Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-04-30T11:48:17.925Z Has data issue: false hasContentIssue false

Microstructural evolution and bonding mechanisms of the brazed Ti/ZrO2 joint using an Ag68.8Cu26.7Ti4.5 interlayer at 900 °C

Published online by Cambridge University Press:  28 February 2014

Shen-Hung Wei
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
Chien-Cheng Lin*
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
*
a)Address all correspondence to this author. e-mail: chienlin@faculty.nctu.edu.tw
Get access

Abstract

In this study, 3 mol% Y2O3-stabilized zirconia (3Y–ZrO2) and commercially pure titanium (cp-Ti) joints were fabricated with an Ag68.8Cu26.7Ti4.5 interlayer (Ticusil) at 900 °C for various brazing periods. After brazing at 900 °C/0.1 h, Ti2Cu, TiCu, Ti3Cu4, and TiCu4 layers were present at the Ti/Ticusil interface, while TiCu and TiO layers were observed at the Ticusil/3Y–ZrO2 interface. In the residual interlayer, clumpy TiCu4 was formed along with the Ag solid phase. After brazing at 900 °C/1 h, Ti3Cu3O and Ti2O layers were formed at the interlayer/ZrO2 interface, while Cu2O was precipitated in the residual interlayer with $\left[ {111} \right]_{{\rm{Cu}}_{\rm{2}} {\rm{O}}} //\left[ {111} \right]_{{\rm{Ag}}}$ and $\left( {20\bar 2} \right)_{{\rm{Cu}}_{\rm{2}} {\rm{O}}} //\left( {20\bar 2} \right){}_{{\rm{Ag}}}$. After brazing at 900 °C/6 h, a two-phase (α-Ti + Ti2Cu) region was observed on the Ti side with $\left[ {2\bar 1\bar 10} \right]_{{\rm{\alpha - Ti}}} //\left[ {100} \right]_{{\rm{Ti}}_{\rm{2}} {\rm{Cu}}}$ and $\left( {0002} \right)_{{\rm{\alpha - Ti}}} //\left( {0\bar 13} \right)_{{\rm{Ti}}_{\rm{2}} {\rm{Cu}}}$, while the TiCu layer grew at the expense of Ti3Cu4 and TiCu4. The bonding mechanisms and diffusion paths were explored with the aid of Ag–Cu–Ti and Ti–Cu–O ternary phase diagrams.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dezellus, O., Andrieux, J., Bosslet, F., Sacerdote-Peronnet, M., Baffie, T., Hodaj, F., Eustathopoulos, N., and Viala, J.C.: Transient liquid phase bonding of titanium to aluminium nitride. Mater. Sci. Eng., A 495, 254 (2008).Google Scholar
Shiue, R.K., Wu, S.K., Chen, F.Y., and Yang, T.E.: Interfacial reactions and wettability of 72Ag-28Cu braze on CP-Ti substrate using infrared heating. Metall. Mater. Trans. A 43, 1742 (2012).Google Scholar
Liu, C.C., Ou, C.L., and Shiue, R.K.: The microstructural observation and wettability study of brazing Ti-6Al-4V and 304 stainless steel using three braze alloys. J. Mater. Sci. 37(11), 2225 (2002).Google Scholar
Sotiropoulou, D. and Nikolopoulos, P.: Work of adhesion in ZrO2 liquid-metal systems. J. Mater. Sci. 28(2), 356 (1993).CrossRefGoogle Scholar
Kingery, W.D., Bowen, H.K., and Uhlmann, D.R.: Introduction to Ceramics, 2nd ed. (John Wiley & Sons, New York, 1991), p. 209.Google Scholar
Guedes, A., Pinto, A.M.P., Vieira, M., and Viana, F.: Multulayered interface in Ti/Macor® machinable glass-ceramic joints. Mater. Sci. Eng., A 301, 118 (2001).Google Scholar
Hanson, W.B., Ironside, K.I., and Fernie, J.A.: Active metal brazing of zirconia. Acta. Mater. 48(18–19), 4673 (2000).CrossRefGoogle Scholar
Chan, H.Y., Liaw, D.W., and Shiue, R.K.: The microstructural observation of brazing Ti-6Al-4V and TZM using the BAg-8 braze alloy. Int. J. Refract. Met. Hard Mater. 22(1), 27 (2004).CrossRefGoogle Scholar
Wang, Z.G., Kato, N., Sasaki, K., Hirayama, T., and Saka, H.: Electron holographic mapping of two-dimensional doping areas in cross-sectional device specimens prepared by the lift-out technique based on a focused ion beam. J. Electron Microsc. 53(2), 115 (2004).CrossRefGoogle ScholarPubMed
Cliff, G. and Lorimer, G.W.: The quantitative analysis of thin specimens. J. Microsc. 103(2), 203 (1975).Google Scholar
Goldstein, J.I., Williams, D.B., and Cliff, G.: Quantitative x-ray analysis. In Principles of Analytical Electron Microscopy, Joy, D.C., Romig, A.D., and Goldstein, J.I. eds.; Plenum Press: New York, 1986; p. 155.CrossRefGoogle Scholar
Murray, J.L.: Calculations of stable and metastable equilibrium diagrams of the Ag-Cu and Cd-Zn systems. Metall. Trans. A 15(2), 261 (1984).CrossRefGoogle Scholar
Lin, K.L., Singh, M., and Asthana, R.: Interfacial characterization of YSZ-to-steel joints with Ag-Cu-Pd interlayers for solid oxide fuel cell applications. Ceram. Int. 38(3), 1991 (2012).Google Scholar
Liu, G.W., Li, W., Qiao, G.J., Wang, H.J., Yang, J.F., and Lu, T.J.: Microstructures and interfacial behavior of zirconia/stainless steel joint prepared by pressureless active brazing. J. Alloys Compd. 470(1–2), 163 (2009).CrossRefGoogle Scholar
Chang, Y.W. and Lin, C.C.: Compositional dependence of phase formation mechanisms at the interface between titanium and calcia-stabilized zirconia at 1550°C. J. Am. Ceram. Soc. 93(11), 3893 (2010).Google Scholar
Lee, J.G., Hong, S.J., Lee, M.K., and Rhee, C.K.: High strength bonding of titanium to stainless steel using an Ag interlayer. J. Nucl. Mater. 395(1–3), 145 (2009).CrossRefGoogle Scholar
Andrieux, J., Dezellus, O., Bosselet, F., Sacerdote-Peronnet, M., Sigala, C., Chiriac, R., and Viala, J.C.: Details on the formation of Ti2Cu3 in the Ag-Cu-Ti system in the temperature range 790-860°C. J. Phase Equilib. Diffus. 29(2), 156 (2008).CrossRefGoogle Scholar
Kelkar, G.P., Spear, K.E., and Carim, A.H.: Thermodynamic evaluation of reaction products and layering in brazed alumina joints. J. Mater. Res. 9(9), 2244 (1994).Google Scholar
Santella, M.L., Horton, J.A., and Pak, J.J.: Microstructure of alumina brazed with a silver-copper-titanium alloy. J. Am. Ceram. Soc. 73(6), 1785 (1990).CrossRefGoogle Scholar
Lee, H.J. and Aaronson, H.I.: Eutectoid decomposition mechanisms in hypoeutectoid Ti-X alloys. J. Mater. Sci. 23(1), 150 (1988).CrossRefGoogle Scholar
Liang, Y.H., Wang, H.Y., Yang, Y.F., Wang, Y.Y., and Jiang, Q.C.: Evolution process of the synthesis of TiC in the Cu-Ti-C system. J. Alloys Compd. 452(2), 298 (2008).Google Scholar
Hammerl, C., Renner, B., Rauschenbach, B., and Assmann, W.: Phase formation in titanium after high-fluence oxygen ion implantation. Nucl. Instrum. Methods Phys. Res., Sect. B 148(1–4), 851 (1999).CrossRefGoogle Scholar
Holmberg, B.: Disorder and order in solid solutions of oxygen in α-titanium. Acta Chem. Scand. 16, 1245 (1962).Google Scholar
Lin, K.L. and Lin, C.C.: Reaction between titanium and zirconia powders during sintering at 1500°C. J. Am. Ceram. Soc. 90(7), 2220 (2007).Google Scholar
Pimenta, J.S., Buschinelli, A.J.A., do Nascimento, R.M., Martinelli, A.E., and Remmel, J.: Joining of zirconia mechanically metalized with titanium. Cerâmica 56, 212 (2010).Google Scholar
Soon, A., Todorova, M., Delley, B., and Stampfl, C.: Thermodynamic stability and structure of copper oxide surfaces: A first-principles investigation. Phys. Rev. B 75, 125420 (2007).Google Scholar
Eremenko, V.N., Buyanov, Y.I., and Panchenko, N.M.: Polythermal and isothermal sections of the system titanium-copper-silver. Part II. Sov. Powder Metall. Met. Ceram. 9(5), 410 (1970).CrossRefGoogle Scholar
Eremenko, V.N., Buyanov, Y.I., and Panchenko, N.M.: The liquidus surface of the system titanium-copper-silver. Powder Metall. Met. Ceram. 9(4), 301 (1970).CrossRefGoogle Scholar
Murray, J.L. and Bhansali, K.J.: The Ag-Ti (silver-titanium) system. J. Phase Equil. 4(2), 178 (1983).Google Scholar
Murray, J.L.: The Cu-Ti (copper-titanium) system. J. Phase Equil. 4(1), 81 (1983).Google Scholar
Hirnyj, S. and Indacochea, J.E.: Phase transformations in Ag70.5Cu26.5Ti3 filler alloy during brazing processes. Chem. Met. Alloys 1, 323 (2008).CrossRefGoogle Scholar
Yang, M., Lin, T., and He, P.: Microstructure evolution of Al2O3/Al2O3 joint brazed with Ag-Cu-Ti + B + TiH2 composite filler. Ceram. Int. 38, 289 (2012).Google Scholar
Shiue, R.H. and Wu, S.K.: Infrared brazing Ti50Ni50 and Ti-6Al-4V using the BAg-8 braze alloy. Mater. Trans. 46(9), 2057 (2005).CrossRefGoogle Scholar