Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-md8df Total loading time: 0.409 Render date: 2021-11-30T13:18:16.690Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Growth of nanoscale BaTiO3/SrTiO3 superlattices by molecular-beam epitaxy

Published online by Cambridge University Press:  31 January 2011

A. Soukiassian*
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802-5005
W. Tian
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802-5005
V. Vaithyanathan
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802-5005
J.H. Haeni
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802-5005
L.Q. Chen
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802-5005
X.X. Xi
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802-5005
D.G. Schlom
Affiliation:
Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802-5005
D.A. Tenne
Affiliation:
Department of Physics, Boise State University, Boise, Idaho 83725
H.P. Sun
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
X.Q. Pan
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109
K.J. Choi
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706
C.B. Eom
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin, Madison, Wisconsin 53706
Y.L. Li
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Q.X. Jia
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
C. Constantin
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
R.M. Feenstra
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
M. Bernhagen
Affiliation:
Institute for Crystal Growth, Max-Born-Straße 2, D-12489 Berlin, Germany
P. Reiche
Affiliation:
Institute for Crystal Growth, Max-Born-Straße 2, D-12489 Berlin, Germany
R. Uecker
Affiliation:
Institute for Crystal Growth, Max-Born-Straße 2, D-12489 Berlin, Germany
*
a)Address all correspondence to this author. e-mail: aqs11@psu.edu
Get access

Abstract

Commensurate BaTiO3/SrTiO3 superlattices were grown by reactive molecular-beam epitaxy on four different substrates: TiO2-terminated (001) SrTiO3, (101) DyScO3, (101) GdScO3, and (101) SmScO3. With the aid of reflection high-energy electron diffraction (RHEED), precise single-monolayer doses of BaO, SrO, and TiO2 were deposited sequentially to create commensurate BaTiO3/SrTiO3 superlattices with a variety of periodicities. X-ray diffraction (XRD) measurements exhibit clear superlattice peaks at the expected positions. The rocking curve full width half-maximum of the superlattices was as narrow as 7 arc s (0.002°). High-resolution transmission electron microscopy reveals nearly atomically abrupt interfaces. Temperature-dependent ultraviolet Raman and XRD were used to reveal the paraelectric-to-ferroelectric transition temperature (TC). Our results demonstrate the importance of finite size and strain effects on the TC of BaTiO3/SrTiO3 superlattices. In addition to probing finite size and strain effects, these heterostructures may be relevant for novel phonon devices, including mirrors, filters, and cavities for coherent phonon generation and control.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Neaton, J.B.Rabe, K.M.: Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices. Appl. Phys. Lett. 82, 1586 2003CrossRefGoogle Scholar
2Johnston, K., Huang, X., Neaton, J.B.Rabe, K.M.: First-principles study of symmetry lowering and polarization in BaTiO3/SrTiO3 superlattices with in-plane expansion. Phys. Rev. B 71, 100103 2005CrossRefGoogle Scholar
3Tenne, D.A., Bruchhausen, A., Lanzillotti-Kimura, N.D., Fainstein, A., Katiyar, R.S., Cantarero, A., Soukiassian, A., Vaithyanathan, V., Haeni, J.H., Tian, W., Schlom, D.G., Choi, K.J., Kim, D.M., Eom, C.B., Sun, H.P., Pan, X.Q., Li, Y.L., Chen, L.Q., Jia, Q.X., Nakhmanson, S.M., Rabe, K.M.Xi, X.X.: Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science 313, 1614 2006CrossRefGoogle ScholarPubMed
4Soukiassian, A., Tian, W., Tenne, D.A., Xi, X.X., Schlom, D.G., Lanzillotti-Kimura, N.D., Bruchhausen, A., Fainstein, A., Sun, H.P., Pan, X.P., Cros, A.Cantarero, A.: Acoustic Bragg mirrors and cavities made using piezoelectric oxides. Appl. Phys. Lett. 90, 042909 2007CrossRefGoogle Scholar
5Sun, H.P., Tian, W., Pan, X.Q., Haeni, J.H.Schlom, D.G.: Evolution of dislocation arrays in epitaxial BaTiO3 thin films grown on (100) SrTiO3. Appl. Phys. Lett. 84, 3298 2004CrossRefGoogle Scholar
6Taylor, D.: Thermal-expansion data VIII complex oxides, ABO3, the perovskites. Trans. J. Br. Ceram. Soc. 84, 181 1985Google Scholar
7Ueckera, R., Wilke, H., Schlom, D.G., Velickov, B., Reiche, P., Polity, A., Bernhagen, M.Rossberg, M.: Spiral formation during Czochralski growth of rare-earth scandates. J. Cryst. Growth 295, 84 2006CrossRefGoogle Scholar
8Velickov, B., Kahlenberg, V., Bertram, R.Bernhagen, M.: Crystal chemistry of GdScO3, DyScO3, SmScO3, and NdScO3. Z. Kristallogr. 222, 466 2007CrossRefGoogle Scholar
9Theis, C.D.Schlom, D.G.: Cheap and stable titanium source for use in oxide molecular beam epitaxy systems. J. Vac. Sci. Technol., A 14, 2677 1996CrossRefGoogle Scholar
10Iijima, K., Terashima, T., Bando, Y., Kamigaki, K.Terauchi, H.: Atomic layer growth of oxide thin films with perovskite-type structure by reactive evaporation. J. Appl. Phys. 72, 2840 1992CrossRefGoogle Scholar
11Tsurumi, T., Suzuki, T., Yamane, M.Daimon, M.: Fabrication of barium titanate/strontium titanate artificial superlattice by atomic layer epitaxy. Jpn. J. Appl. Phys., Pt. 1 33, 5192 1994CrossRefGoogle Scholar
12Haeni, J.H.: Nanoengineering of Ruddlesden-Popper phases using molecular beam epitaxy.Ph.D. Thesis, The Pennsylvania State University,, 2002 pp. 60–86Google Scholar
13Koster, G., Kropman, B.L., Rijnders, G.J.H.M.Blank, D.H.A.: Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett. 73, 2920 1998CrossRefGoogle Scholar
14Kubo, T.Nozoye, H.: Surface structure of SrTiO3 (100). Surf. Sci. 542, 177 2003CrossRefGoogle Scholar
15Castell, M.R.: Scanning tunneling microscopy of reconstructions on the SrTiO3 (001) surface. Surf. Sci. 505, 1 2002CrossRefGoogle Scholar
16Haeni, J.H., Theis, C.D.Schlom, D.G.: RHEED intensity oscillations for the stoichiometric growth of SrTiO3 thin films by reactive molecular beam epitaxy. J. Electroceram. 4, 385 2000CrossRefGoogle Scholar
17Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, edited by K-H. Hellwege and A.M. Hellwege, New Series, Group III, Vol. 16a, Springer New York 1981 59Google Scholar
18Bodin, P., Sakai, S.Kasai, Y.: Molecular-beam epitaxy fabrication of SrTiO3 and Bi2Sr2CaCu2O8 heterostructures using a novel reflection high-energy electron-diffraction monitoring technique. Jpn. J. Appl. Phys., Pt. 2 31, 949 1992CrossRefGoogle Scholar
19Blank, D.H.A.: private communication,Google Scholar
20Choi, K.J., Biegalski, M., Li, Y.L., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y.B., Pan, X.Q., Gopalan, V., Chen, L-Q., Schlom, D.G.Eom, C.B.: Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005 2004CrossRefGoogle Scholar
21Specht, E.D., Christen, H-M., Norton, D.P.Boatner, L.A.: X-ray diffraction measurement of the effect of layer thickness on the ferroelectric transition in epitaxial KTaO3/KNbO3 multilayers. Phys. Rev. Lett. 80, 4317 1998CrossRefGoogle Scholar
22Christen, H-M., Specht, E.D., Norton, D.P., Chisholm, M.F.Boatner, L.A.: Long-range ferroelectric interactions in KTaO3/KNbO3 superlattice structures. Appl. Phys. Lett. 72, 2535 1998CrossRefGoogle Scholar
23Streiffer, S.K., Eastman, J.A., Fong, D.D., Thompson, C., Munkholm, A., Murty, M.V.R., Auciello, O., Bai, G.R.Stephenson, G.B.: Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films. Phys. Rev. Lett. 89, 067601 2002CrossRefGoogle ScholarPubMed
24Sepliarsky, M., Phillpot, S.R., Stachiotti, M.G.Migoni, R.L.: Ferroelectric phase transitions and dynamical behavior in KNbO3/KTaO3 superlattices by molecular-dynamics simulation. J. Appl. Phys. 91, 3165 2002CrossRefGoogle Scholar
25Schlom, D.G., Chen, L.Q., Eom, C.B., Rabe, K.M., Streiffer, S.K.Triscone, J.M.: Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589 2007CrossRefGoogle Scholar
26Nelson, J.B.Riley, D.P.: An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Phys. Soc. London,57 160 1945Google Scholar
27Brooks, C., Tian, W.Schlom, D.G.: unpublished,Google Scholar
28Haeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Tian, W., Hawley, M.E., Craigo, B., Tagantsev, A.K., Pan, X.Q., Streiffer, S.K., Chen, L.Q., Kirchoefer, S.W., Levy, J.Schlom, D.G.: Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758 2004CrossRefGoogle ScholarPubMed
29Biegalski, M.D., Jia, Y., Schlom, D.G., Trolier-McKinstry, S., Streiffer, S.K., Sherman, V., Uecker, R.Reiche, P.: Relaxor ferroelectricity in strained epitaxial SrTiO3 thin films on DyScO3 substrates. Appl. Phys. Lett. 88, 192907 2006CrossRefGoogle Scholar
30Vasudevarao, A., Kumar, A., Tian, L., Haeni, J.H., Li, Y.L., Eklund, C-J., Jia, Q.X., Uecker, R., Reiche, P., Rabe, K.M., Chen, L.Q., Schlom, D.G.Gopalan, V.: Multiferroic domain dynamics in strained strontium titanate. Phys. Rev. Lett. 97, 257602 2006CrossRefGoogle ScholarPubMed
31Scheel, H.J., Bednorz, J.G.Dill, P.: Crystal growth of strontium titanate SrTiO3. Ferroelectrics 13, 507 1976CrossRefGoogle Scholar
32Qadri, S.B., Horwitz, J.S., Chrisey, D.B., Auyeung, R.C.Y.Grabowski, K.S.: X-ray characterization of extremely high-quality (Sr,Ba)TiO3 films grown by pulsed laser deposition. Appl. Phys. Lett. 66, 1605 1995CrossRefGoogle Scholar
33Nabokin, P.I., Souptel, D.Balbashov, A.M.: Floating zone growth of high-quality SrTiO3 single crystals. J. Cryst. Growth 250, 397 2003CrossRefGoogle Scholar
34Mathews, J.W.: Epitaxial Growth edited by J.W. Mathews Vol. 2, Academic Press New York 1975Google Scholar
35Schlom, D.G.Haeni, J.H.: A thermodynamic approach to selecting alternative gate dielectrics. MRS Bull. 27, 198 2002CrossRefGoogle Scholar
36Lim, S.G., Kriventsov, S., Jackson, T.N., Haeni, J.H., Schlom, D.G., Balbashov, A.M., Uecker, R., Reiche, P., Freeouf, J.L.Lucovsky, G.: Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry. J. Appl. Phys. 91, 4500 2002CrossRefGoogle Scholar
37Cardona, M.: Optical properties and band structure of SrTiO3 and BaTiO3. Phys. Rev. 140, 651 1965CrossRefGoogle Scholar
38Li, Y.L., Hu, S.Y., Tenne, D., Soukiassian, A., Xi, X.X., Schlom, D.G., Choi, K.J., Eom, C.B., Saxena, A., Lookman, T., Jia, Q.X.Chen, L.Q.: Prediction of ferroelectricity in BaTiO3/SrTiO3 superlattices with domains. Appl. Phys. Lett. 91, 112914 2007CrossRefGoogle Scholar
39Li, Y.L., Hu, S.Y., Tenne, D., Soukiassian, A., Schlom, D.G., Chen, L.Q., Xi, X.X., Choi, K.J., Eom, C.B., Saxena, A., Lookman, T., Jia, Q.X.: Interfacial coherency and ferroelectricity of BaTiO3/SrTiO3 superlattice films. Appl. Phys. Lett. 91, 252904 2007CrossRefGoogle Scholar
40Tenne, D., Schmidt, J.D., Turner, P., Soukiassian, A., Xi, X.X., Schlom, D.G., Li, Y.L., Jia, Q.X., Chen, L.Q., Bernhagen, M., Reiche, P.Uecker, R.: unpublished,Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Growth of nanoscale BaTiO3/SrTiO3 superlattices by molecular-beam epitaxy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Growth of nanoscale BaTiO3/SrTiO3 superlattices by molecular-beam epitaxy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Growth of nanoscale BaTiO3/SrTiO3 superlattices by molecular-beam epitaxy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *