyberg, T., Jacobson, S., and Jansson, U.: Tribochemically active Ti-C-S nanocomposite coatings. Mater. Res. Lett. 1, 148 (2013).Google Scholar
Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).Google Scholar
Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
Kresse, G. and Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).CrossRefGoogle ScholarPubMed
Kresse, G. and Furthmuller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).Google Scholar
Kresse, G. and Furthmuller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).Google Scholar
Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).Google Scholar
Kohn, W. and Sham, L.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).Google Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
Kádas, K., Eriksson, O., and Skorodumova, N.V.: Highly anisotropic sliding at tin/fe interfaces: A first principles study. J. Appl. Phys. 108, 113511 (2010).Google Scholar
Wiklund, U., Rubino, S., Kádas, K., Skorodumova, N.V., Eriksson, O., Hedberg, S., Collin, M., Olsson, A., and Leifer, K.: Experimental and theoretical studies on stainless steel transfer onto a tin-coated cutting tool. Acta Mater. 59, 68 (2011).Google Scholar
Kádas, K., Andersson, M., Holmström, E., Wende, H., Karis, O., Urbonaite, S., Butorin, S.M., Nikitenko, S., Kvashnina, K.O., Jansson, U., and Eriksson, O.: Structural properties of amorphous metal carbides; theory and experiment. Acta Mater. 60, 4720 (2012).CrossRefGoogle Scholar
Zunger, A., Wei, S-H., Ferreira, L.G., and Bernard, J.E.: Special quasirandom structures. Phys. Rev. Lett. 65, 353 (1990).Google Scholar
Schutte, W.J., Boer, J.L.D., and Jellinek, F.: Crystal structures of tungsten disufide and diselenide. J. Solid State Chem. 70, 207 (1987).Google Scholar
Martienssen, W. and Warlimont, H.: Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin Heidelberg, 2005).Google Scholar
Mar, A., Jobic, S., and Ibers, J.A.: Metal-metal vs tellurium tellurium bonding in WTe2 and its ternary variants TaIrTe4 and NbIrTe4. J. Am. Chem. Soc. 114, 8963 (1992).Google Scholar
Jansson, U., Lewin, E., Rasander, M., Eriksson, O., Andre, B., and Wiklund, U.: Design of carbide-based nanocomposite thin films by selective alloying. Surf. Coat. Technol. 206, 583 (2011).Google Scholar
Hugosson, H.W., Eriksson, O., Jansson, U., and Abrikosov, I.: Surface segregation of transition metal impurities on TiC (001) surface. Surf. Sci. 585, 101 (2005).Google Scholar
Voevodin, A.A., O’Neill, J.P., Prasad, S.V., and Zabinski, J.S.. Nanocrystalline WC and WC/a-C composite coatings produced from intersected plasma fluxes at low deposition temperatures. J. Vac. Sci. Technol., A 17, 986 (1999).Google Scholar
Palmquist, J-P., Birch, J., and Jansson, U.: Deposition of epitaxial ternary transition metal carbide films. Thin Solid Films 405, 122 (2002).Google Scholar