Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-ls6xp Total loading time: 0.19 Render date: 2022-11-29T18:32:06.376Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

A Satake isomorphism in characteristic p

Published online by Cambridge University Press:  23 August 2010

Florian Herzig*
Affiliation:
Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston IL 60208-2730, USA (email: herzig@math.northwestern.edu)
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose that G is a connected reductive group over a p-adic field F, that K is a hyperspecial maximal compact subgroup of G(F), and that V is an irreducible representation of K over the algebraic closure of the residue field of F. We establish an analogue of the Satake isomorphism for the Hecke algebra of compactly supported,K-biequivariant functions f:G(F)→End   V. These Hecke algebras were first considered by Barthel and Livné for GL 2. They play a role in the recent mod p andp-adic Langlands correspondences for GL 2 (ℚp) , in generalisations of Serre’s conjecture on the modularity of mod p Galois representations, and in the classification of irreducible mod p representations of unramified p-adic reductive groups.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2010

References

[1]Barthel, L. and Livné, R., Irreducible modular representations of GL2 of a local field, Duke Math. J. 75 (1994), 261292; MR 1290194(95g:22030).CrossRefGoogle Scholar
[2]Barthel, L. and Livné, R., Modular representations of GL2 of a local field: the ordinary, unramified case, J. Number Theory 55 (1995), 127; MR 1361556(96m:22036).CrossRefGoogle Scholar
[3]Borel, A., Linear algebraic groups, Graduate Texts in Mathematics, vol. 126, second edition (Springer, New York, 1991); MR 1102012(92d:20001).CrossRefGoogle Scholar
[4]Bourbaki, N., Lie groups and Lie algebras, chapters 4–6, Elements of Mathematics (Springer, Berlin, 2002); MR 1890629(2003a:17001).CrossRefGoogle Scholar
[5]Breuil, C., Sur quelques représentations modulaires et p-adiques de GL2(Qp). I, Compositio Math. 138 (2003), 165188; MR 2018825(2004k:11062).CrossRefGoogle Scholar
[6]Bruhat, F. and Tits, J., Groupes réductifs sur un corps local, Publ. Math. Inst. Hautes Études Sci. 41 (1972), 5251; MR 0327923(48#6265).CrossRefGoogle Scholar
[7]Bruhat, F. and Tits, J., Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Publ. Math. Inst. Hautes Études Sci. 60 (1984), 197376; MR 756316(86c:20042).Google Scholar
[8]Cabanes, M., Irreducible modules and Levi supplements, J. Algebra 90 (1984), 8497; MR 757083(86a:20047).CrossRefGoogle Scholar
[9]Cartier, P., Representations of p-adic groups: a survey, in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 111155; MR 546593(81e:22029).Google Scholar
[10]Colliot-Thélène, J.-L., Résolutions flasques des groupes linéaires connexes, J. Reine Angew. Math. 618 (2008), 77133; MR 2404747(2009a:11091).Google Scholar
[11]Gross, B. H., On the Satake isomorphism, in Galois representations in arithmetic algebraic geometry (Durham, 1996), London Mathematical Society Lecture Note Series, vol. 254 (Cambridge University Press, Cambridge, 1998), 223237; MR 1696481(2000e:22008).CrossRefGoogle Scholar
[12]Gross, B. H., Algebraic modular forms, Israel J. Math. 113 (1999), 6193; MR 1729443(2001b:11037).CrossRefGoogle Scholar
[13]Grothendieck, A.et al., SGA 3: Schémas en groupes I, II, III, Lecture Notes in Mathematics, vol. 151, 152, 153 (Springer, Heidelberg, 1970).Google Scholar
[14]Haines, T., Kottwitz, R. and Prasad, A., Iwahori–Hecke algebras, J. Ramanujan Math. Soc. 25 (2010), 113145.Google Scholar
[15]Herzig, F., The classification of irreducible admissible mod p representations of a p-adic GLn, Preprint (2010), http://math.northwestern.edu/∼herzig/parab-ind.pdf.Google Scholar
[16]Herzig, F., The weight in a Serre-type conjecture for tame n-dimensional Galois representations, Duke Math. J. 149 (2009), 37116; MR 2541127.CrossRefGoogle Scholar
[17]Humphreys, J. E., Modular representations of finite groups of Lie type, London Mathematical Society Lecture Note Series, vol. 326 (Cambridge University Press, Cambridge, 2006); MR 2199819(2007f:20023).Google Scholar
[18]Jantzen, J. C., Representations of algebraic groups, Mathematical Surveys and Monographs, vol. 107, second edition (American Mathematical Society, Providence, RI, 2003); MR 2015057(2004h:20061).Google Scholar
[19]Kato, S., Spherical functions and a q-analogue of Kostant’s weight multiplicity formula, Invent. Math. 66 (1982), 461468; MR 662602(84b:22030).CrossRefGoogle Scholar
[20]Lazarus, X., Module universel en caractéristique l>0 associé à un caractère de l’algèbre de Hecke de GL(n) sur un corps p-adique, avec lp, J. Algebra 213 (1999), 662686; MR 1673473(2000f:20004).CrossRefGoogle Scholar
[21]Schein, M., Weights in generalizations of Serre’s conjecture and the mod p local Langlands correspondence, in Symmetries in algebra and number theory (Göttingen, 2008) (Georg-August-Universitätsverlag, Göttingen, 2009), 7193.Google Scholar
[22]Schneider, P. and Teitelbaum, J., Banach–Hecke algebras and p-adic Galois representations, Doc. Math. Extra Vol. (2006), 631684 (electronic); MR 2290601(2008b:11126).Google Scholar
[23]Smith, S. D., Irreducible modules and parabolic subgroups, J. Algebra 75 (1982), 286289; MR 650422(83g:20043).CrossRefGoogle Scholar
[24]Springer, T. A., Linear algebraic groups, second edition, Progress in Mathematics, vol. 9 (Birkhäuser, Boston, MA, 1998); MR 1642713(99h:20075).CrossRefGoogle Scholar
[25]Tits, J., Reductive groups over local fields, in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proceedings of Symposia in Pure Mathematics, vol. XXXIII (American Mathematical Society, Providence, RI, 1979), 2969; MR 546588(80h:20064).Google Scholar
You have Access
19
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Satake isomorphism in characteristic p
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A Satake isomorphism in characteristic p
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A Satake isomorphism in characteristic p
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *