Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-27T09:00:35.568Z Has data issue: false hasContentIssue false

On Greenberg’s L-invariant of the symmetric sixth power of an ordinary cusp form

Published online by Cambridge University Press:  15 May 2012

Robert Harron*
Affiliation:
Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Drive, Madison, WI 53706, USA (email: rharron@math.wisc.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We derive a formula for Greenberg’s L-invariant of Tate twists of the symmetric sixth power of an ordinary non-CM cuspidal newform of weight ≥4, under some technical assumptions. This requires a ‘sufficiently rich’ Galois deformation of the symmetric cube, which we obtain from the symmetric cube lift to GSp(4)/Q of Ramakrishnan–Shahidi and the Hida theory of this group developed by Tilouine–Urban. The L-invariant is expressed in terms of derivatives of Frobenius eigenvalues varying in the Hida family. Our result suggests that one could compute Greenberg’s L-invariant of all symmetric powers by using appropriate functorial transfers and Hida theory on higher rank groups.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2012

References

[BGHT11]Barnet-Lamb, T., Geraghty, D., Harris, M. and Taylor, R., A family of Calabi–Yau varieties and potential automorphy, II, Publ. Res. Inst. Math. Sci. 47 (2011), 2998.CrossRefGoogle Scholar
[Ben11]Benois, D., A generalization of Greenberg’s ℒ-invariant, Amer. J. Math. 133 (2011), 15731632.Google Scholar
[BK90]Bloch, S. and Kato, K., L-functions and Tamagawa numbers of motives, in The Grothendieck festschrift. Vol. I, Progress in Mathematics, vol. 86, eds Cartier, P., Illusie, L., Katz, N. M., Laumon, G., Manin, Y. and Ribet, K. (Birkhäuser, 1990), 333400.Google Scholar
[Cit08]Citro, C., ℒ-invariants of adjoint square Galois representations coming from modular forms, Int. Math. Res. Not. 2008 (2008), doi:10.1093/imrn/rnn048.Google Scholar
[Del71]Deligne, P., Formes modulaires et représentations -adiques, Sémin. Bourbaki 1968/69 (1971), 139172.Google Scholar
[Del79]Deligne, P., Valeurs de fonctions L et périodes d’intégrales, in Automorphic forms, representations, and L-functions, Proceedings of the Symposium in Pure Mathematics, vol. 33, eds Borel, A. and Casselman, W. (American Mathematical Society, Providence, RI, 1979), 313346 part 2.CrossRefGoogle Scholar
[FG78]Ferrero, B. and Greenberg, R., On the behavior of p-adic L-functions at s=0, Invent. Math. 50 (1978), 91102.CrossRefGoogle Scholar
[Fla90]Flach, M., A generalisation of the Cassels–Tate pairing, J. Reine Angew. Math. 412 (1990), 113127.Google Scholar
[GV04]Ghate, E. and Vatsal, V., On the local behaviour of ordinary Λ-adic representations, Ann. Inst. Fourier (Grenoble) 54 (2004), 21432162.CrossRefGoogle Scholar
[Gre89]Greenberg, R., Iwasawa theory for p-adic representations, in Algebraic number theory, Advanced Studies in Pure Mathematics, vol. 17, eds Coates, J., Greenberg, R., Mazur, B. and Satake, I. (Academic Press, Boston, 1989), 97137. Papers in honor of Kenkichi Iwasawa on the occasion of his 70th birthday on 11 September 1987.Google Scholar
[Gre94]Greenberg, R., Trivial zeroes of p-adic L-functions, in p-adic monodromy and the Birch and Swinnerton-Dyer conjecture, Contemporary Mathematics, vol. 165, eds Mazur, B. and Stevens, G. (American Mathematical Society, Providence, RI, 1994), 149174. Papers from the workshop held at Boston University, 12–16 August 1991.CrossRefGoogle Scholar
[GS93]Greenberg, R. and Stevens, G., p-adic L-functions and p-adic periods of modular forms, Invent. Math. 111 (1993), 407447.CrossRefGoogle Scholar
[Har09]Harron, R., L-invariants of low symmetric powers of modular forms and Hida deformations, PhD thesis, Princeton University, 2009.Google Scholar
[Har11]Harron, R., The exceptional zero conjecture for symmetric powers of CM modular forms: the ordinary case, 2011, submitted.Google Scholar
[Hid02]Hida, H., Control theorems of coherent sheaves on Shimura varieties of PEL type, J. Inst. Math. Jussieu 1 (2002), 176.Google Scholar
[Hid04]Hida, H., Greenberg’s ℒ-invariants of adjoint square Galois representations, Int. Math. Res. Not. (2004), 31773189.CrossRefGoogle Scholar
[Hid07]Hida, H., On a generalization of the conjecture of Mazur–Tate–Teitelbaum, Int. Math. Res. Not. 2007 (2007), doi:10.1093/imrn/rnm102.CrossRefGoogle Scholar
[Kis04]Kisin, M., Geometric deformations of modular Galois representations, Invent. Math. 157 (2004), 275328.Google Scholar
[MTT86]Mazur, B., Tate, J. and Teitelbaum, J., On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), 148.Google Scholar
[Pil09]Pilloni, V., Sur la théorie de Hida pour le group GSp2g, Bull. Soc. Math. France, to appear, Preprint, 2009.Google Scholar
[RS08]Raghuram, A. and Shahidi, F., Functoriality and special values of L-functions, in Eisenstein series and applications, Progress in Mathematics, vol. 258, eds Gan, W. T., Kudla, S. and Tschinkel, Y. (Birkhäuser, 2008), 271293.CrossRefGoogle Scholar
[RS07]Ramakrishnan, D. and Shahidi, F., Siegel modular forms of genus 2 attached to elliptic curves, Math. Res. Lett. 14 (2007), 315332.Google Scholar
[TU99]Tilouine, J. and Urban, É., Several-variable p-adic families of Siegel–Hilbert cusp eigensystems and their Galois representations, Ann. Sci. École Norm. Sup. 32 (1999), 499574.CrossRefGoogle Scholar
[Urb01]Urban, É., Selmer groups and the Eisenstein–Klingen ideal, Duke Math. J. 106 (2001), 485525.Google Scholar
[Urb05]Urban, É., Sur les représentations p-adiques associées aux représentations cuspidales de GSp4/Q, in Formes automorphes (II): le cas du groupe GSp(4), Astérisque, vol. 302, eds Carayol, H., Harris, M., Tilouine, J. and Vignéras, M.-F. (SMF, 2005), 151176.Google Scholar
[Wei08]Weissauer, R., Existence of Whittaker models related to four dimensional symplectic Galois representations, in Modular forms on Schiermonnikoog, eds Edixhoven, B., van der Geer, G. and Moonen, B. (Cambridge University Press, Cambridge, 2008), 285310.Google Scholar
[Wes04]Weston, T., Geometric Euler systems for locally isotropic motives, Compositio Math. 140 (2004), 317332.Google Scholar
[Wil88]Wiles, A., On ordinary λ-adic representations associated to modular forms, Invent. Math. 94 (1988), 529573.Google Scholar